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Abstract. The Harmony Search (HS) algorithm is a new evolutionary metaheuristic algorithm based on natural 
musical performance processes that occur when a musician searches for a better state of harmony, such as during jazz 
improvisation. In the HS algorithm, the solution vector is analogous to the harmony in music, and the local and global 
search schemes are analogous to musician’s improvisations.The HS algorithm uses a random search, which is based 
on random selection, memory consideration, and pitch adjusting. In this paper, an Improved HS (IHS) approach based 
on truncated Cauchy distribution is proposed and evaluated. The proposed IHS presents an efficient strategy to 
improve the search performance in preventing premature convergence to local minima when compared with the 
classical HS algorithm. The efficiency and feasibility of the proposed IHS approach is demonstrated on a force 
optimization problem, where the force capabilities of a serial PRRR manipulator are evaluated considering actuation 
limits and different configurations. 
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1. INTRODUCTION 
 

Many techniques from conventional mathematical methods, such as quadratic programming and nonlinear 
programming, have been proposed to deal with optimization problems. Conventional optimization techniques take in 
advantages in computing speed and convergence with the objective function of continuous, differentiable and single 
peak value. In robotics, these optimization techniques can be applied to robot design, trajectory generation, actuators 
force distribution, and inverse kinematic computation.  

However, some force optimization problems cannot be handled with conventional mathematical methods. In the 
presence of geometric variable parameters, evaluate the maximum wrench (force and moment) that a manipulator can 
apply (or sustain) for a given pose without exceeding the actuators limits generates non-linear and non-convex functions 
over the search space that most methods often give only a local optimum solution. In such cases, alternative 
optimization methods like Evolutionary Algorithms (EAs) (Michalewicz and Fogel, 2010; Eiben and Smith, 2010) 
should be used to find a global optimum solution, avoid being trapped in a local minimum. 

Nowadays, the use of EAs to solve optimization problems is a common practice due to their competitive 
performance on complex search spaces. EAs are well known for their ability to deal with nonlinear and complex 
optimization problems. The primary advantage of EAs over other numerical methods is that they just require the 
objective function values, while properties such as differentiability and continuity are not necessary.  

In terms of EAs, the Harmony Search (HS) algorithm developed by Geem et al. (2001) was originally 
conceptualized using the musical improvisation process of searching for a perfect state of harmony. The HS algorithm 
uses a random search, which is based on random selection, memory consideration, and pitch adjusting. In comparison to 
other meta-heuristics in the literature, the HS algorithm imposes fewer mathematical requirements and can be easily 
adapted for solving various kinds of engineering optimization problems (Mahdavi and Fesanghary, 2007; Omran and 
Mahdavi, 2008). The HS algorithm has been successfully applied to various benchmark problems and has been 
extensively applied to various real-world industrial problems (Geem, 2008; Ingram and Zhang, 2009). 

In this paper, an Improved HS (IHS) approach based on truncated Cauchy distribution is proposed and evaluated. 
The proposed IHS presents an efficient strategy to improve the search performance in preventing premature 
convergence to local minima when compared with the classical HS algorithm.  

The efficiency and feasibility of the proposed IHS approach is demonstrated on a force optimization problem, where 
the force capabilities of a serial PRRR manipulator are evaluated considering actuation limits and different 
configurations. 
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The remainder of this paper is organized as follows. In section 2, the fundamentals of HS and IHS approaches are 
detailed. In section 3, the description of case study related to force optimization is presented. Simulation results are 
presented in section 4. Finally, section 5 outlines the conclusion and future research. 
 
 
2. FUNDAMENTALS OF CLASSICAL HS AND IHS APPROACHES 
 

The HS algorithm conceptualizes a behavioral phenomenon of musicians in the improvisation process whereby each 
player searches to improve the tune in order to produce a better state (i.e. global optimum) of harmony (Geem et al., 
2001). In music improvisation, each player sounds any pitch within the possible range, together making one harmony 
vector. If all the pitches make a good solution, that experience is stored in each variable’s memory, and the possibility 
to make a good solution is also increased next time. Similarly, the optimization process seeks a superior vector in terms 
of objective function. This is the core analogy between improvisation and optimization in the HS algorithm (Geem, 
2008). 

The next subsections describe the HS algorithm. First, a brief overview of the classical HS is provided for 
formulating solution vectors in which the optimization process is generated and the object function is evaluated; and 
finally, the proposed IHS is explained. 

 
2.1. Classical HS 
 

The optimization procedure of the HS algorithm can be synthesized in the following steps (Coelho and Bernert, 
2009): 

 
Step 1. Initialize the optimization problem and HS algorithm parameters. First, the optimization problem is specified as 
follows: 
 
                                                               Minimize f(x) subject to xi ∈ Xi,   i = 1,..., N 
 
where f(x) is the objective function, x is the set of each decision variable (xi); Xi is the set of the possible range of values 
for each design variable (continuous design variables), that is, xi,lower ≤ Xi ≤ xi,upper, where xi,lower and xi,upper are the lower 
and upper bounds for each decision variable; and N is the number of design variables. In this context, the HS algorithm 
parameters that are required to solve the optimization problem are also specified in this step. The number of solution 
vectors in harmony memory (HMS) that is the size of the harmony memory matrix, harmony memory considering rate 
(HMCR), pitch adjusting rate (PAR), and the maximum number of searches (stopping criterion) are selected in this step. 
Here, HMCR and PAR are parameters that are used to improve the solution vector. Both are defined in Step 3. 

 
Step 2. Initialize the harmony memory. The harmony memory (HM) is a memory location (matrix) where all the 
solution vectors (sets of decision variables) are stored. The HM matrix, shown in Eq. (1), is filled with randomly 
generated solution vectors using uniform distribution, where 
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In Eq. (1), each row represents each solution vector, and the number of total vectors is HMS (harmony memory size). 

 
Step 3. Improvise a new harmony from the HM. A new harmony vector, ),...,,(' ''

2
'
1 Nxxxx = , is generated based on three 

rules: i) memory consideration, ii) pitch adjustment, and iii) random selection. The generation of a new harmony is 
called ‘improvisation’. 

In the memory consideration, the value of the first decision variable ( '
1x ) for the new vector is chosen from any value 

in the specified HM range ( )HMSxx 1
'
1 − . Values of the other decision variables ),...,( ''

2 Nxx  are chosen in the same 
manner. The HMCR, which varies between 0 and 1, is the rate of choosing one value from the historical values stored 
in the HM, while (1 - HMCR) is the rate of randomly selecting one value from the possible range of values. 
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After, every component obtained by the memory consideration is examined to determine whether it should be pitch-

adjusted. This operation uses the PAR parameter, which is the rate of pitch adjustment as follows: 
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The value of (1 - PAR) sets the rate of doing nothing. If the pitch adjustment decision for '

ix  is Yes, '
ix  is replaced 

as follows: 
 

,'' bwrxx ii ⋅±←                                                                                            (4) 
 
where bw is an arbitrary distance bandwidth, r is a random number generated using uniform distribution between 0 and 
1. In Step 3, HM consideration, pitch adjustment or random selection is applied to each variable of the new harmony 
vector in turn. 
 
Step 4. Update the HM. If the new harmony vector, ),...,,(' ''

2
'
1 Nxxxx = is better than the worst harmony in the HM, 

judged in terms of the objective function value, F, the new harmony is included in the HM and the existing worst 
harmony is excluded from the HM. 
 
Step 5. Repeat Steps 3 and 4 until the stopping criterion has been satisfied, usually a sufficiently good objective function 
or a maximum number of iterations (generations), tmax. Maximum number of iterations criterion is adopted in this work. 
 
2.2. Proposed IHS algorithm 
 

A significant amount of research has already been undertaken on the application of HS for solving difficult practical 
optimization problems as well as to improve the performance of HS by tuning its parameters and/or blending it with 
other powerful optimization techniques. The efficiency of most EAs, as the HS approaches depends on how they 
balance between the explorative and exploitative tendencies in the course of search. Exploitation means the ability of an 
algorithm to use the information already collected and thus to orient the search towards the goal while exploration is the 
process that allows introduction of new information into the population (Mukhopadhyay et al., 2008). 

Several papers have presented promising results using EAs combined with Cauchy distribution (see examples in 
Rudolph, 1997; Yao et al., 1999). In this paper, the proposed IHS uses truncated Cauchy distribution in the range [0,1] 
to generate the values for HMCR, described in Eq. (2), is proposed. The utilization of Cauchy distribution can be useful 
in IHS. Due to Cauchy be more expanded than Gaussian distribution, it allows, probabilistically speaking, large steps 
and in this way, generating more different values for the HMCR. Furthermore, the proposed IHS employs bw with 
decreasing linear during the generations with initial value equal to 0.5 and final value equal to 0.01. 
 
 
3. DESCRIPTION OF CASE STUDY 
 

In robotics, force capability can be defined as the maximum wrench (force and moment) that a manipulator can 
apply or sustain in a given direction (Nokleby et al., 2005). In this work, force capability of the PRRR manipulator will 
be considered a pure force analysis. The optimization problem consists in maximize Fx force in x direction, while Fy 
force and Mz moment are equal to zero.  

The manipulator being considered in the optimization problem is a PRRR serial manipulator shown in Fig. 1. It has 
one prismatic and three revolute joints and, due to its geometry, motion possibilities are restricted to x-y plane. When 
executing a task that requires three degree of freedom (DOF), the PRRR manipulator has one additional DOF and is 
said to be kinematically redundant. This additional mobility allows the manipulator to achieve the same posture (end 
effector position and orientation) with infinite configurations. Kinematic redundancy can be used to improve the force 
capabilities of manipulators. 
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Figure 1. PRRR serial manipulator. 

 
For the PRRR manipulator, the force equations that define the relation between contact wrenches and actuation 

torques can be written as: 
 

�

𝐹𝐹𝐴𝐴
𝐹𝐹𝑥𝑥
𝐹𝐹𝑦𝑦
𝑀𝑀𝑧𝑧

� = [𝐾𝐾]4,3 �
𝜏𝜏𝐵𝐵
𝜏𝜏𝐶𝐶
𝜏𝜏𝐷𝐷
� (5) 

 
where FA, τB, τC and τD denote A, B, C and D joints wrenches, respectively. The K matrix is function of link lengths, of 
La prismatic joint displacement and of XP and YP coordinates. For each individual of the population the wrenches F can 
be calculated by Eq. (5). The maximum force capability for prismatic actuator A is ±50 N. The maximum torque 
capabilities for revolute actuators B, C and D are ±10, ±8 and ±6 Nm, respectively. 

The links of the PRRR manipulator are labeled from 0 to 4, where 0 is the base fixed link and 4 is the end effector 
(EF) link. Joints are identified from the base to the extremity by the letters A, B, C and D, respectively. Links 2 and 3 
lengths are equal to 0.3 m and link 4 length is 0.05 m. Angle θf will be held constant during this work at 30 degrees and 
Lf  length is also constant an equal to 0.3 m. Manipulators configuration is defined by La prismatic joint displacement 
and by θB, θC and θD joint angles. Actually, given La, there are two possible configurations know in the literature as 
‘elbow up’ and ‘elbow down’. In this study only the configuration ‘elbow up’, where –π ≤ θC ≤ 0, will be considered. 
Point P is the contact point between manipulator and environment with coordinates XP and YP. In the optimization 
process, XP coordinate will be constant and equal to 0.7 m. YP coordinate is a decision variable and can assume values in 
the range 0.1 ≤ YP ≤ 0.5. Orientation of the EF is always pointing in the x direction, as shown in Fig. 1.  

Taken these assumptions into account, coordinates XA and YA of point A and coordinate XD of point D are known. 
Given YP coordinate, the whole configuration of the manipulator can be evaluated with respect to La length only. Since 
La is a decision variable, during the optimization process the manipulator will achieve a feasible configuration when the 
link lengths evaluated by the inverse position kinematic are equal to their real values. YP, τB, τC and τD are also decision 
variables and the force optimization problem can be stated as: 
 

Maximize:          𝐹𝐹𝑥𝑥( 𝑌𝑌𝑃𝑃,  𝐿𝐿𝑎𝑎 , 𝜏𝜏𝐵𝐵, 𝜏𝜏𝐶𝐶, 𝜏𝜏𝐷𝐷) (6) 
 

Restricted to: 

⎩
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⎧

 
𝐹𝐹𝑦𝑦( 𝑌𝑌𝑃𝑃,  𝐿𝐿𝑎𝑎 , 𝜏𝜏𝐵𝐵, 𝜏𝜏𝐶𝐶, 𝜏𝜏𝐷𝐷) = 0
𝑀𝑀𝑧𝑧( 𝑌𝑌𝑃𝑃,  𝐿𝐿𝑎𝑎 , 𝜏𝜏𝐵𝐵, 𝜏𝜏𝐶𝐶, 𝜏𝜏𝐷𝐷) = 0

0.1 m < 𝑌𝑌𝑃𝑃 < 0.5 m
0.05 m <  𝐿𝐿𝑎𝑎 < 0.3 m
−10 Nm < 𝜏𝜏𝐵𝐵 < 10 Nm
−8  Nm < 𝜏𝜏𝐶𝐶 < 8 Nm
−6 Nm < 𝜏𝜏𝐷𝐷 < 6 Nm
−50 N < 𝐹𝐹𝐴𝐴 < 50 N

�(𝑋𝑋𝐷𝐷 − 𝑋𝑋𝐶𝐶)2 + (𝑌𝑌𝐷𝐷 − 𝑌𝑌𝐶𝐶)2 = 0.3 m
�(𝑋𝑋𝐶𝐶 − 𝑋𝑋𝐵𝐵)2 + (𝑌𝑌𝐶𝐶 − 𝑌𝑌𝐵𝐵)2 = 0.3 m

� (7) 
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Restrictions in the decision variables were handled directly by the HS and IHS algorithms. Geometric and 
force/moment restriction must be introduced as penalties in the objective function. The geometric penalty part is of the 
objective function can be written in the form: 

 

𝑓𝑓𝑔𝑔𝑔𝑔𝑔𝑔 = ��(𝑋𝑋𝐷𝐷 − 𝑋𝑋𝐶𝐶)2 + (𝑌𝑌𝐷𝐷 − 𝑌𝑌𝐶𝐶)2 − 0.3�
2

+ ��(𝑋𝑋𝐶𝐶 − 𝑋𝑋𝐵𝐵)2 + (𝑌𝑌𝐶𝐶 − 𝑌𝑌𝐵𝐵)2 − 0.3�
2

  (8) 
 
Since the proposed algorithm works with minimization problems, Fx maximization can be treated as a minimization 

of the inverse of Fx and the whole objective function is: 
 
𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑅𝑅1 �𝑓𝑓𝑔𝑔𝑔𝑔𝑔𝑔 �  + 𝑅𝑅2 �1

𝐹𝐹𝑥𝑥� � + 𝑅𝑅3��Fy� + |Mz|� (9) 
 

where R1, R2 and R3 are scalars that properly weights the contributions. In the optimization process, with R1=50, 
R2=100, and R3=1 convergence were achieved for HS and IHS algorithms. 

 
 

4. OPTIMIZATION RESULTS 
 
In order to eliminate stochastic discrepancy, in each case study, 30 independent runs in MATLAB (MathWorks) 

were made for each of the optimization methods involving 30 different initial trial solutions for each optimization 
method.  

The total number of solution vectors in classical HS and IHS, i.e., the HMS was 30 and tmax = 1,000 generations. All 
tested HS approaches adopted 30,000 objective function evaluations in each run. Furthermore, the bw, HMCR and PAR 
were 0.01, 0.9 and 0.3, respectively, in setup of the classical HS. On the other hand, IHS employed the procedure 
mentioned in section 2.2 for tuning the bw and HMCR. However, the IHS adopted PAR equal to 0.3. 

The results obtained for case study of force optimization described in the section 3 are given in Tab. 1, which shows 
that the IHS presented best mean and minimum values of objective function than the results of HS in 30 runs. The best 
results obtained for solution vector with HS and IHS with minimum objective function values are given in Tab. 2.  
 

Table 1. Results of HS and IHS in terms of objective function for the case study in 30 runs.  
A result with Boldface means the best value found. 

optimization  
method 

maximum ($/h) mean ($/h) minimum ($/h) standard  
deviation ($/h) 

Classical HS 4.600664 2.863870 1.780236 0.779215 
IHS 1.705538 1.629157 1.459840 0.056001 

 
Table 2. Best solution obtained using HS and IHS. 

Decision variables Value using HS Value using IHS 
YP – coordinate of point P  0.4359 0.4454 

La – displacement of joint A 0.2530 0.2992 
τB – torque of joint B -9.0170 -10.000 
τC – torque of joint C 6.9518 8.000 
τD – torque of joint D 0.0139 -0.0016 

 
The distribution of the best solutions along variable space in 30 runs is another important point of analysis. Figure 2 

and Fig. 3 show the histogram of the variables #1 to #5 for HS and IHS, respectively. An important observation could 
be extracted from Fig. 2 and Fig. 3: the most sensitive approach is the HS. 
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Figure 2. Histogram of the optimization variables using HS. 

 

 
Figure 3. Histogram of the optimization variables using IHS. 

 
 

As seen in Tab. 2, in the best solution found with HS, joint torques did not reach their limits. This means that better 
force capabilities values could be found. Using IHS, joints B and C are saturated and full joint actuation capacity are in 
use when the best solution is found. Figure 4 shows manipulators configuration in the best solution found using IHS. 
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Figure 4. PRRR manipulator configuration in the best solution found with IHS 

 
5. CONCLUSION 
 

The HS is a music-inspired algorithm, mimicking the improvisation process of music players. In the HS algorithm, 
musical performances seek a perfect state of harmony determined by aesthetic estimation, as the optimization 
algorithms seek a best state (i.e. global optimum) determined by objective function value, achieved by assign suitable 
values to each design variable. Furthermore, the HS is simple in concept, few in parameters, and easy in 
implementation, with theoretical background of stochastic derivative. 

This paper has introduced a harmony search algorithm to solve a force optimization problem of a planar PRRR serial 
manipulator. Simulation results for a force optimization problem presented in Tab. 1 and Tab. 2 revealed that the 
proposed IHS presented promising results in terms of quality of solution when compared the classical HS. In the future, 
formulation of IHS including effect of diversity control mechanisms should be investigated in order to deal with 
multiobjective optimization problem in robotics field. 
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