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Abstract

This article presents a boundary element formulation for dynamic analysis of laminate composite plates using
the boundary element method. Static fundamental solutions are used and inertia effects are treated as body
forces. Domain integrals that arise in the formulation due to inertia effects are transformed into boundary
integrals by the radial integration method. In this method, domain loads are approximated by a sum of
products between radial basis functions and unknown coefficients. Then, by an exact transformation, domain
integrals are transformed into boundary integrals. Constant boundary elements are used in the boundary
discretization. Integral with strong and hyper singularities are analytically integrated. Internal points are
necessary to improve the approximation of domain loads. In order to assess the proposed formulation, their
results are compared to analytical, finite element, and experimental solutions. An analysis of the accuracy of
results and its dependence on the mesh refinement and the number of internal points is carried out.

Keywords: boundary element method, radial integration method, dual reciprocity boundary element method,
composite materials, modal analysis.

1 Introduction

Nowadays, the structural dynamic analysis of anistropic plates by the boundary element method
(BEM) has been treated by two different approaches. In the first, the fundamental solution is obtained
considering all terms of the equation of motion. As a consequence, this approach has no domain
integrals but uses complicated fundamental solutions (Wang and Schweizerhof [1]). In the second, the
static fundamental solution is used and the inertia term of the equation of motion is considered as a
body force. This body force generates domain integrals that can be computed by the discretization
of the domain into cells. However, this procedure eliminates, to a certain extent, one of the most
interesting advantage of the BEM that is the absence of domain discretization. Many alternative
procedures have been presented to treat domain integrals in the BEM as shown in books like Nowak
[2] and Partridge et al. [3]. Among them, the most established is the dual reciprocity boundary element
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method (DRM), proposed by Nardini and Brebbia [4] for the analysis of dynamic problems in plane
elasticity and extended by many other authors for different applications (see the book of Partridge
et al. [3]). The DRM has been successfully used in the dynamic analysis of anisotropic structures as
presented by Albuquerque et al. [5–8] for bidimensional problems, and by Kögl and Gaul [9–11] for
three-dimensional problems. Due to the complexity of governing equations of anisotropic materials, the
analytical computation of particular solutions used in the DRM is restricted to some approximation
functions, all of them are functions of material properties.

When body forces are known, domain integrals can be exact transformed into boundary integrals,
as shown by Venturini [12] for isotropic plate bending problems, by Gao [13] for anisotropic three-
dimensional problems, and by Albuquerque et al. [14] for anisotropic plate bending problems. This
transformation, that is based on a radial integration, was named by Gao [13] as the radial integration
method (RIM). More recently, Albuquerque et al. [15] extended the RIM method for domain integrals
of unknown functions (modal analysis of anisotropic plates). In this previous work, the radial inte-
gration method was used with the same material dependent approximation function used in the dual
reciprocity. It was shown that results with the same accuracy was obtained by the RIM and the DRM
if the same approximation function is used in both formulations. Now, the present work will explore
different approximation functions and assess their accuracy. Three approximation functions, that are
well established for isotropic formulations of the DRM, are explored.

2 Boundary integral equations

The integral formulation used in this work is based on the Kirchhoff-Love thin plate equilibrium
equations. The use of thin plate theories to composite plates has limitations in practical applications.
In particular, it is known that transverse normal hypothesis of the thin plate theory is not able
to predict the actual strain distribution across the thickness, specially for a large number of layers
or in plates with low aspect ratio. In dynamic, this limitations have strong influence in modes of
high frequencies. However, for the first modes and for plates of high aspect ratio, the Kirchhoff-Love
hypothesis is a good approximation for the structural problem.

The boundary integral formulation for anisotropic thin plate problems uses two integral equations,
for displacement and rotation (see [14, 16]). The transversal displacement equation is given by:

Kw(Q) +
∫

Γ

[
V ∗

n (Q,P )w(P )−m∗
n(Q, P )

∂w(P )
∂n

]
dΓ(P ) +

Nc∑

i=1

R∗ci
(Q,P )wci(P ) =

Nc∑

i=1

Rci(P )w∗ci
(Q,P ) +

∫

Ωg

b(P )w∗(Q,P )dΩ +

∫

Γ

[
Vn(P )w∗(Q,P )−mn(P )

∂w∗

∂n
(Q,P )

]
dΓ(P ), (1)

where P is the field point; Q is the source point; Γ is the boundary of the domain Ω of the plate; Ωg
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is the part of the domain Ω where the body force b is applied; the constant K is introduced in order
to consider that the source point Q can be placed in the domain, on the boundary, or outside the
domain (if the point Q is on a smooth boundary, then K = 1/2); ∂()

∂n is the derivative to the outward
unity vector n that is normal to the boundary Γ at the field point P ; mn and Vn are, respectively, the
normal bending moment and the Kirchhoff’s equivalent shear force on the boundary Γ; Rc is the thin
plate reaction of corners; wc is the transversal displacement of corners; Nc is the number of corners;
and the symbol * stands for fundamental solutions that can be found in Shi and Bezine [16].

The rotation equation is given by:

1
2

∂w(Q)
∂n1

+
∫

Γ

[
∂V ∗

∂n1
(Q,P )w(P )− ∂m∗

n

∂n1
(Q,P )

∂w

∂n
(P )

]
dΓ(P ) +

Nc∑

i=1

∂R∗ci

∂n1
(Q,P )wci(P ) =

Nc∑

i=1

Rci(P )
∂w∗ci

∂n1
(Q, P ) +

∫

Ωg

b(P )
∂w∗

∂n1
(Q,P )dΩ +

∫

Γ

{
Vn(P )

∂w∗

∂n1
(Q,P )−mn(P )

∂

∂n1

[
∂w∗

∂n
(Q,P )

]}
dΓ(P ), (2)

where ∂()
∂n1

is the derivative to the outward unity vector n1 that is normal to the boundary Γ at the
source point Q.

As can be seen, domain integrals arise in the formulation owing to the presence of the body force b.
In order to transform these integrals into boundary integrals, consider, as in the DRM, that the body
force b is approximated over the domain Ωg as a sum of M products between radial basis functions
fm and unknown coefficients γm, that is:

b(P ) =
M∑

m=1

γmfm. (3)

Thus, the domain integrals of equations (1) and (2) can be written, respectively, as:

∫

Ωg

b(P )w∗(Q,P )dΩ =
M∑

m=1

γm

∫

Ωg

fmw∗(Q)dΩ. (4)

and

∫

Ωg

b(P )
∂w∗(Q,P )

∂n1
dΩ =

M∑
m=1

γm

∫

Ωg

fm ∂w∗(Q)
∂n1

dΩ. (5)

Following the development presented by Albuquerque et al. [15], domain integrals (4) and (5) are
transformed, respectively, in the boundary integrals:
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∫

Ωg

b(P )w∗(Q, P )dΩ =
M∑

m=1

γm

∫

Γg

Fm(Q)
r

n.rdΓ. (6)

and

∫

Ωg

b(P )
∂w∗(Q, P )

∂n1
dΩ =

M∑
m=1

γm

∫

Γg

Gm(Q)
r

n.rdΓ, (7)

where

Fm(Q) =
∫ r

0

fmw∗(Q,P )ρdρ, (8)

and

Gm(Q) =
∫ r

0

fm ∂w∗(Q,P )
∂n1

ρdρ. (9)

ρ is a local coordinate that defines the integration around the radial direction (see Albuquerque et al.
[15]).

In this work, the approximation functions fm are radial basis function written in terms of R, where
R is the distance between the centre S of the radial basis function and the integration point P (Figure
1).

Three approximation functions are used in this work:

fm
1 = 1 + R, (10)

fm
2 = 1 + R + R3, (11)

and

fm
3 = R log(R). (12)

The reason for the choice of these functions is because they have been strongly explored by the DRM
where their good convergency have been demonstrated for many problems in different formulations
(see the book of Partridge et al. [3]).

Equation (3) can be written in a matrix form, considering all source points, as:

b = Fγ (13)

Thus, γ can be computed as:

γ = F−1b (14)

For free vibration dynamic problems, the body force vector is given by:
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Figure 1: Positions of points in the domain.

b = %hω2w (15)

where % is the material density, h is the plate thickness, ω is the circular frequency of vibration, and
w are transversal displacement of the nodes where displacements are free.

As shown by Albuquerque et al. [15], the boundary integral equations (1) and 2 can be discretized
into boundary elements and transformed into a matrix equation that, for free vibration, can be written
as an eigen problem given by:

Aw = λw, (16)

where

A = Ĥ−1M̂, (17)

λ is the eigenvalue that can be written as:

λ =
1
ω2

, (18)

and H and M are non nosymmetric matrix obtained by the integration of terms of equations (1) and
(2) over the boundary elements.
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Figure 2: Orthotropic rectangular plate.

3 Numerical results

3.1 Free vibration of a rectangular plate with all edges free

In order to compare the accuracy of the different approximation functions, the method is applied
to the free vibration problem proposed by Albuquerque et al. [15]. Consider a rectangular plate with
width b = 350 mm, length a = 450 mm, and thickness h = 2.1 mm (Figure 2). The plate is orthotropic
with the following material properties: Ex = 120 GPa, Ey = 10 GPa, Gxy = 4.8 GPa, ν12 = 0.3 and
% = 1510 kg/m3.

The free vibration of this plate was analysed using the three radial basis functions, given by equations
(10), (11), and (12), with a mesh of 66 constant boundary elements and 63 internal points as shown
in Figure 3.

Table 1 shows the first five natural frequencies computed by the RIM using the three approximation
functions, by RIM as presented in the previous work of the authors (Albuquerque et al.[15]), where
were used a material dependent approximation function, and by the finite element method (FEM)
using a very refined mesh. The finite element mesh has 150 (15 × 10) quadrilateral finite elements (8
nodes per element). As it can be seen, the agreement between the results of the RIM using different
approximation function with FEM is very similar.

Figures 4, 5, 6, 7, and 8 show the first five vibration modes of the orthotropic free edge plate.
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Figure 3: Boundary elements and internal points for the rectangular plate.

Table 1: Natural frequencies computed by the FEM and the RIM using the material dependent approx-
imation function of the previous work and the three approximation functions presented here.

Mode FEM Reference [15] fm
1 fm

2 fm
3

shape ω/(2π) ω/(2π) Diff. ω/(2π) Diff. ω/(2π) Diff. ω/(2π) Diff.

(Hz) (Hz) (%) (Hz) (%) (Hz) (%) (Hz) (%)

1 25.50 24.39 4.34 24.41 4.29 24.37 4.42 24.38 4.40

2 45.35 45.57 0.48 45.18 0.38 45.15 0.43 45.34 0.03

3 68.78 67.37 2.05 67.15 2.38 67.16 2.36 67.49 1.87

4 95.25 94.60 0.68 95.22 0.04 95.21 0.04 95.51 0.27

5 107.61 106.34 1.18 106.42 1.11 106.41 1.12 106.62 0.92
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Figure 4: Mode 1. Figure 5: Mode 2.

Figure 6: Mode 3. Figure 7: Mode 4.
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Figure 8: Mode 5.

4 Conclusions

This paper analysed the use of different approximation functions in the radial integration method
applied to modal analysis of anistotropic plates. Three approximation functions that are well estab-
lished in the dual reciprocity boundary element method for isotropic material problems were used
and there results compared to results obtained by a material dependent approximation function, pre-
viously presented by the authors, and the finite element method. The agreement between all results
are very good. It can be concluded that the radial integration method is a very suitable method for
the transformation of domain integrals to boundary integrals in anisotropic material problems. It can
give good results with those simple approximation functions used in the dual reciprocity boundary
element method for isotropic material structural problems.
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