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Abstract

The estimation of fatigue strength or fatigue life of a component under combined loading is fundamental to
correct design and safe operational life of many structural components. The fatigue process under complexes
states of stresses generated in these situations is known as Multiaxial Fatigue. In the present work the different
theories proposed to predict fatigue strength under in-phase and out-of-phase combined loading are reviewed.
Special attention is given to new approaches for out-of-phase loading based on the stress invariant method.
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1 Introduction

Most of structural mechanical components are frequently subjected to variable loading, which can lead
to sudden fatigue failure. Crank drive shafts, pressure vessels, blade/rotor junctions, bolted junctions
and many aeronautical components are usually operating under combined loads which can still be out
of phase and in different frequencies generating complexes biaxial or triaxial states of stresses. The
fatigue process under such states of stresses is known as Multiaxial Fatigue whose consideration is of
fundamental importance for assessment of life and operational reliability of structural components.
Therefore, efficient and accurate methodologies for the evaluation of fatigue endurance limit under
multiaxial stress states are required for use in engineering design applications.

Although many important developments have been made over more than hundred years of research
on the subject, many designers still resort to large factors of safety to guard structural components
against fatigue failures. The first attempts to investigate problems of multiaxial fatigue go back to the
end of 19th century when Lanza [1] published results of tests concerning combined bending/torsion
loading. In the early decades of the 20th century, investigators like Mason [2], Haigh [3], Nishiara and
Kawamoto [4] and Gough et al [5] presented empirical relations obtained from experimental data. The
initial theories proposed to predict fatigue failure under combined loading were basically an extension
of the failure theories for static multiaxial state of stress to multiaxial states of cyclic stresses. The
aim of these theories was to produce an uniaxial stress amplitude equivalent to a given multiaxial
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cyclic stress state and then use it to predict fatigue life from S-N curves, obtained from conventional
fatigue tests. The Maximum Shearing Stress Theory of Fatigue Failure and the Distortion Energy
Multiaxial Theory of Fatigue Failure [6] were basically extensions of the Tresca and von Mises theories,
respectively. The stress amplitudes were substitutes for the static principal stresses and the reversed
fatigue strength or fatigue limit replaced the yield stress. The experimental evidence showed these
methods were very conservative. The models for multiaxial fatigue analysis are generally divided into
three groups: the stress-based models, strain-based models and energy models.

For multiaxial high cycle fatigue – HCF analysis, a number of criteria, derived from different
approaches to the problem, have been reviewed in the literature [7, 8], the equivalent stress, the
critical plane, the average stress and the stress invariant methods, are the most known approaches for
the problem.

In the present work, some of the proposed criteria to assess the fatigue resistance of structural
components under multiaxial stress states in the HCF regime are presented underlying the fundamental
principles on which they are based.

2 Multiaxial high cycle fatigue models

Many mechanical components, like the hydraulic turbines used in the power generating industry, are
designed to endure a very large number of cycles without failure. Their size and operational conditions
make impractical frequent stoppages for inspection and maintenance and, consequently, the use of
Fracture Mechanics approaches for failure control. In the high cycle fatigue regime, most of total life
is spent to initiate a crack of detectable size by non-destructive inspection. Thus, in these cases, it
would be preferable to design against HCF, considering a criterion for crack initiation in order to
keep structures under dynamic loading operating safely. To achieve this objective, a domain of safety,
limited by a threshold below which cracks will not initiate, must be calculated.

The degradation of the state of the material under HCF occurs at stress levels well below the yield
limit. The fatigue damage is related to cyclic plastic deformations at the grain level, followed by the
formation of persistent slip bands from which microcracks will be nucleated, even in materials under
elastic regime at macroscopic level. Therefore, shear stresses must be considered as one of the driving
forces of the fatigue process. The normal stresses, which act upon the initiating crack, will also affect
the fatigue resistance.

2.1 The equivalent stress theories

The equivalent stress or strain methods consists basically of determining an uniaxial stress or strain
amplitude which would produce the same fatigue life as the multiaxial cyclic stress states, then this
equivalent stress is used to predict fatigue life from conventional S-N curves.

The models of Sines [9] and Crossland [10] are examples of this kind of theory. The criterion of Sines
[9] is expressed in terms of octahedral-shear stress as a linear function of the sum of the orthogonal
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normal static stresses:

1
3

{
(σ1a − σ2a)2 + (σ2a − σ3a)2 + (σ1a − σ3a)2

}1
2 ≤ A− α(σxm + σym + σzm) (1)

where σ1a, σ2a and σ3a are the alternating principal stress on the directions 1,2 and 3; σxm , σym and
σzm are the normal mean stress on the directions x, y and z; A and α are material constants, being
A proportional to the reversed fatigue strength and α gives the variation of the permissible range
of stress with static stress. For a biaxial state of stress, Equation (1) delimits an ellipse whose size
depends on the sum of the static (mean) stresses (σxm +σym). The region inside the ellipse is the safe
region and any combination of loads which produce alternate stresses within this area will not have
premature failure.

The Crossland criterion [10] differs from Sines criterion by considering the maximum value of the
hydrostatic stress instead of its mean value. These criteria predict whether a fatigue crack may develop
under given fatigue loading conditions, but they fail in considering the material physical stress-strain
response in terms of crack nucleation and growth. Their applicability is limited to cases in which
the principal axes of the alternating components are fixed to the body. Both criteria can also be
expressed in terms of stress invariants, as will be shown below. Similar methods were proposed using
the equivalent alternating strain as independent variable, instead of stress, and then used for low cycle
fatigue by entering an ε−N curve.

2.2 The critical planes theories

Fatigue cracks initiate in planes of maximum shear and propagate through the grains whose irregular
surfaces would difficult the crack growth due to mechanical interlocking and friction effects. But normal
stresses and strains acting upon the crack planes would open the crack, allowing it to grow. From this
point of view the stresses and strains on the most severely loaded planes in the material would govern
the fatigue process as cracks nucleates in a plane where the amplitude or the value of some stress
components or a combination of them reach its maximum value with the tensile and compressive
mean stresses having, respectively a detrimental or beneficial effect on fatigue life. These observations
led to the proposal of several theories known as the critical plane methods. Along the load cycle, the
stresses and strains are determined on several planes and applying some criterion, the more severely
loaded plane, or critical pane, where the fatigue cracks are expected to nucleate, is then identified.
This criterion will also give a measure of the fatigue damage, which will be used to predict fatigue life.
Findley [11], among the first to use the critical plane concept, postulated that normal stresses acting
on planes of maximum shear would affect the fatigue damage process. Brown and Miller [12] suggested
that the parameters governing the fatigue process were the maximum shear and normal strain acting
on those planes. However, Socie[13] showed that for non-proportional loading, the cyclic hardening of
the material would affect the fatigue process leading to smaller fatigue lives. Besides, Socie [13] and
Fatemi and Socie [14] showed the cracks could grow on these planes in different ways, mode I or mode
II, depending on the type of loading, magnitude of strain and the materials characteristics. Brown
and Miller [12] stated also on mode II the cracks could grow on these planes in two different ways:
type A cracks would propagate along the surface and type B cracks would propagate away from the
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surface. As the way the cracks will grow is not known in advance it would be necessary to consider
both situations making calculations for the two possible modes of cracking. The shear strain of model
of Socie [13], the normal strain model of Fatemi and Socie [14] and the shear stress model proposed
by McDiarmid [15] are characteristic of this approach.

The model proposed by Socie [13] is basically an extension of the fatigue parameter proposed by
Smith, Watson and Topper [16], for the case of cracks that grow in planes of high tensile stress (mode
I), expressed as:

σmaxε1a = σ′fε′f (2Nf )c+b +
(

σ′f
E

)
(2Nf )2b (2)

where ε1a is the amplitude of the principal strain and σmax is the maximum (mean + alternate) stress
acting on the plane of ε1a. The right side of equation (2) is the description of a ε−N curve and the left
side represents the loading variables for the plane of the greatest amplitude of normal strain (principal
strain). For situations where the cracks grow on planes of high shear stress (mode II) Fatemi and Socie
[14] suggested the following relationship:

γac

(
1 +

ασmax

σ′y

)
=

τ ′f
G

(2Nf )b + γ′f (2Nf )c (3)

where γac is the largest amplitude of shear strain for any plane; σmaxc is the peak tensile stress normal
to the plane of γac, occurring any time during the γac cycle; α is an empirical constant and; σy’ is
the cyclic yield strength. The terms of the left side of equation (3) represent the loading variables and
τf ’, b, γf ’ and c defines the strain-life curve from completely reversed tests in pure shear.

Different from Brown and Miller [12] and Socie [13], McDiarmid [15] assume the plane maximum
shear stress amplitude as the critical plane and the maximum shear stress amplitude on that plane the
main responsible for fatigue crack growth. His model also take into account the effect of the maximum
normal stress on that plane on the crack growth process. The model of McDiarmid [15] is expressed
as:

τa,max

t−1
+

σa,max

2.Sut
= 1 (4)

where τa,max andσa,max, are the maximum amplitude of shear and normal stress, respectively, on the
plane of maximum shear stress amplitude, t−1 is the fatigue limit under reversed torsion andSut is
the ultimate tensile strength. Other theories based on the critical plane approach have been reviewed
by Kussmaul, McDiarmid and Socie [17] and Karolczuk and Macha [18].

These methods present some difficulties to implement, as most of them require a number of param-
eters to be determined experimentally from different types of fatigue tests. If plastic deformations are
involved, as in low cycle fatigue, the characterization of the plastic behaviour of the materials have to
be done through a plasticity theory which adds an extra complexity to the method implementation.
The different modes of crack growth require the consideration of different possibilities in the analysis.
As the way the cracks will grow is not known in advance it would be necessary to consider both situa-
tions, mode I or mode II, making calculations for the possible modes of cracking. Some models do not
distinguish the different types of crack growth, losing the relation with the physical interpretation,
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which is the great appeal of this approach. The critical plane models based on strain do not give good
results for high cycle fatigue as, in this situation, the fatigue process is controlled by elastic stresses.

2.3 The average stress theories

The average stress approach is based on the averages of normal and shear stresses acting on a generic
material plane within an elementary volume. This quantity is treated as an equivalent stress and
correlated to the fatigue damage. Papadopoulos et al [19] proposed a fatigue criterion based on the
average values of the normal stress N and of the shear stress Ta within an elementary volume V:

√
〈T 2

n〉+ α
(
max

t
〈N〉

)
≤ β (5)

where Tn is the root mean square of the shear stress amplitude within a volume V, max
t
〈N〉 is the

maximum value that the spatial mean normal stress reaches during the loading cycle, and α, β are
material constants to be derived from the fully reversed endurance limits, f−1 and t−1, for bending and
torsion, respectively. The formula is similar to Crossland’s criterion except by the second invariant of
the stress deviator, which is replaced by the average stress quantity. This model is limited to materials
in which the relation t−1/f−1is between 0.577 and 0.8. Non-proportional loading has no effect on Eq.
(5), which is in conflict with experimental observations made by You and Lee [20].

Papadopoulos [21] improved the model using a critical plane type model:

max
(
T∆

a

)
+ λ [(J1)a + (J1)m] = β (6)

whereJ1 is the first invariant of the stress tensor and the subscripts a and m refer to the stress
amplitude and mean stress, respectively. T∆

a is an average stress quantity, named generalized shear
stress amplitude, on the critical plane ∆. The critical plane is defined as the plane ∆ where Ta achieves
the maximum value. Other average stress approaches were proposed by Grubisic and Simburger [22].

Dang Van et al [23] and Papadopoulos [24] proposed other criteria based on a local stress analysis
approach, which assumes that localized plastic deformation in a critically oriented plane would lead
to crack initiation. The local microscopic stresses, expressed as function of the macroscopic stresses,
are used to define a crack initiation criterion.

Reviewing the subject, Papadopoulos [25] observed the average stress models yield good estimations
for in-phase loading but they are imprecise for out-of-phase loading, where the principal stress and
strain axis change direction along the time, condition which influences the fatigue phenomena.

2.4 The stress invariant methods

The invariant stress approach is based on the invariants of the stress tensor and/or its deviator tensor.
The basic idea is to directly relate the fatigue strength with the second invariant of the stress deviator
and first invariant of the stress (3 times the hydrostatic stress). The initiation of a fatigue crack under
cyclic loading would be predicted when the left side of the equation below gets bigger than the right
side: √

J2,a + k (N) .σH ≤ λ (N) (7)
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where:
√

J2,a is the equivalent shear stress amplitude, σH is the hydrostatic stress and k (N) and
λ (N) are parameters to be experimentally determined.

Some models which use only the first invariant of the stress tensor and the second invariant the
deviator tensor can be regarded as a combination of the equivalent stress approach, as it uses a shear
stress equivalent to the multiaxial applied stresses, and the critical plane approach, as it searches for
the maximum values of their parameters in a plan with the greatest intersection with the path of the
deviatory stress tensor. The models of Sines [9], Crossland [10] and Kakuno-Kawada [26] can be also
be classified in this category are good representatives of this kind of approach.

The criteria of Sines [9] and Crossland [10] can be written in a general form as:

g(τ) + f(σ) ≤ λ (8)

where, f and g are functions of the shear stress τ and the normal stress σ, respectively. The Sines [9]
criterion is mathematically expressed as:

√
J2,a + kσH,mean ≤ λ (9)

where
√

J2,a is the equivalent shear stress amplitude and σH,mean is the mean hydrostatic stress. The
parameters k and λ are material constants, which can be obtained from two simple fatigue tests: the
repeated bending limit f0 (σa = σm = f0 ) and the fully reversed torsion limit t−1 (τa = t−1 , τm =
0).

k =
(

3t−1

f0

)
−
√

3 ; λ = t−1 (10)

Instead of the mean hydrostatic stress, the Crossland [9] criterion considers the influence of the
maximum hydrostatic stress, σH,max:

√
J2,a + kσH,max ≤ λ (11)

The parameters k and λ can be also obtained from two simple fatigue tests: the fully reversed
bending limit f−1 (σa = f−1 , σm = 0) and the fully reversed torsion limit t−1 (τa = t−1 , τm = 0).

k =
(

3t−1

f−1

)
−
√

3 ; λ = t−1 (12)

Kakuno and Kawada [26] suggested that the contribution of the invariant of the stress deviator and
the hydrostatic stress should be different:

√
J2,a + k.σH,a + λ.σH,m ≤ µ (13)

where the parameters k, λ and µ should be determined from three uniaxial fatigue limits:f0, t−1e f−1

(repeated bending, fully reversed torsion, fully reversed bending). Thus,

k =
(

3t−1

f−1

)
−
√

3 (14)
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λ =
(

3t−1

f0

)
−
√

3 (15)

µ = t−1 (16)

For these criteria, failure will occur when the left side of the equation gets greater than the right
side.

3 The equivalent shear stress amplitude

The basic difference in the application of the models based on the invariants of the stress tensors,
as the models of Sines [9], Crossland [10] and Kakuno-Kawada [26], is the value, mean or maximum,
of the hydrostatic stress σH used and the way to calculate the parameter

√
J2,a. The definition of

hydrostatic stress is well established and no greater difficulty to calculate it exists. The definition of
the equivalent shear stress amplitude

√
J2,a is more complicated.

When the applied cyclic loading is uniaxial or in-phase multiaxial, the equivalent shear stress ampli-
tude

√
J2,a can be determined directly taking the square root of the second invariant of the deviatory

tensor:

√
J2,a =

√
1
6

{
(σxx,a − σyy,a)2 + (σyy,a − σzz,a)2 (σzz,a − σxx,a)2 + 6.

(
τ2
xy,a + τ2

yz,a + τ2
xz,a

)}
(17)

However, when the applied cyclic loading is out-of-phase multiaxial, the determination of
√

J2,a is
not so simple, requiring complex mathematical calculations. The vector representing the equivalent
shear stress amplitude has its direction and magnitude varying along the cycle. Fig. 1 shows how the
shear stress amplitude varies along the cycle on a proportional and non-proportional loading;

 

 
 
 
 
 

Figure 1: Behaviour of the shear stress amplitude under proportional and non-proportional loading.
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On the point under study, a generic plane ∆ can be defined by its unit normal vector n, described
by the spherical angles φ and θ, Fig. 2. The stress vector Sn acting on a such plane can be decomposed
in its normal vector N and the shear stress vector C.

 

 
 

 

 

 

Figure 2: Stress vector Sn , normal stress N and shear stress vector C acting on generic plane ∆. Bin
Li et al [27].

During the load cycle, the tip of the vector Sn describes a closed space curve ψ whose projection
on plane ∆ is the path of the shear stress vector C on that plane, ψ’, Figure 3. The shear stress
amplitude Ca depends on the orientation of plane ∆, thus Ca = f(φ,θ). To determine the maximum
shear stress amplitude Ca,max is necessary to search the maximum of Ca = f(φ,θ) over the angles φ

and θ. The critical plane approach requires to find the normal stress and shear stress amplitudes and
mean values on each plane ∆ passing by the point of interest and then searching the critical plane.
For stress invariant approaches, the amplitude of the equivalent shear stress

√
J2,a remains the same

for any orientation of the plane ∆.
Different methods to calculate the equivalent shear stress amplitude were proposed by Dang Van et

al [28], Deperrois [29], Duprat et al [30], Bin Li et al [27], Mamiya and Araújo [31] and Balthazar and
Malcher [32] which will be described next.

3.1 The minimum circumscribed hypersphere method

Dang Van and Papadopoulos [33] proposed the shear stress amplitude to be the radius Ca of the
minimum hypersphere circumscribing the loading path ψ′. The mean value of the shear stress is the
length of the vector w that points from the origin O to the center of the minimum circumscribed
hypersphere, Cm , Figure 4. To facilitate the calculation of

√
J2a, the following transformation is used
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 Figure 3: Load paths ψ described by the stress vector Sn and ψ’ described by the shear stress vector

C on a generic plane ∆. Bin Li et al [27].

[34]:

S1 =
√

3
2

_
S
xx

, S2 =
1
2

(
_
S
yy
−

_
S
zz

)
, S3 =

_
S
xy

, S4 =
_
S
xz

, S5 =
_
S
yz

(18)

With the above rules the general six components of the deviatory stress may be transformed into a
five component stress vector, allowing the stress deviator to be fully described by fewer components
in the transformed space.

 

  

 

 

 

Figure 4: The Minimum Circumscribed Hypersphere. Dang Van and Papadopoulos [33].
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The center w′ and the radius R are determined by the following equations:

w′ : min
w

(max ‖S (t)− w‖) (19)

R = max
t
‖S (t)− w′‖ (20)

This method can produce inconsistent results, as for the load paths showed in Figure 5. The first
load path is a non-proportional loading and the second is an in-phase proportional loading.

 

  

 

 

 

Figure 5: Example of a non-proportional loading and an in-phase proportional loading giving the same
equivalent shear stress amplitude by the minimum circumscribed hypersphere method.

The two loadings will produce the same equivalent shear stress amplitude but they certainly would
produce different fatigue damage. Other disadvantage is given by the need of complex computational
implementation to calculate w′ and Ca.

3.2 The minimum circumscribed ellipsoid method

An approach to determine the equivalent shear stress amplitude taking in account the effect of the
phase angle was proposed by Bin Li et al [27]. Instead of circumscribing the loading path ψ′ by a
minimum hypersphere, Bin Li and his colleagues suggest to consider the minimum circumscribed
ellipsoid to calculate

√
J2a. The value of the equivalent shear stress would be then:

√
J2a =

√
R2

a + R2
b (21)

where Ra and Rb are the two semi-axis of an ellipse circumscribing the loading path ψ′. This method
requires a two step procedure for the determination of

√
J2a, figure 6. Firstly, a minimum circum-

scribed circle of radius Ra, equal to the ellipse great semi-axis, is established according the minimum
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circumscribed hypersphere method, described above. The small semi-axis Rb is the determined from
the minimum ellipse contained in the circle and also containing the loading path ψ′.

 

  

 

 

 
Figure 6: The minimum circumscribed ellipsoid method, Bin Li at al [27].

This model takes in account the effect of non-proportional loads on fatigue life and presents good
results for multiaxial fatigue strength, when compared to the other methods, but it also presents the
same difficulties of the Dang Van and Papadopoulus method to determine the center of the minimum
circumscribed circle, which is also the center of the minimum circumscribed ellipse.

3.3 The minimum prismatic envelope method

Mamiya e Araújo [31] proposed, instead of hypersphere or a ellipsoid, the construction of an prismatic
envelope containing the loading path projected on the deviatory plane, Figure 7. The equivalent shear
stress amplitude could then be calculated by the following equation:

√
J2a =

(
5∑

i=1

a2
i

) 1
2

(22)

where ai are the amplitudes of the components xi (t) of the microscopic deviatory stresses, defined as:

ai = max
i
|xi (t)| (23)

3.4 The minimum simplified circumscribed ellipsoid method

Duprat et al [30] proposed a method, which could consider the phase angle in tension-bending and
torsion stress loading. The model is derived from Crossland criteria, using the projection of the stress

Mechanics of Solids in Brazil 2007, Marcílio Alves & H.S. da Costa Mattos (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-30-7



74 J.C. Balthazar and L. Malcher
 

 

 

 

 

Figure 7: Ellipsoid in the Rm space and circumscribed rectangular prism arbitrarily oriented. Mamiya
e Araújo [31].

tensor path on the deviatory plane. This projection is an ellipse of long axis D and short axis d,
Figure 8. While Crossland original formula uses only D in the calculation of

√
J2a, Duprat et al [30]

replaces D by the half-perimeter of the ellipse, pe

2 , to take in account the phase difference, characterized
by D and d. 

 

 

 

 
Figure 8: Projection of the tensor path on the deviatory plane. Duprat et al [30].
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The values of D and d are given by:

D = max (t) ρ (ω t) (24)

d = min (t) ρ (ω t) (25)

with the parameter ρ (ω t) being:

ρ (ωt) = tr
[(

S (t)− S (t + π)
)
.
(
S (t)− S (t + π)

)] 1
2 (26)

where S (t) is the deviatory stress tensor .
The value of the equivalent shear stress amplitude

√
J2a is function of the ellipse half-perimeter

pe/2:
√

J2a =
1
2
· pe/2√

2
(27)

where
pe

2
≈ π

2
· D + d

2
.

[
1 +

1
4
λ2 +

1
64

λ4 +
1

256
λ6

]
(28)

and
λ =

D − d

D + d
(29)

Balthazar and Malcher [32] showed the application of this method results in increased scatter for
larger phase angles between the applied loads. They showed that a reduction on such scattering could
be obtained combining the proposal of Duprat et al [30] with the minimum circumscribed ellipsoid
method proposed by Bin Li et al [27]. The equivalent shear stress amplitude could be calculated as
proposed by Bin Li: √

J2a =
√

R2
a + R2

b (30)

but using the values of the ellipse semi-axis from the model of Duprat. Thus:

Ra =
D

2
=

max (t) ρ (ωt)
2

(31)

and
Rb =

d

2
=

min (t) ρ (ωt)
2

(32)

The equivalent shear stress amplitude would be then given by:

√
J2a =

1
2

√
[max (t) ρ (ωt)]2 + [min (t) ρ (ωt)]2

√
2

(33)

The main advantage of this modification is the simplicity added to the equivalent shear stress
amplitude calculations, as it is easier to determine the ellipse semi-axis D/2 and d/2as proposed by
Duprat than the complex calculations required to obtain the center of the minimum circumscribed
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hyperesphere or ellipsoid, necessary for the methods of Dang Van, Papadopoulos and Bin Li. Thus,
the criterion for multiaxial fatigue can be expressed as:

1
2

√
[max (t) ρ (ωt)]2 + [min (t) ρ (ωt)]2

√
2

+
√

3
Srt

.f−1.σH,max ≤ t−1 (34)

4 Critical analysis of the invariant stress methods

Experimental data obtained in the literature were used to assess the different criteria based on the
invariant stress approach. It was used 32 results from constant amplitude combined bending + torsion
loading, from in-phase and out-of-phase tests conducted by Nishihara and Kawamoto on hard steel
(points 1 to 10); by Zenner et al on 34Cr4 steel (points 11 to 22) and by Froustey and Lasserre on
30NCD16 steel (points 23 to 32) as reported by Papadopoulos [19].

Defining the equivalent stress σeq to the fully reversed torsional fatigue limit t−1 ratio as K =
σeq/t−1, it is possible to assess the quality the predictions made by each model. If K=1 the model
predict perfectly the multiaxial fatigue behaviour. If K is higher than 1, the predictions are conserva-
tive. An index of error I can be also established as I = (K − 1)× 100.

Tables 1 to 3 show the values of I and K for Crossland, Bin Li, Papadopoulos, Mamiya and
Araújo, Duprat, and Balthazar and Malcher models. It can be observed that for the models of Bin
Li, Papadopoulos, Mamiya and Araújo, and Balthazar and Malcher the maximum error lies around
6% while the Duprat model produces error up to 18% when the phase angle between the applied
loads is 90o. The same pattern can be observed for the alloys 34Cr4 and 30NCD16 for all models
except Crossland and Duprat models whose results present a larger scatter. It is clear that the model
of Crossland does not contemplate the effect of the phase angle and the model of Duprat presents
larger errors for larger phase angles. The models of Bin Li, Papadopoulos, Mamiya and Araújo, and
Balthazar and Malcher present similar results with the difference lying on the method to calculate the
equivalent shear stress amplitude

√
J2a.

Papadopoulos tries to determinate this parameter through the minimum circle circumscribing the
path of the deviatory stress tensor, ψ′. For Bin Li

√
J2a must be determined through the minimum

ellipse circumscribing the path of the deviatory stress tensor, ψ′. The main difficulty associated to these
methods is the determination of the center of the circle or ellipse, which require complex calculations.
The approach proposed by Mamiya and Araújo involves the use of a prismatic envelope of the load path
to calculate

√
J2a. It also requires complex calculations for the determination of the parameters ai,

which are equivalents of the amplitudes of the components xi (t) of the microscopic deviatory stresses.
Notwithstanding the use of the idea of the circumsbride ellipsoid to calculate

√
J2a, Balthazar and

Malcher presents a simplified way to determine the equivalent shear stress amplitude, eliminating the
need the complex calculations required by the other methods without losing quality in the results.
Figure 7 shows the behaviour of the stress ratio K = σeq/t−1 for models analysed.
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Table 1: Hard steel (t−1 = 196.2 MPa, f−1 = 313.9 MPa)

Bin Li Papadopoulos Mamiya &
Araujo

Duprat Balthazar &
Malcher

Test σx,m σx,a τxy,m τxy,a α K I% K I% K I% K I% K I%

1 - 138.1 - 167.1 0 0.98 -2% 0.98 -2% 0.98 -2% 0.97 -3% 0.97 -2.7%

2 - 140.4 - 169.9 30 0.99 -1% 0.99 -1% 0.99 -1% 1.02 2% 0.99 -0.9%

3 - 145.7 - 176.3 60 1.03 3% 1.03 3% 1.03 3% 1.10 10% 1.03 3.4%

4 - 150.2 - 181.7 90 1.06 6% 1.06 6% 1.06 6% 1.14 14% 1.06 5.8%

5 - 245.3 - 122.6 0 1.02 1% 1.02 1% 1.01 1% 1.01 1% 1.01 1.3%

6 - 249.7 - 124.8 30 1.03 3% 1.03 3% 1.03 3% 1.07 7% 1.03 2.8%

7 - 252.4 - 126.2 60 1.04 4% 1.04 4% 1.04 4% 1.13 13% 1.04 4.1%

8 - 258.0 - 129.0 90 1.07 6% 1.07 6% 1.07 7% 1.18 18% 1.07 7.0%

9 - 299.2 - 62.8 0 1.01 1% 1.01 1% 1.01 1% 1.01 1% 1.01 1.3%

10 - 304.5 - 63.9 90 1.03 3% 1.03 3% 1.03 3% 1.09 9% 1.03 3.1%

Table 2: 34Cr4 steel (t−1 = 246 MPa, f−1 = 410 MPa)

Bin Li Papadopoulos Mamiya &
Araujo

Duprat Balthazar &
Malcher

Test σx,m σx,a τxy,m τxy,a α K I% K I% K I% K I% K I%

11 - 314 - 157 0 0.99 -1% 0.99 -1% 0.99 -1% 0.99 -1% 0.99 -0.73%

12 - 315 - 158 60 1.00 0% 1.00 0% 1.00 0% 1.08 8% 0.99 -0.57%

13 - 316 - 158 90 1.00 0% 1.00 0% 1.00 0% 1.10 10% 1.00 -0.30%

14 - 315 - 158 120 1.00 0% 1.00 0% 1.00 0% 1.08 8% 0.99 -0.57%

15 - 224 - 224 90 1.05 5% 1.05 5% 1.05 5% 1.14 14% 1.05 4.68%

16 - 380 - 95 90 1.00 0% 1.00 0% 1.00 0% 1.07 7% 1.00 0.12%

17 - 316 158 158 0 1.00 0% 1.00 0% 1.00 0% 1.00 0% 1.00 0.27%

18 - 314 157 157 60 0.99 -1% 0.99 -1% 0.99 -1% 1.08 8% 0.99 -0.53%

19 - 315 158 158 90 1.00 0% 1.00 0% 1.00 0% 1.10 10% 1.00 -0.29%

20 279 279 - 140 0 0.94 -6% 0.94 -6% 0.94 -6% 0.93 -7% 0.93 -6.76%

21 284 284 - 142 90 0.95 -5% 0.95 -5% 0.95 -5% 1.04 4% 0.95 -5.26%

22 212 212 - 212 90 1.03 3% 1.03 3% 1.03 3% 1.12 12% 1.03 3.18%
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Table 3: 30NCD16 steel (t−1 = 410 MPa, f−1 = 660 MPa)

Crossland Papadopoulos Mamiya &
Araujo

Duprat Balthazar &
Malcher

Test σx,m σx,a τxy,m τxy,a α K I% K I% K I% K I% K I%

23 0 485 0 280 0 1.02 2% 1.02 2% 1.02 2% 1.01 1% 1.01 1.28%

24 0 485 0 277 90 0.73 -27% 1.01 1% 1.01 1% 1.11 11% 1.00 0.42%

25 300 480 0 277 0 1.04 4% 1.04 4% 1.04 4% 1.04 4% 1.04 4.28%

26 300 480 0 277 45 0.92 -8% 1.04 4% 1.04 4% 1.11 11% 1.04 4.24%

27 300 470 0 270 60 0.85 -15% 1.02 2% 1.02 1% 1.10 10% 1.01 1.39%

28 300 473 0 273 90 0.75 -25% 1.03 2% 1.02 2% 1.13 13% 1.03 2.57%

29 300 590 0 148 0 1.00 0% 1.00 0% 1.00 0% 1.00 0% 1.00 0.26%

30 300 565 0 141 45 0.91 -9% 0.96 -4% 0.96 -4% 1.00 0% 0.96 -3.97%

31 300 540 0 135 90 0.85 -15% 0.92 -8% 0.92 -8% 0.98 -2% 0.92 -8.10%

32 300 211 0 365 0 0.99 -1% 0.99 -1% 0.99 -1% 0.99 -1% 0.99 -0.73% 

 

 

 
 

Figure 9: Stress ratio “K” versus phase angle α for the models analysed. Malcher e Balthazar [32].
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5 Conclusions

The different approaches to predict fatigue strength under in-phase and out-of-phase combined loading
proposed by Dang Van et al [25], Deperrois [26], Duprat et al [28], Bin Li et al [29] and Mamiya e
Araújo [30],were reviewed. Special attention was given to approaches for out-of-phase loading based
on the stress invariant method and the different definitions and ways to calculate the equivalent shear
stress amplitude

√
J2a. A new simplified proposal to calculate this parameter, combining the proposal

of Duprat et al [30] with the minimum circumscribed ellipsoid method of Bin Li et al [27], was presented.
The new method to determine the equivalent shear stress amplitude eliminates the need the complex
calculations required by the other methods without losing quality in the results.
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