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Abstract. This paper deals with the problem for the number of extrema, that which may occur in the step- response of

a stable linear system with k real multiple zeros and n real distinct poles. Some simple sufficients conditions and
necessary conditions are presented for analyses when zeros located between the dominant and fastest pole does not
cause extrema in the step-response. Sufficient conditions for existence of the overshoot and extepdedeygizoot

in the step-response of the continuous time transfer functions, based on their poles and zeros, are presented. The
authors also present a class of linear control stable continuous time-system of minimum phase that exhibits undershoot
in the step response. Simple examples illustrate and complement the main results of this paper. These conditions
require knowledge of the pole-zero configuration of the corresponding transfer-function.
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1. INTRODUCTION

Automatic control has played a vital role in the advance of engineering and science. In addition to its extreme
importance in space-vehicle systems, missile-guidance systems, robotic systems, automatic control has become an
important and integral part of modern manufacturing and industrial processes (Franklin, 1991; Dorf, 2001; Ogata,
2005).There exist some control problems, such as machine tool axis control and trajectory-following in robotics, where
the step-response cannot exhibit local extrema. Several works have been done to clarify the influence of the zeros on
the transient part of a step-response (Stewart, J., 2006; Darbha, S., 2003; Elé€adiyr993; Howell, 1997; Rachid,

1995; Leon de la Barra, 1994; Retsalii, 2010: a-e, 2009, 2008:a-b, 2007, 2005:a-b).

El-Khoury et al (1993) obtained an upper bound on the number of extremes of the step-response of a linear system
with real distinct poles, complementing the existing results for lower bounds (Widder, 1934). These results contribute to
the fact that zeros located between the dominant pole and the pole faster can cause extreme. Rachid (1995) presents ¢
sufficient condition for extrema of the step-response. Proved that every real zero related to a real pole and that this
relation, the zero is located to the left of this pole does not contribute to the extreme step-response. Stewart, J. (2006)
examines overshoot and reverse reaction associated with non-minimum phase zeros.

In Reis (2001, 2002, 2003, 2004, 2004-a) are presented necessary and sufficient condition for the existence of
extremes, overshoot and undershoot in the step-response of second order continuous time transfer functions and same
class the control systems of the third order, based on its real poles and zeros. This works results the news necessary
condition and sufficient condition for the existence of extremes in the continuous-time systemdef with distinct
real poles and distinct or multiply real zeros (Reis, 2010:a-e, 2009, 2008:a-b, 2007, 2005:a-b; Silva, 2008). These
results are extensions of the works the El-Kheoetrlii (1993) and Rachid (1995). These conditions permit to avoid
when the zeros located between the dominant and fastest pole not cause extreme in the step-response. Are proved tha
negative real zeros also cause undershoot in the step-response. It is important because in literature undershooting
phenomenon is association a positive zeros.

These results are important but they cannot offer a complete relation between the relative locations of the poles and
zeros of the plant and controllers and the existence of extremes (overshoot and undershoot). For example, the
determination of the exact number of extremes remains an open problem (El-Khoury, 1993). In the opinion of the
authors, this note provides new insight about the correlation between poles and zeros of a scalar continuous-time
transfer function and the nature of the extremes overshoot and undershoot in its step-response. These results do not
constitute the final understanding of this connection, but they certainly complement, clarify and expand the various
points, which have been subject of recent discussion in the literetutbermore the results presented can have many
control engineering applications, especially in controller synthesis. In fact, they can be used to design a controller
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ensuring no overshoot and undershoot for the closed-loop step-response for a linear minimum-phase system (Rachid,
1995).

The paper is organized as follows. Section 2 contains definitions and background material. In Section 3 main
results, which qualitatively correlate real zeros and extremes are presented. Applications are presented in the Section 4
and concluding remarks are given in Section 5.

2. PRELIMINARES

In this paper consider a SISO linear control stable continuous-time system with n real distinct pljesudiioly
real zeros characterized by their continuous-time strictly proper transfer fuyn

ky .
N(s-z)
G(s) = (—1)”+mK'=r117 (2)
M (S—/‘j)
=1
with:
n
K nA4j
" m=3Yr <n, k= kJ=1 A <A< <A <0,8<..< 7 ez #Aj;
i=1 S
ne)
i=1
= z, i=1, .. karereal zeros of thg(s), z< ...< Zy,

* A,j=1,.,n arereal poles of the(s)e z # A;;
It is convenient to classify the zeros@(s)in four different sets:
M1 ={ z:G(zF 0,0< z <+oo}, Mo ={ 2:G(zF 0,Aph < z <O}, M3 ={ z2:G(zF 0,41< z </In},
My ={ 2:G(zF 0, < z <A}. 2)
In addition, letm,for i = 1, 2, 3, 4 denotes the number of zeros belonging to a give Massuch tham= m1+ mz
+ ms+ ma. A pole bracket is the open intervdIA i1, A i) between two distinct consecutive polési< Aiof G(s) Let
p be the number of poles brackets containing an odd number of zeros@f(s) (EI-Khoury et alii, 1993)and let integer
n 2 0 be thetotal number of local extreme of y(t), for t > 0.

The following lemma gives a unit step-response for the system (1). The proof of this lemma follows from the
expansion in partial fraction of th&(s).

Lema 2.1: The unit step-response of the class linear control system with G(s) as in (1) is given by:

_ n /1jt
y(t)= 1+ ¥ cj€ 3)
j=1
where fork = 2, ..., n:
n
A ey
. — (1)l J'|;|2 ' Y ZSiDiSH(J ), (4)
o =)™ Nh-a) =
n@) = icjsn’
i=1
n
n 4 n b-4)
J':]k Ky 1s'|'<iin
[ z . i,
Ck :(—1)ITH'|( lil _l:l(Ak_Zi)n JT(ﬁ) (5)
.ﬂl(zi i = 1<i<jzn
1=

The problem to find a lower boung for the number of step-response extrema was solved by Widder (1934) and an
upper bound by EIl-Khourgt alii (1993). In the end, was considered a SISO linear control stable continuous-time
system withn real distinct poles anth real distinct zeros without poles at the origin of the complex plane. Rachid
(1995) contributed with sufficient condition for the absence of extremes. These results are presented below.

Theorem 2.2: (Lower-bounding theoremjy + m, < 1.
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Theorem 2.3: (General bounding theorem).

() Mm+msnsm+m+mg—p;

(i) parityn =parity(m, + m,) = parity(m, + m, + mz — p), whereparity (x) = 0if x odd andparity (x) = 1if x even,x
be an integer

Theorem 2.4: (Rachid, 1995 The step-response of system (1) has no extremumn>d if there exists a relatioR
satisfying the following conditions:

(i)zRA = z <

(ii)Each polel is related byR to (1) zeros, and;

(iii) Each finite or infinite zera is related byR to(z) poles,

Wherez is a zero (finite or infinite)] is a pole of G(s) and( ) denotes the order of multiplicity .

In this article, it wos considered the analysis of extremes in the step-response of system (1), where its zeros are
located in the clashls, ie, between the dominante and farthest pole. The goal is to provide extensions of the theorems
2.3 and 2.5 and results in Reis (2010: e).

3. MAIN RESULTS

The theorems presented below, provide a necessary condition for zeros bf;atasse extremes in step-response,
ard a sufficient condition for the absence of extrema. In this sense, they are extensions of the theorems 2.3 and 2.5, as
well as a generalization of the results presented in Reis (2010: e), and have considered a SISO linear control stable
continuous-time system with n real distinct poles emdeal distinct zeros.

Theorem 3.1: Let a SISO linear control stable continuous-time system with n real distinct polés amdtiply real
zeos characterized by their continuous-time strictly proper transfer fur@{®n(5)and step-response (6) — (8)mif=

kil Apq =7 )"

mz and zeros of the cladé; cause extremes in step-response thg % > 1.
1 —z
1= n {

Kl Anog -z )"
Theorem 3.2: Under assumptions of the theorem 3.1if= m; and [] (MJ < 1, thenzeros in class does
i n~%

not contribute to extremes in response to unit step.
An-1*4n
Corollary 3.1: If m = myandz 7| A1, Ee— =1, ..., mtheny(t) has no extreme.

Observation:

(a) The theorem 3.1 gives a necessary condition for zeros ofMlasguse extremes in step-response. Theorem 3.2
provides a sufficient condition for the absence of extremes.

(b) The theorem 3.2 is an extension of theorem 2.4. In fact, ifdlzeros of the clagddl; are related to they poles as

kel A -z )"
in Theorem 2.4, therf] (jl—z'j < 1 since there are at least -1 zerosto the left of the pold,_;. Therefore
i n =%

y(t) does not show the extremes by theorem 3.2;

For prove the theorems 3.1 and 3.2 it is convenient to make the following analysis. It follows from the lemma 2.1
that:

YOy, &G4 ba) (6)

o et j=2 ¢y

In the equation (6), define:

ci(l):ol/\i,forizl,...,n, (7)
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diP == eaP=a;-a forj=2,...n (®)
(D
L. . yl( ) n [/\(-l)jt
After the substitution of (7) and (8), it follows tha'c—/1lt Yy dj(l)e I
j=2

Define the follow functiorfy(t):
A0
f(t)= 1+ z d(l)( ) : 9)

The equations (6) — (9) follows that:

YO ) (10)

(’fll) At -

The relation (10), it follows that the critical pointsyoft) are pointdoin [0, +°°) for thatf;(to) = 0. To analyze the
number of real roots of the functidi(t follows the equation (9) that:

ﬁm: o (11)
where:
b () 1+ 'gs d§2)e[a(jz>jt , (12)
P
¢ =Wl fori=2 ..n, 13
c{?)
df?) = éz) e AP =AM =3 -

Follow of the (11) that the critical points faft) are roots of the functiofa(t). Continuing with this process, we get:

(k)
f (1)= 1+ § d§k)e(/]j Jt 2<ksn-1 (15)
j=k+1
Cgk) = dgk‘l)A(l"‘l), forj=2, ..., n, (16)
(k)
C
aff) =" A=) =g, 40
Ck
(y=flea® | k=2, . n1 (18)
Lo
q< e

From equation (18), it follows that the critical points of the funcfiar{t) are the roots of the functidp(t) for allk =
2, ..., n -1 Note that itk = n - 1, equations (15) and (18) are written as:

fiog (1)= 1+ drgn_l)e(/] A1k e (19)
= f';) oo o
n-
n-1

Follow then, the following results related to functigr(t) in (19).
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kq —z "
Lemma 3.1: The functiorf,, (t) has a root if0, + o) if and only if [] (/]:]‘_1—2'} > 1.
i n~—%

d (n-2) )|(“‘2)

Idea of proof of lemma 3.1: The functionf,; (t) has a root i0, + ®) = -t ol >1.Now, expressions
dr(]n—Z) Ag}n—Z)

(13), (14), (16) and (17), it follows that:

n-2) ,(n-2 n-3 n-2 n3 Y

_ dg—l ) /‘(n—l) - dg—l ) An-1~An-3 /‘(—1)‘ _|a®, El("n—l A) _ K (An_l—z, jr'
-2 -2 -3 - -2 =
dgn ) /1$1n ) dr(1n ) An=Ans /1%“ )‘ dr(11) ’.1|_|13(/1n )| F A=z
1=

and then follows the proof of lemma 3.1.

Corollary 3.2: The functionf,_; (t) has a rooin (0, + o) if:

An-1+4n

(a)m=ml+m2+m3andziﬂ( ,+oojD|or;

(b) m = ny andz D(w /lnj i or;

kil A -7 )"
(c) m:nh,zﬂ(/ll,/\n)ﬂandﬂ(;lz'] >1or;
i= n =%

kil g =z )"
(d) m=my+m, z(-®,A,) and ﬂ(;lz' > 1.
i= n~Z

As consequences of lemma 3.1 e corollary 3.2, follow the following theorems:
Theorem 3.3: Let a SISO linear control stable continuous-time system mithal distinct poles ank, multiply real

zeros characterized by their continuous-time strictly proper transfer furG{®n(5)and step-response (6) — (8). Then:
(1) y(t) has no extremum if;

Ao+
a) m=msandzﬂ(/11,Hz”j,ﬂzl,...,m;
Areg +
b) m=m+msandz D(—oo.r*lz”),ﬂzl, ey M.

Ap=1 +1
(2) If m = myandz D(nlzn , /ln] Ji=1, ..., m,the number of the extremes th) will be less thammg if m =
mg is even or will be less thang - 1if m= mgis odd.

Proof: Appendix

Theorem 3.4: If m=m + m, + mz + myandz [/ (/]“‘1;/]” +oo] Oz OMy M, [J Mg, then the number of the

extremes theg/(t) will be less thamy, + m, + m; if mg is even or will be less than, + m, + m; - 1if mg is odd

Proof: Appendix

As consequences of theorems 3.3 and 3.4, follow the following observations:
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(a) The theorem 3.3 shows a class of zeros that does not contribute to extremes in response to step and which are not
covered in the classes given by theorem 2.4. In this sense, they are extensions of theorem 2.4. In fact, the items (1)

. /1 n_l +An .
- a) and b), ifm = my Z 1, them; — 1 zerosz such asz 7 | Ap-1, — 5 Li=1, .., m-1, do not
contribute to the extreme step response and is not linked to any pole. Notenihatnit = 1, apply the theorem

2.4;

(b) Bytheorem 2.3m + my<sn<m+m,+mz—p If my=m,=0, then 0/ < m; — p The upper bounds found
for n by theorems 3.3 and 3.4 are exactly the same, but these results improve the results provided by theorem 2.3,
since they specify the locations of the zeros ofMaelass so that they can contribute or not with the extremes of

/]n—1+/1n]

the response the step. In fact, by theorem 8.3;0 if m = mg andz [/ (/11, Oiorifm=mg+m

+ +
andz D(—oo, @]ﬂ =1, ..., m Moreover, ifz D(@ /ln]Di =1, .., m, then0 s < mif

mg is even or &7 < mg— 1if mgis odd, ie if the zeros of the clask are located in this subinterval, themmay
take its maximum value iy ormg — 1

Proof of the theorem 3.1: Suppose that = my and zeros of the cladd; cause extremes in to unit step-response. By
theorem 2.3y(t) has at mosin; — pnon-zero extreme 0, +w). Note that ifp =0, 7= mzand ifp=1thennp=m; —
1, coinciding with the upper bounds found in Theorem 3.3. From equation (13), the fun@jiavll have, at mostimg
— p roosts in(0, +) and signal change. By Theorem 2.1, shows thah fn_m?,(t) = K and fn_ng_l(O),
t-0*
fmng—z(o)a ..., 1(0) are all zero. Hencéy(t) will have, at mostn; — pnon-zero roots and at masg — p extremesn

(0, + o), with signal changeContinuing with the review processf er3_1(t) will have, at mostm; — p non-zero

extremes in(0, + o), with signal changeSince [im fn—nrt;(t) =K, fn—mg,(t) will have, at mostms — proots in(0,
t-0"

+ o), which implies the existence of a maximumg - p - 1extremes, sincK # 0. Continuing with the review process,

. . kil An-1 -7
fna(t) will have a roots irf0, + «). By lemma 3.1,[] =7
i n~Z

fi
j > 1, and this proves the theorem 3.1.
|:

Proof of the theorem 3.2: Suppose by absurd that zeros of the cldlgscause extremes in step-response. This
contradicts the hypothesis, the theorem 3.1.

The results obtained from previous results the following theorems more general, which guarantees that, besides the

zeros of the clasM,, the zeros of the cladds;, under certain conditions, does not contribute to the extreme step
response.

An-1*4n

Theorem 35: f m=m + my + mg + my andz D(/ll, >

)DI =1, ..., ;y then zeros of the clas®l; do not
cause extremes in step-response and glsg,m, + M.

Proof: Follows directly from theorem 3.4, corollary 3.2 and the factihat m, <7 (theorem 2.2Widder, 1934).

4. SOME APPLICATIONS

4.1. A powerful electro-hydraulic forklift can be used to lift palletized material weighing several tons atop platform 35
feet in a construction site (Dorf, 2001). The unitary feedback systems has the open-loop transfer function:
2
G(s)=K (5+1) (20)
$2+1

The closed-loop transfer function is:
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2
H(s)=K (s+1) : (21)
S+ KL +(2K+ )s+K
If K=7.5, G(s)has polesl; = -3.8508,1, = -3 andA; = -0.6492and zer@ = -1. By theorem 3.3, &7 <2.Figure 1
shows the graphics of the step-response in this system.
Resposta a Degrau
1.4 T T T T
I S R S S R S
Tempo ()
Fig. 1. Step-response ifK = 7.5.
4.2 We consider the linear control system given by equation (1), wke@ andm = 3for G (s)given:
(E s+ lj(g S+ 1J2 . (42)
G(s) = 3 5

oo g o o

G(s) has zerog, = -3, 2 =-2.5and polesl; = -8, 1, = -7, A3=-6, A, =-5, s = -4 e g =-0.5. Asm=m; = 3, by

theorems 3.1, 3.4 and corollary 3i() has not extremes foﬁ j57‘z|

i=116 ~ 4
response in this system. Shifting the zerand putting it inz, = - 0.8(figure 2 - (a): '+") and then moving both zerps
andz, putting them at; = z, = -1 and- 0.8 (figure 2 - (b):"."), by theorems 3.1 and 3;3f) has at most two extremes.
Note thatG (s)does not satisfy the theorem 2.4. It is observed that as you approach the zeros of the polg the
overshoot significantly increases the value of the funcidt) at the minimum becomes negative. This can be seen
making the shifting of; andz, putting them at; = -0.6 andz, = - 0.5235.Figure 2 - (b) shows this effect.

<1. Figure 2 shows the graphics of the step-

Resposta a Degrau Resposta a Degrau

¥i5)

Tempo (5) Tempo (3]
Fig. 2 - (@): (.) - (+): Step-response. Fig. 2 - (b) Undershoot and overshoot.

This shows that the occurrence of reverse reaction can also occur, though the zeros are located in thBlgategory
This fact is important since, in literature the reverse reaction is associated only with positive zeros.
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4.3 Consider a SISO linear control stable continuous-time system characterized by their continuous-time strictly proper
transfer functiorG(s):

o (Tsey) . (24)
(s+ 1)[% s+ 1][% s+ 1][1—10 s+ 1]

The control of fuel a car uses a diesel pump that is subject to variation of parameters (Dorf, 2001). Such a system with
unit negative feedback controller, has a process to control, considering (24)T whHzh3 Thus,z = -1.5andz /7M.

By theorem 2.4 the step-response has not extremes. Figure 3 — (a) shows the graphics of the step-response. Effecting a
shift in z, approaching the origin, the system changes its behavior dramatically. Moreover, changing the multiplicity of

z, together with the shift to the right, the effect is the increased number of extreme in the step- respens2/l0e k

=80, T = 10ek = 80.000and the multiplicity ofzis m = 3,the continuous-time strictly proper transfer functigis)

are:

G(s)=

(le s 1j3 and als)= (10s+12)° - (25)
(s+ 1)(% s+ 1](% s+ 1](1—10 s+ 1] (s+ 1)(%s+ 1)[% s+ 1][1—10 s+ 1]

If T=12/10ek =80,by theorem 3.3p =2 If T =10ek = 80.000 by theorem 3.4p =3 (Figure 3: (a) - (b) shows
the graphics of the step-response in this systems).

G(s)=

Resposta a Degrau Resposta a Degrau
? : : 1 : : ‘ : 300

3000 -
2500
2000
1500
-------- R e e e e Il

a00

i i i i i i i -500
- R e e

-1000

i i i i i i | gy i i i i i i |
U u]

Termpao () Tempo ()

(@) : T=12/10 ek =80. ()= 10 ek = 80.000.
Figure 3: Step-response offi(s) (25).

Figure 3: (b) shows the occurrence of overshoot and undershoot. This fact is important since, in literature the
reverse reaction is associated only with positive zeros.

5. CONCLUSION

In this paper presented a study of the number of extremes that can occur in step-response in linear control systems
stable and continuous time, with real distinct poles and real multiple zeros. It wos proved that there is a specific region
on the line for the location of zeros between the pole nearest and farthest from the origin, so they do not contribute to
the extreme in the step-response, ie, beyond the zeros of th#glaiss zeros of the Cladé; under certain conditions,
does not contribute to extremes.

The results presented are necessary conditions and sufficient conditions that complement the results of theorems 2.3
and 2.4 on the relative positions of poles and zeros to zeros or not contribute to the extreme in the step-response,
consisting of extensions of these theorems. in this sense, the theorems 3.3 and 3.4 presented a class of zeros which doe
not contribute to the extreme step response and is not covered in the classes given by theorem 2.4. furthermore,
although the upper bounds found fpby theorems 3.3 and 3.4 are exactly the same, but these results improve the
results provided by theorem 2.3, since they specify the locations of the zerosmgtthass so that they can contribute
or not with the extremes of the response the step.
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The authors also presented a class of linear control stable continuous time system and minimum phase that exhibits
overshoot and undershoot in the step response. It was shown that the reverse reaction can also occur, though the zeros
are located in the classsMThis fact is important since, in literature the reverse reaction is associated only with positive
zeros.

In the authors opinion, this note provides new insight about the correlation between poles and zeros of a scalar
continuous-time transfer function and the nature of the extremes in its step-response. These results do not constitute the
final understanding of this connection, but they certainly complement, clarify and expand the various points, which
have been subject of recent discussion in the literature. Furthermore the results presented can have many control
engineering applications, especially in controller synthesis. In fact, they can be used to design a controller ensuring no
overshoot and undershoot for the closed-loop step-response for a linear minimum-phase system (Rachid, 1995).
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APPENDI X
. ky A 1 +/]n
Idea of proof of theorem 3.3: Supposenis evenm =my = > r; andz J — 5 An |.4. By corollary 3.2
i=1
shows that the possible ways the graph.gt) are given in Figure 4, below
A
‘} fn—l(t) . . . .
fra(t) f..1(t) has a root with sign changenf; is even and a ro
£.40) fra(P) no sign change if; is odd. Hence, from eq. (18),,(t) to
Nl have a critical point at, in (0,+), which is an asolute
—> minimum point formg even or an inflection point ifrs is
\ to t t odd. Note thaf,,(0) > 0 or f,»(0) < 0 and ifmg is even
fort [J(ty, +00), frot) - + oo

(a)mg even (b} odd
Figure 4: The graph &f.4(t).

Thusf,.(t) has at most two roots with signal changdlnt«), which impliesf, (t) has at most two critical points with
signal change, and at most three roots with sign changes.isf odd,f, ,(t) is decreasing i1f0,+ ) andf,,(t) — -co.
Therefore f,»(t) has at most one root with sign changd(n+e), thenf,s(t) has at most one critical point with sign
change and, at most, 2 roots with sign changes. Continuing with this analysis, to proafghsieivenf, ,(t) has a root

with sign change iff,o(t) has at most two roots with signal change fmnt;(t) has at mosin; roots with signal

change. From this function, like all others vanish at the origin, they will at mostots with sign changes. Hendgt)
has at most rootsy roots in(0,+ ) with sign changesTherefore, by (10)y(t) will be at mostm; extreme in(0,+ ) if

+ .
z 0 [—A Hz An , /ln] (3. Similarly, if mg is odd,fy(t) will be, at mosim, -1 roots in(0,+29) with sign change, which
. . . /] n_1+/]n .
proves item (2) of theorem 3.3. For proof of item (1), simply note theafif A1, Eca— JLi=1, ..., morifm=

A1 +4
mg + myandz 7 (—oo, %J by lemma 3.1 the functidfiy4(t) has no root irf0, +) and then, consequently, the

equations (20), (18), (11) and (10) we have ttiBtdoes not possess extremegdn+c). The proof fom odd is done
similarly.

. Ap1tA
I dea of proof of the theorem 3.4: Supposen is evenm = m;, + m, + mg + my andz 7 (% , +oo] [z OMy [T

M, /7 Ms. By corollary 3.2f,4(t) has one roots i0, +=). From equations (10) - (19) is proved similarly to the proof of
theorem 3.3 thdf(t) will have at mosty + m, + mz roots in(0, +) with sign change, ifng is even or have at mosy
+ m, + mg -1 roots in(0, +o) with sign changéf mg is odd.From equation (10)y(t) will have at mostn; + m, + mg

(A +A ) ) L .
extrema m(% , +ooj is mg is even or have at most, + m, + mg -1 extremes isrg is odd which proves the

theorem 3.4.





