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Abstract. Photogrammetric maps are of extreme importance in order to monitor large areas periodically, for example,
possible tasks might be the monitoring of forests, invasive plants, urban growth, etc. These maps are commonly built
using images from satellites or planes. In order to obtain a map with real proportions, an operation of distortion of these
images is realized using information provided by Ground Control Points and triangulating natural features in the scene
or using another a priori known map. The utilization of an Unmanned Aerial Vehicle (UAV) provides a safer solution
when compared to a plane mainly due to the non requirement of a crew. It is also a more flexible solution when compared
to satellites because an UAV can fly again some hours or even minutes after the first time, while a satellite is available in
some days for the same area. Some parts of the map might not be visible because of clouds and the UAV needs to fly again
to recover these parts (flying below the clouds if necessary). A stochastic sensor fusion method is proposed that combines
computational vision techniques, inertial sensors and GPS in order to estimate both the three dimensional sparse map
and the plane position using the technique known as SLAM (Simultaneous Localization and Mapping). The complete
map is generated while projecting the images into the sparse map. The main advantage of this method is that the map is
constructed without the use of a priori knowledge of the terrain. The main contributions of this work are: the integration
of SLAM techniques into the Aerophotogrammetry field and the development of a method that can realize a 3D mapping
without the use of a priori knowledge of the terrain.
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1. INTRODUCTION

Aerial photos show a lot of information that can be used for urban planning, detect invasive plants in farms, illegal
deforestation, tragedies caused by storms, hurricanes, etc (Medlinet al., 2000; van Klinkenet al., 2007). These photos
cannot be used singly because distance commonly needs to be measured and the terrain generates distortions in these
photos that make it impossible to do with high precision and sometimes the distance is bigger than one photo area.
The Photogrammetric field makes it possible. Photos are taken by a plane or satellite and they are distorted in order to
compensate the terrain and mosaicked. This mosaic needs to be georeferenced to be possible measure distances.

Each image needs to have some points measured with a GPS on the spot (ground control points), because this inform
an initial orientation and compute the camera position. After that, natural features are identified in each image and they
are triangulated for the purpose of computing its elevation. Using this elevation, each image is projected perspectively on
the surface and the final image is formed projecting they orthogonally. This is a manual process and spends a lot of time.

This paper proposes the use of an UAV (Unmanned Aerial Vehicle) to take these pictures and also a stochastic sensor
fusion approach to construct these mosaics. Simulations are made in order to validate the proposal method and is intended
to be implemented it using real data collected from the UAV Apoena from XMobots (Figure 1). The advantages of
using an UAV is that it is more secure than a conventional plane (there is no crew, so no one physically involved in an
accident), the availability is bigger than a satellite, can operate for hours or even all day long without stress of the pilot
(they can be replaced during the operation). The stochastic sensor fusion approach proposed in this paper is a technique
studied in robotic field called SLAM (Simultaneous Localization and Mapping) (Durrant-Whyte and Bailey, 2006a,b).
This approach is commonly used in terrain robots and there are some works using it with UAVs (Brysonet al., 2009;
Bryson and Sukkarieh, 2009; Törnqvistet al., 2009).

The chapter 2 details the SLAM algorithm explaining the prediction model in chapter 2.1, the sensors models in
chapters 2.2, 2.3 and 2.4. Chapter 3 shows some results obtained by simulation and chapter 4 concludes the paper.

2. METHOD

The aerophotogrammetry deals with the problem of trajectory estimation and terrain estimation separately. It needs
ground control points with high precision in order to compute the camera pose since the precision of sensors embedded
are not enough to be used. The technique SLAM uses sensor information to estimate the environment and simultaneously
the position of the vehicle in the environment. Estimations become better because these two kinds of information (terrain
and vehicle position) are statistically correlated, thus ground control points can be measured with less precision or even
be discarded.

SLAM is based on stochastic filters as Kalman Filter (Kalman, 1960), Extended Kalman Filter (Jazwinski, 1970),
Particle Filter (Gordonet al., 1993; Schön, 2006), Marginalized Particle Filter (Schönet al., 2006), etc. The Extended
Kalman Filter is the chosen one to develop this application, because the models are nonlinear and the computational cost
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Figure 1. UAV Apoena from XMobots

is less than Particle Filter and Marginalized Particle Filter.
These filters deal with the problem of recursive estimation of probability density functionp(xt|yt), wherext andyt

are state and measurements in timet, respectively. In order to solve this,xt andyt are written as:

xt+1 = f(xt, ut, vt) (1a)

yt = h(xt, et) (1b)

, wherevt andet are process noise and measurement noise, respectively,f is the prediction model andh sensor model.
This paper develops a prediction and sensor model to estimate the terrain and UAV position. The used sensors are

a camera to identify natural features on the terrain, a GPS to be possible the georeferencing of the terrain and a IMU
to increase the precision of the UAV pose estimation. This approach uses natural control points and does not need
measurements on the spot. The deduction of the filter is not the scope of this work and a introduction of it can be found
in (Welch and Bishop, 2001).

2.1 Prediction Model

As there are three sensors used in this work, it is necessary define some coordinate systems:

• Earth (e): The trajectory of the UAV and the terrain are estimated in this coordinate system. It is fixed to Earth.

• Camera (c): Coordinate system attached to the camera. Features are identified in this coordinate system.

• Body (b): The measurements of the IMU are made in this coordinate system.

The prediction model is based on Hol (2008) added feature coordinatesmt to the state vector:

xt = (bet ḃet b̈et qbet ωb
eb,t δbω,t δba,t m1,t . . . mM,t)

T (2)

, wherebet is the position of IMU expressed in the Earth system,ḃet is its velocity and̈bet its acceleration,qbet its orientation
with respect to the earth system,ωb

eb,t its angular velocity,δbω,t gyroscope bias,δba,t accelerometer bias andmi,t is the 3D
position of natural features on the terrain withi = 1 . . .M .

Defined the state vector and the coordinates system, the prediction model is given by:

bet+1 = bet + T ḃet +
T 2

2
b̈et (3a)

ḃet+1 = ḃet + T b̈et (3b)

b̈et+1 = b̈et + ve
b̈,t

(3c)

qbet+1 = exp(−
T

2
ωb
eb,t)� qbet (3d)

ωb
eb,t+1 = ωb

eb,t + vbω,t (3e)

δbω,t+1 = δbω,t + vbδω ,t (3f)

δba,t+1 = δba,t + vbδa,t (3g)

mj,t+1 = mj,t (3h)
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, where quaternion multiplication and exponential are defined as:
(

p0
p

)

�

(

q0
q

)

=

(

p0q0 − p · q
p0q + q0p + p × q

)

(4a)

exp(v) =

(

cos ‖v‖
v

‖v‖
sin ‖v‖

)

(4b)

A model of constant acceleration is used to describe the position, velocity and acceleration dynamic. The process noise
added in acceleration term is assumed to be enough to model the real movement. The quaternion dynamic is described as
a constant angular velocity with noise added in the last one. Bias terms are modeled as a random walk. Finally, features
are described as stationary.

2.2 Inertial Update Model

The IMU measurement vector is:

yIMU,t = (yTa,t yTω,t)
T (5)

, whereya,t is the acceleration measured by the accelerometers andyω,t is the angular velocity measured by gyroscopes.
Both measurements are made with respect to the body coordinate system.

The IMU sensor model is given by:

ya,t = Rbe
t (b̈et − ge) + δba,t + eba,t (6a)

yω,t = ωb
eb,t + δbω,t + ebω,t (6b)

, whereRbe
t is the rotation from Earth coordinate system to IMU body in matricial form computed from quaternionqbet ,

ge is the gravity acceleration with respect to Earth coordinate system andeba,t andebω,t are measurement noises from
accelerometers and gyroscopes, respectively.

2.3 GPS Update Model

A GPS receiver makes observations of the vehicle position with respect to the Earth coordinate system. The measured
values are assumed to be metric values,i.e. positions in WGS84 are converted to metric values.

yGPS,t = bet (7)

The distance between IMU and GPS is not considered in the equation because a common GPS noise (order of 10
meters) is much bigger than this distance.

2.4 Vision Update Model

The process of image formation consists basically in three steps: The first consists of the light incidence on the CCD
sensor described as a perspective projection where the camera is modeled through a normalized pinhole camera model.
The second is the distortion caused by lens. The last one is the digitalization of the image made by CCD sensor. These
steps are described as:

pi = (A ◦D ◦ Pn)(p
c) (8)

, wherePn is the normalized pinhole camera model,D is the lens distortion model, andA is the digitalization model.
The normalized pinhole camera model (Hartley and Zisserman, 2000; Karlstroem, 2007; Hol, 2008; Criminisiet al.,

1997) represents the projection of a 3D point in the image plane. Figure 2 describes a pinhole camera model and the
normalized one is obtained usingf = 1:

Z
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(9)

Lens distortion is a phenomenon that all lens causes in images and it is generally a radial distortion that can be modeled
as (Hol, 2008):

pid = (1 + k1
∥

∥pin
∥

∥

2
+ k2

∥

∥pin
∥

∥

4
)pin (10)
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Figure 2. Pinhole camera model

, whereki are the distortion coefficients,pid is a point in distorted image andpin in normalized image.
In order to decrease the equation complexity, each image or feature is preprocessed rearranging the Equation 8 and

the normalized images are used in measurement model.

pin = (D−1 ◦A−1)(pi) (11)

The camera sensor model for each feature in an image is based in the one developed by Törnqvistet al. (2009):

yv,t = ymj,t =
1

zct

(

xc
t

yct

)

+ ecv,t (12)

, where

mc
j,t =





xc
t

yct
zct



 = R(qcb)R(qbet )(mj,t − bet ) + rc (13)

andrc is the distance between IMU and camera in the camera coordinate frame.

3. SIMULATIONS

Three situations of sensor fusion are compared in this section. The first one is a fusion of GPS and IMU without use
of SLAM, because there is not a sensor that captures information of the environment. The second one is a fusion of IMU
and Camera. This is a studied approach in situations of war scenarios when GPS may not be available or GPS failures
(Bryson and Sukkarieh, 2008; Törnqvistet al., 2009). The last one is the GPS, IMU and Camera fusion proposed in this
work.

Data is generated with the UAV making a maneuver at 800 meters of altitude and an eight-shaped trajectory is executed
by it. Features are randomly generated over a 3D surface that describes the terrain and a descriptor is associated for each
one. These descriptors simulate the one that would be obtained with real images using algorithms like SIFT (Scale-
invariant feature transform) or SURF (Speeded Up Robust Features), for example. They are used to match features
identified in a new image with the others in the state vector. Table 1 shows the characteristics of each sensor and Table 2
the noise values used in the filter. Sensor noise values used in this work are typical of the cheapest sensors available in the
market.

IMU
Sample rate 100Hz

GPS
Sample rate 12.5Hz

Camera
Sample rate 12.5Hz
Resolution 640 x 480 pixel
Field of view 60degrees
Table 1. Sensor characteristics

Figure 3 shows the three simulations. The IMU and Camera sensor fusion are not enough to estimate the terrain with
high precision because there is not a real absolute reference. Although features positions are static, it is not a real absolute
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Accelerometer measurement noise3.9m/s2

Gyroscope measurement noise 0.38rad/s
GPS measurement noise 10m

Camera measurement noise 0.035
Acceleration process noise 0.1m/s2

Angular velocity process noise 0.03rad/s
Gyroscope bias process noise 0.5mrad/s

Accelerometer bias process noise 0.5m/s2

Table 2. Filter Settings

reference because they are estimated based in the others around it and a drift will always be present. This drift occurs
when new features are being added in the filter. After that, the displacement in terrain and trajectory will be practically
constant. This drift in terrain and trajectory can be noticed in figure 3(b) and figure 4.

When a GPS is fused in the filter, this drift is not present anymore because now it is the real absolute reference. The
trajectory estimated by GPS and IMU configuration presents a error ofσGPS,IMU = 6.9m and the one estimated by GPS,
IMU and Camera presents a error ofσGPS,IMU,Cam = 2.2m. This can be seen throught Figure 4.

A feature position error analysis is made in Figure 5. The histogram of Figure 5(b) show the error caused by the drift
in IMU and Camera sensor fusion configuration. The GPS, IMU and Camera configuration presents a more precise result
and a error ofσfeature = 6.6m, that is practically a common GPS precision.

4. CONCLUSION

This work has been developed to generate terrain estimation with a sensor fusion approach using IMU, GPS and a
camera. A SLAM approach is suggested in order to simplify the usual procedures of Aerophotogrammetry and decrease
or even eliminate needing of ground control points collection. Simulations have been shown that it is possible obtaining
terrain estimation with equivalent precisions of a GPS using low cost sensors. The use of an IMU makes the system robust
of GPS failures once the estimation can follow some time with short drifts.
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Figure 3. Terrain and trajectory estimation where red points and lines are the real features and trajectories and blue points
and lines are the estimated ones. Figure (a) shows the case of GPS and IMU sensor fusion without estimation of terrain,

Figure (b) IMU and Camera sensor fusion and Figure (c) GPS, IMU and camera sensor fusion
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Figure 4. UAV trajectory error

0
0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

80

90

Error (m)

N
u

m
be

r
o

fF
e

a
tu

re
s

(a)

0
0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

80

90

Error (m)

N
u

m
be

r
o

fF
e

a
tu

re
s

(b)

Figure 5. Position estimation error for each feature. Figure (a) shows the errors histogram for GPS, IMU and Camera
sensor fusion and Figure (b) for IMU and Camera

van Klinken, R.D., Shepherd, D., Parr, R., Robinson, T.P. and Anderson, L., 2007. “Mapping mesquite (prosopis) distri-
bution and density using visual aerial surveys”.Rangeland Ecology Management, Vol. 60, pp. 408–416.

Welch, G. and Bishop, G., 2001. “An introduction to the Kalman filter”. SIGGRAPH.

7. Responsibility notice

The authors are the only responsible for the printed material included in this paper.

ABCM Symposium Series in Mechatronics - Vol. 5 
Copyright © 2012 by ABCM

Section VII - Robotics 
Page 1091




