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Abstract. This paper presents a fault detection and isolation algorithm applied to the monitoring of DC Motor 
parameters. Fault Detection and Isolation (FDI) schemes are implemented as real-time algorithms whose inputs are 
plant output observations. They are basically used for a) fault detection: to decide whether the plant is in a normal 
operating condition or in a faulty one and b) fault isolation: to point out and identify the kind of the fault (if present) 
among a given fault set. DC Motors suffer from diverse possible critical failures that could compromise its 
performance and cause severe gear damage, such as, armor coil opening, field coil opening, armature static converter 
short circuit, field static converter short circuit, armature coil short circuit, field coil short circuit, cooling system 
failure, lack of bearings and bushing lubrication, armature current sensor failure, field current sensor failure, speed 
sensor failure. The proposed algorithm uses the singular values of a Hankel matrix built from output measurements to 
detect and isolate DC Motor parameter failures. The main feature of the proposed algorithm is that it does not rely on 
the plant model identification. Having obtained a nominal plant image through the singular values of the Hankel 
matrix, this image can be used to determine, by comparison, any value drift of the plant parameters. Two functional 
levels of the procedure are distinguished, namely alarm generation and alarm interpretation. At the alarm generation 
level (detection), the algorithm naturally displays plant failure through the change of the singular values structure and 
values and at the alarm interpretation level (isolation), the algorithm delivers an image of the plant parameters 
through the singular values allowing the identification of the faulty parameter. Simulation examples are presented to 
illustrate the performance of the proposed algorithm. 
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1. INTRODUCTION 

 
The development of safer and more reliable control systems has been an increasingly need in the last decades.  To 

full-fill the modern standards, the control systems design must include fault detection and isolation issues at their very 
early design stage. The ultimate goal of these systems is to reach a fault-tolerant control (FTC) environment. Fault 
Detection and Isolation (FDI) schemes are implemented as real-time algorithms whose inputs are plant output 
observations. They are used for a) fault detection: to decide whether the plant is in a normal operating condition or in a 
faulty one and b) fault isolation: to point out and identify the kind of the fault (if present) among a given fault set. 
Following the FDI diagnosis, on-line procedures are usually needed for FTC purpose, while off-line procedures could 
be used for maintenance purpose. During the last decades, the international scientific community has presented several 
fine works. Two main streams can be identified, modeling related techniques (Patton, Frank and Clark, 1989) and 
artificial intelligence based methods. System theory, signal processing or artificial intelligence approaches have been 
extensively used according to the available data format. Most of the model-based (Delmaire and Cassar, 1995), (Dvorak 
and Kuipers, 1989), (Frank, 1993), (Hamsher, Console and De Kleer, 1991), (Iserman, 1984),  (Zhang, 1996) and also 
the non-model-based techniques have been developed based on the comparison of the data produced by the real-time 
plant operation with some previously obtained knowledge of the system.  

This paper presents a novel FDI algorithm based on the singular value decomposition of a Hankel matrix built from 
plant output measurements. The main feature of the proposed algorithm is that it does not rely on the plant model 
identification. All it is required is a plant signature that can be experimentally obtained. The paper is organized as 
follows: Section 2 includes some comments on the FDI problem; Section 3 presents the basic formulation of the 
Eigensystem Realization Algorithm (ERA); Section 4 is concerned with the singular values based fault detection and 
isolation (SVFDI) algorithm; Section 5 explores the SVFDI algorithm features through experimental results; Section 6 
shows the procedure to obtain the FDI “flags”; and finally, Section 7 presents final comments and conclusions. 
 
2. SOME COMMENTS ON THE FDI PROBLEM 

 
In general, Fault Detection and Isolation (FDI) algorithms use the plant input-output measurements to implement a 

two-steps procedure: the fault detection and the isolation tasks. The first step is the fault detection step or alarm 
generation. The problem of the alarm generation is to decide whether the system is in a normal operating condition or 
not. The set of output measurements along with a previously obtained knowledge of the system constitute the algorithm 
inputs while a set of generated alarms are the algorithm outputs. The second step consists on the alarms interpretation. 
The main issue in this case is to correctly decide which faults are present (fault isolation) chosen from a pre-defined 
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fault set.  It is also of one’s interest to establish their characteristics such as occurrence time, fault size, class, 
consequences, etc. The input is the set of alarms and the output is the faults isolation, characterization and diagnosis. In 
the case of FTC, further analysis is usually required to determine whether the system is still capable to perform properly 
after the failure. The algorithm performance is an important issue that must be always considered. The decisions taken 
at every step of the FDI problem solution might include and accumulate evaluation errors. The measured variables may 
include noise and load perturbations that might obscure system failures. Also the knowledge one has about the system 
nominal operation might include uncertainties. Detection errors and false alarms can be confirmed by their probability 
of occurrence. Incomplete isolation and false isolation errors can be evaluated by comparison based on the faulty events 
probability of occurrence.  
  
3. THE ERA ALGORITHM – A VERY SHORT REVIEW 

 
This section reviews the basic formulation of the Eigensystem Realization Algorithm (ERA). The ERA algorithm, 

as originally proposed by Juang and Pappa (1985)(1986), takes the plant impulse response and builds a Hankel matrix 
from it, they show that through a matrix factorization a state space realization of the plant can be obtained. Since then, 
the scientific community has proposed several modifications and improvements mainly applying the technique to model 
reduction problems (Mitchell, Huston and Irwin, 1990). The ERA algorithm is a very reliable computational procedure 
originally proposed as a tool for modeling of dynamic linear systems, in this case, the ERA procedure delivers an exact 
model from the plant noise-free impulse response. In the presence of noise the algorithm permits to easily separate 
signal from noise number based on the relative values of the singular values, Juang and Pappa (1986) proposed two 
quantitative criteria to eliminate frequencies created by measurement noise. In a nonlinear case, the ERA algorithm 
would deliver a linearized model whose order can be defined based on the most significant singular values. In any case, 
the singular values set is a clean image of the plant dynamics and can be used to detect an identify plant parameter 
changes.  For the sake of simplicity and without lost in the argument, this work focuses on the original algorithm. In the 
following, all posterior algorithm improvements and details of the derivation have been omitted. 

Consider a state space realization for a linear time-invariant discrete-time dynamic system given by 
 

)()()()(;)()()()()1( kvkxCkykuBkxAkx +=+=+ θθθ                      (1) 
 
where, [A,B,C] defines a discrete-time state space realization, x is a n-dimensional state vector, u an m-dimensional 
control input, y a p-dimensional measurement vector and v represents measurement noise. 
  

The system impulse response sequence is given by 
 

{ } BACkykhorhhhkh k=+=+= )1()1(......)2()1()0()(        (2) 
 
thus, a Hankel matrix can be constructed from the impulse response sequence as 
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it can be shown that 
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and also that 
 

[ ] [ ] [ ]       (6) m
TkTT

p
k EQDQDHPDPDEBACkykh 2/12/12/12/1 )1()1()1( −−==+=+

 
finally, Juang and Pappa shown that a minimal order realization could be found as 
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4. THE SINGULAR VALUE BASED FAULT DETECTION AND ISOLATION (SVFDI) ALGORITHM 

 
The proposed SVFDI algorithm can be seen as a generalization of the ERA algorithm (originally applied for model 

identification). It will be shown later that in the case of the SVFDI problem there is no need for a plant model, all one 
needs is the singular values set of the Hankel matrix built from the plant time response, as shown in the previous 
section. The choice of singular values as a measure to detect parametric drift is because its nature (real positive 
numbers) does not change as natural frequencies and eigenvalues do when plant parameters change. Under “normal” 
operational conditions any change of plant parameters values would affect the system dynamics and in a final analysis 
the singular values of the Hankel matrix. In this context, the set of singular values can be considered a natural choice for 
detecting parametric drifts and failures. The singular values set can be interpreted as an image of the plant parameters. 
Assuming this fact, and in a worst case scenario, a relationship between the singular values and the plant parameters can 
be established using standard correlation analysis (when required) and use these chosen singular values as “flags” to 
indicate any parameter drift from its nominal value. The correlation analysis would deliver a mapping of the plant 
parameters drifts into the singular values set of the Hankel matrix built from the plant time response. The proposed 
procedure for fault detection and isolation is depicted in the following section through examples. 
 
5. EXPERIMENTAL RESULTS 

 
To illustrate the features of the proposed technique, a DC-Motor computational model package is used in this work 

(Palhares, 2011). Several undesired events may affect the performance of DC motors, the used model allows the 
simulation of faults due to: Armor Current Sensor Failure, Field Current Sensor Failure, Velocity Sensor Failure, Armor 
Coil Break, Field Coil Break, Short Circuit of the Armor Feed Static Converter, Short Circuit of the Field Feed Static 
Converter, Short Circuit of the Field Coil, Short Circuit of the Armor Coil, Cooling System Failure and Bearing 
Lubrication Failure. The last three cases are used in this work for simulation purposes. In this case, the plant is defined 
by a set of non-linear differential equations given by: 
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where 

ra = Armor circuit resistance 
rfd = Field circuit resistance 
La = Armor circuit inductance 
Lfd = Field circuit inductance 
Lafd = Armor/field mutual inductance 
ea = Armor counter emf 
Tem = Electromagnetic torque 
TL = Torque due to the load 
Bm = Viscous attrition coefficient 
Jm = Moment of inertia of the motor-load system 
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or in matrix form 
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Table 1 shows the DC-motor parameter values used for simulation purposes. 

 
Table 1. DC Motor Parameters -  Nominal Values 

Ra = 4.6e-3 Armor circuit resistance 
Rfd = 12.1875 Field circuit resistance 
La = 2.38e-4 Armor circuit inductance 
Lfd = 8.750 Field circuit inductance 
Lafd = 0.23 Armor/field mutual inductance 
Jm = 2580 Moment of inertia of the motor-load system 
Va = 750 Armor circuit feeding voltage 
Vfd = 750 Field circuit feeding voltage 
Ia = 17098 Armor circuit  current 
Bm = 127 Viscous attrition coefficient 
Ifd = 61.48 Field circuit current 

 
The basis of the ERA algorithm, initially proposed as a modeling technique from the plant impulse response, is 

used here. The singular values are a reliable mapping of the plant dynamics. Whenever a plant model is not required 
(the SVFDI case) the step response can also be used to built a set of singular values and to establish a correlation 
between this set and the plant parameters under supervision. It should be mention that the set of singular values of the 
Hankel matrix, in either case (step or impulse response), is unique. 

An important feature of the SVFDI algorithm (Galvez, 2008) used in this work is that its formulation eliminates the 
need for a plant model. Having obtained a nominal plant image (through the singular values of the Hankel matrix 
obtained from the plant time response), this image can be used to determine, by comparison, any value drift of a plant 
parameter, as it will be shown next. 

For simulation purposes, a DC-motor model available in Palhares (2011) has been adapted and used through the 
experiment, the SVFDI algorithm was tested to detect and identify failures that causes continuous time Reponses on the 
plant output. Three output variables have been monitored and used in the experiment: armor current, field current and 
velocity.  

Figure 1. shows the DC Motor nominal (no failure) step and impulse time responses. Figures 2 through 4 present 
experimental results for three types of DC-Motor failures. Figure 2; shows a short circuit of the armor coil time 
responses; Figure 3 presents a cooling system failure time responses; and Figure 4 shows a bearing lubrication failure 
time responses. In all of them step and impulse responses have been considered. 

Hankel matrices have been built from the time responses (step and impulse) for every simulated failure and their 
six first singular values computed. The obtained singular values were normalized following the algorithm presented in 
Section 6. The results are graphically displayed in Figures 5 and 6. 

These last results are the basis for the SVFDI algorithm. The normalized singular values are a unique mapping of 
the plant dynamics and so they reflect any change on the plant parameters. Finally, simple techniques, such as 
correlation analysis and Boolean algebra, may be used to establish “flags” related to plant parameters failures. 
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Figure 1. The DC Motor Nominal Time Responses. 

 

 
Figure 2. Short Circuit of the Armor Coil - Time Responses. 
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Figure 3. Cooling System Failure - Time Responses. 

 

 
Figure 4. Bearing Lubrication Failure – Time Responses. 
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Figure 5. Normalized Singular Values from the Impulse Responses. 

 

 
Figure 6. Normalized Singular Values from the Step Responses. 
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6. DETERMINING THE FDI “FLAGS” 

 
This section shows a simple procedure for finding FDI indicators (“flags”) from the plant time responses. The 

proposed technique delivers reliable results for fault detection and fault isolation. Initially, the time response (step or 
impulse response) of the plant is experimentally obtained. Next, a Hankel matrix from plant output is built and its 
singular values computed. Table 2 presents the systems eigenvalues for the plant impulse response and Table 3 shows 
the singular values of the plant when a step response is used. 
 

Table 2. Singular Values for Impulse Response 
 SV1 SV2 SV3 SV4 SV5 SV6 

Non Failure 78439.787 6059.686 194.863 3.482 0.017 0.000 
Armor Coil Short Circuits 754891.744 529686.607  25469.754 541.949 27.518 1.226 
Cooling System Failure 60412.753 24555.109 702.129 22.967 0.436 0.006 
Bearing Lubrication Failure 78691.997 3545.554 181.717 5.855 0.033 0.002 

 
Table 3. Singular Values for Step Response 

 SV1 SV2 SV3 SV4 SV5 SV6 
Non Failure 17330401.104 1555279.002 20316.257 171.501 2.503 0.016 
Armor Coil Short Circuits 149646621.157 22665218.511 1006893.746 73130.014 228.479 140.620 
Cooling System Failure 12293745.941 1378094.726 40575.928 204.498 156.567 0.417 
Bearing Lubrication Failure 17401207.234 1526923.002 5967.910 578.197 3.033 0.056 

 
From Tables 2 and 3, a set of normalized singular values can be found following the algorithm: 
 

NORMSV = abs ((Perturbed SV-Nominal SV) / Nominal SV) 
NORMSV = NORMSV / max (NORMSV) 
if  NORMSV ≤ 0.01 then 
     NORMSV = 0.01 
 End 

 
The results are depicted on Tables 4 (for impulse response) and 5 (for step response) that show the normalized 

singular values.  
 

Table 4. Normalized Singular Values for Impulse Response 
 NORMSV1 NORMSV2 NORMSV3 NORMSV4 NORMSV5 NORMSV6 

Non Failure 0.01 0.01 0.01 0.01 0.01 0.01 
Armor Coil Short Circuits 0.01 0.03 0.05 0.06 0.68 1.00 
Cooling System Failure 0.01 0.12 0.10 0.22 1.00 0.48 
Bearing Lubrication Failure 0.01 0.11 0.02 0.19 0.26 1.00 

 
Table 5. Normalized Singular Values for Step Response 

 NORMSV1 NORMSV2 NORMSV3 NORMSV4 NORMSV5 NORMSV6 
Non Failure 0.01 0.01 0.01 0.01 0.01 0.01 
Armor Coil Short Circuits 0.01 0.01 0.01 0.05 0.01 1.00 
Cooling System Failure 0.01 0.01 0.02 0.01 1.00 0.41 
Bearing Lubrication Failure 0.01 0.01 0.28 0.94 0.08 1.00 

 
In this case, Tables 4 and 5 can be used to select the best set of normalized singular values to be used as “flags” 

based on their correlation with plant parameters. Directly from Tables 4 and 5 one can build Table 6 and 7 that 
represent the structural sensitivity of the singular values with respect to parameter drifts. 
 

Table 6. FDI Flags using an Impulse Test Signal. 
 FLAG 1 FLAG 2 FLAG 3 FLAG 4 FLAG 5 FLAG 6 

Armor Coil Short Circuits     1 1 
Cooling System Failure     1  
Bearing Lubrication Failure      1 
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Table 7. FDI Flags using a Step Test Signal. 
 FLAG 1 FLAG 2 FLAG 3 FLAG 4 FLAG 5 FLAG 6 

Armor Coil Short Circuits      1 
Cooling System Failure     1  
Bearing Lubrication Failure    1  1 

 
In a more complex case, in which Tables 6 and 7 could not be directly built, standard regression analysis techniques 

can be used to establish the correlation coefficients between plant parameters and the singular values of the Hankel 
matrix. In that case the value of “1” can be assigned to the greatest coefficient and “0” to the smallest. The “ones” mean 
strong correlation and the “zeros” a weak or inexistent correlation as shown in Galvez (2009). 

 
7. FINAL COMMENTS AND CONCLUSIONS 

 
This paper explored the application of the SVFDI algorithm for fault detection and isolation on a DC-Motor 

parametric model. Two functional levels of the SVFDI procedure have been verified, namely alarm generation and 
alarm interpretation. At the alarm generation level (detection), the SVFDI algorithm naturally displays plant failure 
through the change of the singular values structure and values. At the alarm interpretation level (isolation), the SVFDI 
algorithm delivers an image of the plant parameters through the singular values allowing the identification of the faulty 
parameter. Finally, the SVFDI algorithm applied to a DC Motor model shown outstanding performance in solving both, 
fault detection and isolation problems. 
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