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Abstract. In this paper, a multivariable control strategy based on a parameterized Nonlinear Model Predictive Control
(NMPC) approach is proposed for a Diesel engine air path. The aim is to control the level of pollutant emissions by
coordinating the Exhaust Gas Recirculation (EGR) and the Variable Geometry Turbocharger (VGT) valves simultane-
ously. The main feature of the proposed controller lies in its compatibility with more elaborated nonlinear representations
since it uses the model as a black box predictor. Some experimental results performed on a real world Diesel engine are
presented in order to emphasize the efficiency of the controller.
Keywords: Parameterized NMPC, Multivariable Control, Black Box Predictor, Diesel Engine Air Path

1. INTRODUCTION

The study of Diesel engine passenger cars has become extremely important in recent years. These engines hold
some important advantages such as low fuel consumption and high torque at low speed. This is particularly due to the
combustion process that takes place on Diesel engines, based on Compression-Ignition (CI) instead of Spark-Ignition (SI)
presented in standard gasoline engines (Heywood, 1998). Basically, in CI-engines, more torque can be delivered since
only the air is compressed and ignites automatically when the fuel is injected. For this reason, the compression ratio of
such engines is greater than SI-engines, which also improves some other important points such as efficiency and durability.
However, one of the most drawbacks of Diesel engines concerns the pollutant emissions especially for Particulate Matter
(PM) and Oxides of Nitrogen (NOx). Reader can refer to Johnson (2001) and Flynn et al. (1999) for more details about
the combustion process and the formation of emissions.

In order to deal with the levels of emissions, it is necessary to understand the Diesel engine air path is as shown on Fig.
1. The arrows indicate the air flow inside the engine. Diesel engines are now equipped with two valves: the Exhaust Gas
Recirculation (EGR) and the Variable Geometry Turbocharger (VGT) which affects directly the production of emissions
according to Jacobs et al. (2003). The engine speed N and the fuel injection wf define the operational point of the engine
and must be considered as measurement disturbances. For the control of emissions, the Mass Air Flow (MAF) and the
Manifold Air Pressure (MAP) are used as control outputs. The reason for not using the values of NOx and PM is that
there are no on-board sensors for the emissions in commercial vehicles. Therefore, the reference values for MAF and
MAP are optimized in steady-state with respect to emissions and are mapped over the entire speed and fuel profiles (van
Nieuwstadt et al., 2000).
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Figure 1. Simplified view of the Diesel engine air path

The combined effect of EGR and VGT together with a complex thermodynamical process make the Diesel engine air
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path highly nonlinear and constrained. Then, an important number of contributions dealing with nonlinearities and con-
straints can be found in the literature concerning the Diesel engine control problem, such as Jankovic and Kolmanovsky
(1998), Jung (2003), Plianos and Stobart (2007) and Chauvin et al. (2008). However, since Diesel engines are highly non-
linear and constrained systems, Nonlinear Model Predictive Control (NMPC) arises as an interesting candidate solution
for such scenario. Predictive control is an advanced control methodology which uses explicitly the system model to pre-
dict the future evolution of the process (Mayne et al., 2000). The basic idea of this control strategy consists in computing
an optimal control sequence over a prediction horizon at each decision instant, by minimizing some given cost function
expressing the control objective. The first control signal is scheduled to be applied to the system during the next sampling
period and this optimization process is successively repeated at each sampling time. The prediction horizon keeps being
shifted forward and for this reason predictive control is also called Receding Horizon Control (RHC). Figure 2 illustrates
a simplified view of a predictive control scheme.

Figure 2. Schematic view of the predictive control strategy.

However, real-time implementation is the major drawback of NMPC-like approaches, since in most of the cases,
finding the optimum solution may require a huge computation effort, leading to infeasible controllers. Model uncertainties
may also represent a disadvantage for NMPC if they are not considered somewhere in the problem formulation.

Some predictive-like approaches have already been developed for the Diesel engine air path. In Ortner and del Re
(2007), the explicit formulation (Bemporad et al., 2002) is adopted, and some experimental results are presented. Nev-
ertheless, since a huge look-up table is needed to address twelve local linear models, the effort to make all the off-line
calculations limits the range of the control horizon which is set to 1. On the other hand, Ferreau et al. (2007) presents an
active set based controller where on-line computations are performed. The approach is still based on linear models, but
with an improvement on the control horizon, which has been set to 5. However, model uncertainties become the major
drawback and authors mentioned that increasing the control horizon does not necessarily improve the results.

In this paper, a Multiple Inputs Multiple Outputs (MIMO) control strategy based on a parameterized NMPC is pro-
posed for a real-world Diesel engine. The aim of the NMPC design is to track the set-points of the outputs MAF and MAP
by acting on the control inputs EGR and VGT. The main point of the proposed NMPC solution is the fact that the optimal
solution is completely independent of the nonlinear model structure being used, leading to a kind of black-box solution
for the Diesel engine air path. Moreover, the constraints on the control inputs can be structurally taken into account in
the formulation and the optimization routine is reduced to a low dimensional optimization problem enabling very short
computation times.

This paper is organized as follows. First, the system model is presented in section 2. Then, section 3 formalizes the
control design based on the parameterized NMPC approach and the optimization problem to be solved. In section 4, the
experimental results obtained on the real world test bench are shown. Finally, section 5 ends the paper with the conclusion.
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2. SYSTEM MODEL

Modeling Diesel engine dynamics is still a challenging problem. Generally, system identification based on Mean Value
Model (MVM) method adopted by Christen et al. (2001) and Jung (2003) is one of the most common way to represent
the system dynamics. Linear Parameter Varying (LPV) models derived from MVM is also an interesting way to model
Diesel engines for control design (Wei, 2006). However, since Diesel engines show strong nonlinearities and constraints
on EGR and VGT, standard multi-linear methods may be insufficient to cover the whole engine operational range and the
use of more sophisticated models may be a crucial issue. As a result, this paper focuses on the control design methods
that can cope with such models. The details about system identification are not in the scope of this work and reader can
refer to the cited references for more informations.

A data based identification process realized in Ortner and del Re (2007) using the test bench of the Johannes Kepler
University Linz, showed that the MAF and the MAP are basically influenced by the valves EGR and VGT, and by two
measured disturbances, fuel injection wf and engine speed Ne. In this paper, an eight-order nonlinear model identified in
Ortner et al. (2009) from the Diesel engine test bench is adopted. This model has a similar affine structure as presented in
Murilo et al. (2009), but in this case with the matrices A and C depending on the inputs and sampled at 50 ms, as follows:

x+ = [A(u− uc, w − wc)]x+B1[u− uc] +B2[w − wc] (1)
y = [C(u− uc, w − wc)]x+ yc + ε (2)
ε+ = ε (3)

where x ∈ Rnx is the state (nx = 8), y ∈ Rny is the vector of measured and regulated output (ny = 2) MAF and
MAP, w ∈ Rnw is the measured disturbance vector (nw = 2) and u ∈ Rnu is the control input (nu = 2) representing
the position (in %) of the valves EGR and VGT and uc, yc and wc are the central values of input, output and disturbances
respectively at the operation point used for the system identification. The variable ε represents the prediction error at the
present instant k and deals with potential offset errors. The value of ε is updated at each sampling instant k according to:

ε(k) = ε(k − 1) + ki.(y
p(k − 1)− ym(k))

where yp(k − 1) and ym(k) are the predicted value under the previous state at instant k − 1 and the measured output
at instant k respectively, ε(k − 1) the previous value of the prediction error and ki ∈ Rny the integrator gain. It is worth
mentioning that the Diesel engine is open-loop stable, as shown in figure 3. In other words, the values of MAF and MAP
asymptotically converge to some steady value that depend on the input values, EGR and VGT as well as fuel injection
and engine speed. This important behavior of Diesel engines is more explored in the forthcoming sections.
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Figure 3. Open-loop behavior at Ne=1800 RPM and wf=20 mg/cyl under a step sequence of EGR and VGT.

The control task consists in adjusting the VGT and EGR positions to track the required boost pressure MAP and the
air mass flow rate MAF set-points. More formally, the control problem is to design a controller that forces y to track some
desired set-point yd = [yd1 , y

d
2 ] and the inputs u must satisfy the following set of constraints:

u ∈ [umin, umax] ; umin ∈ Rnu ; umax ∈ Rnu (4)
δu ∈ [−δmax,+δmax] ; δmin ∈ Rnu ; δmax ∈ Rnu (5)

where δu = u(k + 1)− u(k) and uc is the central value around which the model identification is performed.
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3. CONTROL DESIGN

In this section, a multivariable control strategy using a parameterized NMPC scheme is proposed based on the system
model (1)-(3) as shown in the previous section. Here it is assumed that the whole state x can be estimated by means
of an observer as presented in Murilo et al. (2009). This section is organized as follows. First, the computation of the
stationary control is introduced. Then, some notions about the parameterized NMPC are presented and the control strategy
is formalized. The section ends with the formulation of the optimization problem to be solved.

3.1 Steady State Computation

The first part of the control design consists in obtaining the stationary control given the measurement disturbances w
and the desired outputs yd. This is particularly due to the fact that the diesel engine is open loop stable. Then, the steady
control can be obtained by solving a two-dimensional optimization problem as follows:

u∗(w, yd) := arg min
ud∈[umin,umax]

∥∥yc(ud, w)− yd∥∥2 (6)

yc(ud, w) = C(ud, w)[Inx −A(ud, w)]−1.[B.ud +G.w]

Once the steady control u∗ is computed, the steady state x∗ easily follows according to:

x∗(u∗, w) = [Inx
−A(u∗, w)]−1.[B.u∗ +G.w] (7)

As a matter of fact, the present formulation represents a generic way to find the stationary control (6). In fact, by
keeping this simple optimization problem, one enforces the generic definition of the control structure. In the forthcoming
topics, it is shown how this steady state pair is incorporated in the NMPC control design in order to derive a real-time
compatible feedback scheme.

3.2 Parameterized NMPC

It is well-known that the real-time implementation is one of the main challenges concerning NMPC approaches,
especially in the cases where optimization process must be solved within the sampling time. In order to meet the real-time
requirements, many approaches have been developed in recent years (Bemporad et al., 2002; Ferreau et al., 2006; Ohtsuka,
2004; Diehl et al., 2005; Zavala et al., 2006). However, contrary to the cited references addressing the fully nonlinear
solution, the parameterized approach adopted here (Alamir, 2006) enables a low dimensional on-line optimization problem
to be derived that can be solved using simple and therefore potentially certified solution. This last feature is of great
importance when talking about solutions that have to be adopted in industrial large production units context. Indeed,
in such context, implementing dedicated algorithms based on sparse or large decision variable like optimizers, may be
incompatible with industrial certification requirements.

The control parametrization approach amounts to choose the candidate piecewise open loop control profiles within a
class of control profiles that are defined by a low dimensional vector of parameters p ∈ P. More precisely, this amounts
to define a map Upwc : P × Rnx → UNp , where Np is the prediction horizon, such that the piecewise constant control
sequence corresponding to the parameter p is given by:

u = Upwc(p, x(k))

where p is the parameter to optimize at each decision instant k, and x(k) the current value of the state. The optimal
parameter p̂ is computed by solving the following optimal control problem in the decision variable p as follows:

p̂ := argmin
p∈P

[
J(p, x(k))

]
under C(p, x(k)) ≤ 0

where J(·) is the cost function to be minimized and C(p, x(k)) are the constraints to be respected and p̂ the optimal
parameter vector. Once the optimal parameter p̂ is obtained, the optimal control sequence ũ follows according to:

ũ = Upwc(p̂, x(k)) = [u(1)(p̂, x(k)) . . . u(Np)(p̂, x(k))]

from which only the first element of ũ is scheduled to be applied during the sampling period [k + 1, k + 2], namely:
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uopt(k + 1) = u(1)(p̂, x(k))

During the next sampling period [k+1, k+2] the same steps described above are executed again, and the next optimal
control namely uopt(k + 2) is provided. This clearly define an implicit feedback strategy.

3.3 Parameterized NMPC Formulation for Diesel Engines

Section 3.1 showed that a static gain map can be obtained thanks to the system model behavior, which is open-loop
stable. Then, supplementaries degrees of freedom need to be introduced in order to deal with the transients of the output
tracking error. As a result, the parameterized NMPC scheme consists in the steady control computed according to (6)
together with a temporal parametrization of the future control sequence. In order to do this, the exponential parameterized
structure (Alamir, 2006) of the control sequence is proposed:

u(iτs + t) = Satumax
umin

(
u∗ + α1.e

−λ.i.τs + α2.e
−q.λ.i.τs

)
for t ∈ [(k − 1)τs, kτs[ (8)

where i ∈ {0, . . . , Np − 1}, τs is the sampling period, λ > 0, q ∈ N are tuning parameters, α1, α2 ∈ Rnu are the
coefficients to be determined and they are more explained below and Sat is a saturation map Sat : Rnu → Rnu in order
to address the constraints on inputs according to (5). Then, given the value of u∗ computed according to (6) and the
previous value of the control input u(k− 1) scheduled in [k− 1, k] the following set of equations can be derived from (8):

u∗ + α1 + α2 = u(k − 1) (9)
α1.(e

−λ.τs − 1) + α2.(e
−q.λ.τs − 1) = p · δmax ; p ∈ [−1,+1]2 (10)

where (9) guarantees continuity of the control profiles while (10) simply states that the difference between two succes-
sive applied control does not exceed a fraction p ∈ [−1,+1]2 of some maximal allowable values δmax ∈ Rnu according
to (5). Then, the parameters α1 and α2 can be directly determined by solving the following linear system:


αu1
1 (p)
αu1
2 (p)
αu1
1 (p)
αu2
2 (p)

 =


1 1 0 0
0 0 1 1

e−λ.τs − 1 e−q.λ.τs − 1 0 0
0 0 e−λ.τs − 1 e−q.λ.τs − 1


−1

·


u1(k − 1)− u∗1
u2(k − 1)− u∗2

p1δ
1
max

p2δ
2
max


where the notation α1 = [αu1

1 ;αu2
1 ] and α2 = [αu1

2 ;αu2
2 ] is used. Injecting this in the equation of the control sequence

(8) leads to:

u(iτs + t, p) = Satumax
umin

(
u∗ + α1(p).e

−λ.i.τs + α2(p).e
−q.λ.i.τs

)
(11)

The expression (11) clearly shows how the control profile depends on the parameter vector p introduced in (10). Therefore,
the next step consists in defining an optimization problem to obtain the best set of parameters p.

3.4 Optimization Problem

The optimization problem to be solved must considerer two important points to define the cost function J . The first
one is the tracking error y − yd since the problem to be solved is the tracking of MAF and MAP. The second one is the
terminal cost on the state which means that the cost function must penalize the final state at the end of the prediction
horizon in order to address the stability issue. Therefore, one can define the following optimization problem:

p̂ := argmin
p∈P

[
ρx.‖X(Np, x(k), p)− x∗(u∗, w)‖+

Np−1∑
i=0

‖Y (i, x(k), p)− Yf (i, yd)‖2
]

(12)

where Y (i, x(k), p) is the output prediction based on the system equations (1)-(3) under the open loop control profile
defined by p over [0, k+Np−1] and starting from the current state x(k), X(Np, x(k), p) the state prediction at the end of
the prediction horizon used to define the terminal cost, x∗(u∗, w) the stationary state computed according to (7), ρx > 0
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is some weighting coefficient used to enforce the constraint on the final state. Finally Yf (i, yd) is the filtered version of
the set-point trajectory enabling to decouple the response time from overshoots:

Yf (i, y
d) = yd + e−3τs.i/tr .[y(k)− yd]

where tr is the desired response time of the closed loop system. Figure 4 shows a simple example showing the
evolution of two parameters p1 and p2 and the tracking of the outputs MAF and MAP. In figure 5 three particular instants
ki, i ∈ {1, 2, 3}were chosen to illustrate the shape of the cost function J(·, xki) as a function of the two decision variables
p1 and p2. Note the trajectory of the optimum value p̂ and the descent of the cost function from left to right showing the
efficiency of the proposed optimization problem. It is worth mentioning that by the definition of the parametrization,
when p is saturated at −1 or 1, the constraint δmax on the rate of change of the control input is active. On the other hand
in the steady state, the best set of parameters is p = 0 since u(k) = u(k − 1).

It is important to emphasize that the complexity of the optimization task heavily depends on the problem formulation,
and hence, the control parametrization. This can be clearly seen in figure 5 which shows how the low dimensional control
parametrization proposed for this system leads to a well posed optimization problem.
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Figure 4. Simulation results showing the evolution of p1 and p2 and the tracking of the set-points yd = [60;−25]. The
instants t = 0.1s, t = 2.2s and t = 5s have been used to illustrate the shape of cost function in Figure 5.

Figure 5. The shape of the cost function J(·, x(ki)) for the three particular instants depicted on figure 4 (t1 = 0.1 s (left),
t2 = 2.2 s (center), t3 = 5.0 s (right)).

As far as the optimizer is concerned, classical solvers like Powell’s method and simplex were tested, and the obtained
results were quite positive and very similar. However, a particular Sequential Quadratic Programming (SQP) routine was
developed for simulations and also used for experimental validation. For the sake of completeness, in this paper a brief
presentation of the algorithm is provided and a detailed description can be found in Murilo (2009). Basically, the algorithm
consists in two main parts: Scalar SQP and Gradient Procedures. For the first one, the algorithm performs scalar SQP’s
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on each component pi which corresponds to three iterations, namely iter, to obtain a quadratic approximation. Then,
a candidate cost function is evaluated and compared with the current value of J , leading to an adaptation of a trust
region, representing by the parameter dp, depending on the success or not of this operation. After each complete cycle of
scalar SQP’s over the np components (which in this case, np = 2), the results are used for the second part, the Gradient
Procedure, to construct an approximation of the gradient grad along which potentially successful steps are attempted.
Again, a trust region, now represented by αg , is updated along the gradient. The whole algorithm stops when the upper
bound number of function evaluations nfe is reached by the number of iterations and the best value of popt that minimizes
the cost function is returned. This results in the following algorithm:

Algorithm 1 Main Program : Compute a optimal value popt
Initialization: dp ← d0p;αg ← α0

g; p← p0

J ← Cost Function(p)
iter ← 1
while iter ≤ nfe do

for i = 1 to np do
[pi, dpi , J, gradi]← Scalar SQP Procedure(p, dpi , J)
iter ← iter + 3
i← i+ 1

end for
SucessGradient ← 1
while SucessGradient = 1 and iter ≤ nfe do
[p, SucessGradient]← Gradient Procedure(p, grad, αg, J)
iter ← iter + 1

end while
end while
popt ← p
Return(popt)

As a result, the proposed routine yields an optimization algorithm that uses the model as a black-box simulator and is
therefore easily re-usable if a more sophisticated and faithful process model is made available.

4. EXPERIMENTAL VALIDATION

In this section, some experimental results are presented in order to show the efficiency of the proposed controller. The
experiments were performed at Johannes Kepler University Linz on a Diesel engine fulfilling the EU4 emission standard.
The test bench is controlled by the Engine Control Unit (ECU) and an AVL dynamometer is used to simulate the load
on the engine shaft. A d-Space Autobox running at 480 MHz linked to Matlab was used as real-time platform. The
programs were developed in C language using S-functions of Matlab. The sampling time was set to 50 ms and the number
of function evaluations nfe to 30.

The experiments were divided into two parts. The first one consists in a manual setting of the set points of MAF
and MAP by imposing a step sequence trajectory for both variables. The second one uses the non-urban part of the New
European Driving Cycle (NEDC) to generate the set-points. The NEDC is supposed to represent the typical usage of a car
in Europe and is used to assess the emission levels of car engines. Table 1 shows the parameters used in the experiments.
Since the model was identified around a central value, MAF and MAP are represented by their difference with respect to
this central value.

Table 1. Parameters used in experiments

Parameter Value Parameter Value
τs 0.05s δmax [1;1]%/τs
Np 30 ρx 1000
λ 1 qmax 30
q 5 tr 3 · τs/q · λ

4.1 Successive Steps Sequence

Figure 6 shows the ECU’s response for a step sequence (left) and the parameterized NMPC approach (rigth). The
ECU’s control design is based on a Single Input Single Output (SISO) controller, with feedback control for MAF and
feed-forward for MAP. As shown in this figure, the MAF is highly weighted by ECU while the MAP’s tracking is viewed
as a secondary task. On the other hand, the NMPC approach shows a more regular tracking performance and the controller
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is able to track both variables, which are equally weighted. Note that the constraints on the inputs are correctly handled.
The offset errors are eliminated by means of the integrator term introduced in (4). Some other scenarios were performed
by changing the parameters of table 1 without significant improvement on the results.
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Figure 6. ECU’s response (left) and the parameterized NMPC scheme (rigth) for a step sequence.

4.2 European NEDC Sequence

The second part of the experiment consists in testing the present controller under the high-speed part of the NEDC.The
figure 7 shows the ECU’s tracking performance (left) and the parameterized NMPC scheme (rigth). For the first one, the
MAF is correctly tracked until t = 210, where the engine speed exceeds the 2100 RPM. The same deterioration at high
speed is also noted on the MAP’s tracking performance. For the second one, the NMPC approach clearly shows a more
regular quality in the tracking performance for both variables comparing to the ECU’s, except in the last part at low speed
and fuel, where model uncertainties are extremely high. Moreover, the slow dynamics of the engine speed profile of the
NEDC does not generate abrupt set-point variations, and naturally filters oscillations and overshoots.

On the other hand, this solution seems to be a little sensitive to the fast set-point variations, since the sampling period
is not short enough to compensate model uncertainties. Moreover, it is worth mentioning that models for control design,
especially for Diesel engines, are usually identified in order to match to some feasible or existing control scheme, leading
to the trade-off between model complexity and control feasibility. That is the main feature of the proposed controller,
which shows that the present NMPC approach can be entirely decoupled from the model structure.
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Figure 7. Experimental results showing the ECU’s response (left) and the parameterized NMPC scheme (rigth) under the
extra-urban part of the NEDC.

ABCM Symposium Series in Mechatronics - Vol. 5 
Copyright © 2012 by ABCM

Section II – Control Systems 
Page 323



5. CONCLUSION

In this paper, a MIMO controller based on the parameterized NMPC approach was proposed for the Diesel engine
air path. It was shown that the presented solution can be used as a general NMPC framework and can deal with more
sophisticated and fully nonlinear models. Some experimental results performed on a real world Diesel engine showed
that the parameterized NMPC is real-time implementable and the constraints on the inputs are structurally respected.
The tracking performance was compared with the the existing ECU and the obtained results were very satisfactory and
incite further investigations of the proposed controller on a fully nonlinear model representing the whole thermodynamical
behavior of the engine.
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