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Abstract. Parallel structures are multibody systems composed of links interconnected by joints with at least one loop 
on its kinematic chain. For the joint work properly an adequate clearance must be used. But this clearance can affect 
the accuracy of the system. Then, in this paper we have presented a proposed methodology to consider the effects of 
joint clearance in the displacement behavior of parallel structures. The dynamics of the structure enable to define the 
displacements of links due to the joint clearance, which is defined by the direction of reaction forces at joints. Results 
and numerical simulations have been presented to show the feasibility of the proposed approach, applied to a 
simmetric four-bar linkage as a case of study. 
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1. INTRODUCTION  
 
 Multibody systems consist on a kinematic chain composed of links that can be rigid or flexible, interconnected by 
joints. An example of multibody system that has been widely studied in recent years is the parallel structure. In spite of 
its several advantages, this structure presents challenges to researchers on what concerns the solution of problems such 
as: singularities, stiffness and accuracy (Gosselin and Angeles, 1990; Macho et al., 2008; Gonçalves and Carvalho, 
2008a; Gonçalves and Carvalho, 2008b).  
 In the accuracy study of parallel robotic structures the behavior of possible displacements should be considered: the 
displacement due to the movement of the structure, obtained from the kinematic model; the compliance displacement 
due to the compliance of links and joints and the displacements due to the joints clearance. In particular the compliance 
displacements of links and joints and the joint clearance can affect the accuracy of the system directly.  
 The influence of compliance displacements of links and joints can be obtained from the stiffness study of parallel 
robotic structures. In this paper the influence of compliance displacements is found using the Matrix Structural Analysis 
(MSA) like proposed by Gonçalves and Carvalho (2009) and Gonçalves (2009).  
 In general, for modeling multibody systems, joints are considered as ideal, i. e., frictionless and without clearance, 
but in practice the joints are made with clearances to allow movement between the elements. However no matter how 
small the clearance is, it can lead to problems of vibration, fatigue, lack of accuracy and errors in the position and 
orientation of the mobile platform (Meng, 2007; Fernandes, 2005). Thus, when the articulated mechanism requires high 
accuracy, the clearance can not be ignored (Meng, 2007), and a more realistic displacement model of the structure is 
given by considering both the flexibility of joints and links, and the joints clearance. 
 In this paper an analytical formulation for obtaining the structure displacements due to the joint clearance is 
proposed. The dynamic analysis has been useful to describe the direction of the displacement of joint components, 
which is defined by the direction of reaction forces at the joint. Thus, the joint clearance defines a new configuration of 
the structure. The compliance displacement of the structure, obtained by the matrix structural analysis (MSA) that 
considers the compliance of links and joints, is superposed to displacements obtained from joint clearances to obtain the 
total displacements of the structure. Results of analytical and numerical simulations are reported for a specific 
symmetric four-bar linkage as an illustrative example and to show the feasibility of the proposed approach.  
 
2. A GENERAL APPROACH FOR ACCURACY ANALYSIS OF PARALLEL MANIPULATOR 
 
 The analysis of the accuracy of a parallel structure can be done by the analysis of the compliance displacements and 
displacements due to the joint clearance, whose will be discussed in this section. 
 
2.1. Analysis of the compliance displacement. 
 

Stiffness can be defined as the capacity of a mechanical system to sustain loads without excessive changes of its 
geometry (Rivin, 1999). These changes on geometry, due to the applied forces, are known as deformations or compliant 
displacements. 

Compliant displacements in a parallel robotic system produces negative effects on static and fatigue strength, wear 
resistance, efficiency (friction losses), accuracy, and dynamic stability (vibration). The growing importance of high 
accuracy and dynamic performance for parallel robotic systems has increased the use of high strength materials and 
lightweight designs improving significant reduction of cross-sections and weight. Nevertheless, these solutions also 

ABCM Symposium Series in Mechatronics - Vol. 4 - pp.590-598
Copyright © 2010 by ABCM

mailto:jcmendes@mecanica.ufu.br


Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 
 
increase structural deformations and may result in intense resonance and self-excited vibrations at high speed (Rivin, 
1999). Therefore, the study of the stiffness becomes of primary importance to the design of robotic systems in order to 
properly choose materials, component geometry, shape and size, and interaction of each component with others. Some 
examples of design procedures based on stiffness analysis can be found in (Liu et al., 2000; Simaan and Shoham, 2002; 
Carbone et al., 2003).  

The overall stiffness of a manipulator depends on several factors including the size and material used for links, the 
mechanical transmission mechanisms, actuators and the controller (Tsai, 1999). In general, to realize a high stiffness 
mechanism, many parts should be large and heavy. However, to achieve high speed motion, these should be small and 
light. Moreover, one should point out that the stiffness is greatly affected by both the position and the values of the 
mechanical parameters of the structure parts (Yoon et al., 2004). 

There are three main methods have been used to derive the stiffness model of parallel manipulators (Gonçalves, 
2009b; Deblaise et al., 2006). These methods are based on the calculation of the Jacobian matrix (Zhang et al., 2004; 
Majou et al, 2004; Company et al., 2005); the Finite Element Analysis (FEA) (Bouzgarrou et al., 2005; Corradini et al., 
2004) and the Matrix Structural Analysis (MSA) (Deblaise et al.. 2006; Przemieniecki, 1985; Dong et al., 2005, 
Gonçalves and Carvalho, 2008).  

The methods based on calculation of the Jacobian matrix are usual and they supply one initial estimation of the 
stiffness matrix. The uses of Finite Element Analysis models are reliable, but these models have to be remeshed over 
again, involving very tedious and time-consuming routines. However the FEA models are well adapted to validate 
analytical models and/or some experimental results. Methods based on matrix structural analysis are simple and easy for 
computational implementation.  

The external forces and torques {W} and the compliant displacement {U} are related by the stiffness matrix K as 
 
{W} = K {U}                (1) 
 
In this paper, the stiffness matrix is obtained from the method Matrix Structural Analysis (MSA), also known as the 

displacement method or direct stiffness method (DSM). The methods of structural analysis is based on the idea of 
breaking up a complicated system into component parts, discrete structural elements, with simple elastic and dynamic 
properties that can be readily expressed in a matrix form. The discrete structure is composed by elements which are 
joined by connecting nodes. When the structure is loaded each node suffers translations and/or rotations, which depend 
on the configuration of the structure and the boundary conditions. For example, in a fixed linkage no displacement 
occurs. The nodal displacement can be found from a complete analysis of the structure. The matrices representing the 
beam and the joint are considered as building blocks which, when fitted together in accordance with a set of rules 
derived from the theory of elasticity, provide the static and dynamic properties of the whole structure (Przemieniecki, 
1985).  

 
2.1.1. Stiffness of Beam and Joint 

 
The stiffness matrix of the three-dimensional straight bar with uniform cross-sectional area is given by         

(Shabana, 1989) 
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 On Equation (3) Ej and Gj are, respectively, the modulus of elasticity and the shear modulus of element j; Iyj, Iyz are 
the moment of areas about the Y and Z axes, respectively. J is the Saint-Venant torsion constant and Aj is the          
cross-sectional area. 
 As proposed by Gonçalves (2009) the stiffness of a joint can be given by 
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 Where kc = diag(ktx, kty, ktz, krx, kry, krz); ktx, kty, ktz are the translation stiffness and  krx, kry, krz the rotational stiffness 
along the x, y and z axes.  
 For application of MSA is necessary to write the stiffness matrices of all elements in the same reference frame. This 
transformation, element by element, must be held before the assembly of the stiffness matrix of the structure. This 
transformation matrix, Tj, can be obtained from linear algebra. Thus, the stiffness matrix of the elements in a common 
reference frame (elementary stiffness matrix), for segments, , and for joints, , can be written as e

jk e
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After obtaining the stiffness matrix of each beam and joint in a common reference frame, the stiffness matrix of 

whole structure can be obtained using the MSA. Based on how the structure elements are connected, from their nodes, it 
is possible to define a connectivity matrix. As each segment and joint stiffness are known, the global stiffness matrix is 
obtained by a superposition procedure. This global stiffness matrix is singular because the system is free. After 
application of the boundary conditions, for example, where the displacements are known, the new matrix is invertible 
and the compliant displacements can be done by: 

 
{U} = K–1 {W}            

                     (7) 
The procedure is described in detail in Gonçalves (2009). 

 Although the FEA and MSA have the same basic equations, Eq. (1) to (7), one can point out some advantages of the 
MSA method: a) A robotic structure is composed by segments and joints. Then, each segment and each joint can be 
modeled by only two nodes for the MSA analysis. Otherwise on the FEA each beam is divided in several nodes and the 
joints stiffness, in general, are not considered. b) Using a commercial FEA software (the usual procedure) one does not 
have the control of the solver. The MSA method one can follow step-by-step the stiffness matrix assembling. c) In the 
FEA method at each variation of the structure configuration a remeshed must be made, increasing the computational 
cost. In the MSA method is only necessary improve the inverse kinematic model to obtain the stiffness mapping for all 
structure configuration. 
 
2.2. Approach to analyze the effects of the joint clearance. 
  

In standard multibody models it is assumed that the connecting points of two bodies, linked by an ideal or perfect 
revolute joint, are coincident. When a joint clearance is considered these two points can not be coincident. In a revolute 
joint the difference in radius between the bearing, RB, and the journal, RJ, defines the radial clearance ε which enable a 
journal motion within the bearing as shown in Fig. 1. Thus, when the clearance is present in a revolute joint, two 
kinematic constraints are removed and two degrees of freedom are introduced instead.  

 
Figure 1. Revolute joint with clearance. 
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For the clearance modeling there are, in general, three different approaches (Fernandes, 2005), namely: the massless 
link approach (Seneviratne and Earles, 1992; Fernandes, 2005), in which the presence of clearance at a joint is modeled 
by adding an imaginary massless link with a fixed length equal to the clearance, as it is shown in Figure 2a. This results 
in the mechanism having an additional degree of freedom. Hence, the resulting equations of motion are found to be 
highly non-linear and complex to solve. Furthermore, this model assumes that there is contact between the journal and 
bearing all the time, being unable to represent free flight trajectories.  

In the second approach, the spring-damper approach (Seneviratne and Earles, 1992; Fernandes, 2005), the clearance 
is modeled by introducing a spring-damper element simulating the surface elasticity, as pictured in Figure 2b. This 
model does show some deficiencies like being difficult to quantify the parameters of the spring and damper elements.  

The third approach, the momentum exchange approach (Ravn, 1998; Fernandes, 2005; Chang, 2007), the mechanical 
elements that constitute a clearance joint are considered as impacting bodies. The contact-impact forces control the 
dynamics of the clearance joint. 

 In the massless link and spring-damper models the clearance is replaced by equivalent components, which are 
intended to represent the behavior of the clearance as closely as possible. The momentum exchange approach is more 
realistic since the impact force model allows, with high level of approximation, to simulate the elasticity of the 
contacting surfaces as well as the energy dissipation during the impact (Fernandes, 2005). 

 

 
                                               (a)                                                                          (b) 

 
Figure 2. Examples of models for revolute joints with clearance: (a) massless link model; (b) spring-damper model 

(Fernandes, 2005). 
 
 In this work is proposed a methodology for including the influence of the clearance, ε, in revolute joints applied to 
multibody systems. The joint clearance causes the displacement of the parts that form the joint, Fig. 3a, with infinite 
places of contact between the two parts. Thus, it is necessary to determine the point of contact at the joint that, in this 
work, is determined from the dynamic model of the structure that allows to obtain the reactions forces, Fr, in the joints. 
From the Newton's second law the displacement occurs in the same direction of the application of the force, Fig. 3b, 
characterized by the angle γ obtained from the dynamic model of the mechanism. Knowing the contact position and the 
value of the clearance is possible to determine the displacements in the direction of axis x and y as 
 

 cos( )
s ( )

x

y en
ε ε γ
ε ε γ

=
=

                             (8)                        

 
(a) (b) 
 

Figure 3. (a) Model of clearance; (b) Reaction force. 
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 From the reallocated position of elements, Fig. 3b, by considering the clearance, the position and orientation of the 
other elements are updated in order to determine the influence of the clearance across the structure.  
 
3. DYNAMIC MODEL OF FOUR-BAR LINKAGE 
 
 In order to explain the proposed methodology, in this paper is presented the analysis of the influence of joint 
clearances and the compliant displacements applied to a four bar linkage. 
 For the dynamic analysis the mechanism is considered as composed of rigid links connected by frictionless joints 
and without clearance. The velocities and accelerations of links can be obtained from the kinematics of rigid body. The 
dynamic analysis is performed by using the kinetostatic analysis with the matrix method which considers the free-body 
diagram of each link of the mechanism and the inertia forces and inertia torque are assumed acting at the center of mass 
(Erdman and Sandor, 1991). 
 The inertia forces, FOj, and the inertia torque, TOj, can be given as 
 
 ( ) ( )ji

Oj j g jF m A e β π+=    (j = 1 a n)                           (9) 

 Oj j jT I α=−                                         (10) 
 
 Where FOj represents the inertia force acting on the link j, mj is the mass of the link; βj defines the direction of the 
center mass acceleration Agj and n is the number of links. The inertia force has opposite direction of the center mass 
acceleration, (βj +π). Ij is the mass moment of inertia about the center of gravity of the link j and αj is the angular 
acceleration of link j.  The inertia torque act in opposite direction to the angular acceleration. 
 Figure 4 shows a four-bar linkage with inertial forces, accelerations and velocities at links, and Fig. 5 is sketched the 
free-body diagrams where the inertia forces and inertia torques are related to the link center of mass. Where TL 
represents a torque due to the external loading on the mechanism. 

 
Figure 4.  Inertia forces, accelerations and velocities of the four-bar linkage (Erdman and Sandor, 1991).  

 

        
 

                  (a)                   (b)                                                                  (c) 
 

Figure 5. (a), (b) and (c) show free-body diagrams of  links used for the kinetostatic equilibrium                           
(Erdman and Sandor, 1991). 
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 From free-body diagram, as shown in Fig. 5, the kinetostatic equations Σ Fx = 0, Σ Fy = 0 and  Σ TOj = 0, can be 
written. The variables to be determined are the joint reactions F12x, F12y, F23x, F23y, F34x, F34y, F14x and F14y and drive 
torque Ts. The Newton's third law gives jkx kjxF F= − . Reorganizing adequately the kinetostatic equilibrium equations can 
be written as 
 
   2 12O x x xF F F= − + 23

23

2

                   
  2 12O y y yF F F= − +
                    
 

2 12 2 2 12 2 2 23 2 2 2 23 2 2cos ( ) ( ) cosO x g y g s x g y gT F r sen F r T F r r sen F r rθ θ θ= − + − − − + − θ

34

3

       
 
  xxyxO FFFF 34233 +−=+
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14
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L

  
         
   4 34O x x xF F F= − −
                  
  4 34O y y yF F F= − −
                    
 4 34 4 4 4 34 4 4 4 14 4 4 14 4 4( ) ( )cos cosO x g y g x g y gT F r r sen F r r F r sen F r Tθ θ θ= − − − − + −θ       
 
 The system of equations (11) can be written in a matrix form for as 
 
 [ ] [ ][ ]D BF L F=                        (12) 
 
where [FD] is a column vector containing the known values of the inertia forces and torques, [L] is a square matrix 
containing the length of the links and position angles and [FB] is a column vector containing the values of unknown 
reaction forces in the joints and the required drive torque. Thus, Equation (12) can be solved in a closed form to obtain 
the reaction forces. 
  
4. NUMERICAL SIMULATIONS 
 
 Several numerical simulations have been carried out to validate the proposed formulation. 
 In this section we have been presented an illustrative example of a numerical simulation applied to a symmetric 
four-bar linkage, as shown in Fig. 6a, assuming that an upward external force, Fy = 50N, is applied on center of mass of 
coupler link  and no external torque are applied to the mechanism. The reported simulation refers to a linkage which 
has the following data: l = 0.2 m; m2 = m4 = 0157 kg; m3 = 0314 kg; all links has a square cross section of                
0,01 m x 0,01 m, and the input crank velocity is ω2 = 15 rpm. 
 

     
 

                               (a)                                                                                     (b)   
 

Figure 6. (a) Symmetric four-bar linkage; (b) Angular motion ψ of link . 
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 The inertia forces and inertia torques are obtained from Eqs. (9) and (10), respectively, where the mass moments of 
inertia related to the center of mass can be computed by 
  

 
( )

12

22
jjj

j
ehm

I
+

=                        (13) 

 
where hj and ej are the dimensions of the cross section of the link.  
 Thus, the joint reaction and its direction can be obtained from Eq. (14)  
 
 FO2x = m2 Ag2 cos(β2 + π) 
 
 FO2y = m2 Ag2 sen(β2 + π) 
 
 TO2  = -I2 α2
 
 FO3x = m3 Ag3 cos(β3 + π) 
 
 FO3y = m3 Ag3 sen(β3 + π)              (14) 
                                                  
 TO3  = -I3 α3
 
 FO4x = m4 Ag4 cos(β4 + π) 
 
 FO4y = m4 Ag4 sen(β4 + π) 
 
 TO4  = -I4 α4
   
 The results of the dynamic model for the symmetric four-bar linkage have been confirmed through the development 
of a three-dimensional computer model using the software VisualNastran 4D®. 
 Since the direction of the reaction force at joint defines the relative displacement of joint parts when a clearance 
exists, the relations (8) can be used to obtain the new configuration of the structure. 
 In general the joint clearance is small related to the joint dimensions. Then, in order to show the effect of a joint 
clearance the symmetric four-bar linkage it has been considered a clearance in joint B and joints A, D and E without 
clearance. Consequently the coupler link  will make an angular motion ψ which the new configuration and can be 
obtained from the kinematic model, Fig. 6b. 
  It should be noted that the above procedure can be applied to more than one clearance, because the direction of the 
reaction forces at joints are all knows.  
 Therefore, the new configuration of the mechanism can be computed for any input crank angle θ2 by considering the 
joint clearance. As example, at input crank angle θ2 = 30º and a clearance ε =  0.01 m at joint B (exaggerated clearance 
in order to show the clearance effect) the new configuration of coupler link  is shown in Fig. 7b. In this case the 
extremity of the coupler link , at point B, presents a displacement εx =0.0087m  and εy = 0.005m. 
 From the matrix structural analysis the compliant displacements can be computed. For the presented example, we 
have been considered the following characteristics of links and joints, Eqs. (3) and (4): E = 2 x 1011 N/m2;                     
G = 0.8 x 1011 N/m2; ktx = kty = ktz = 2 x 1011 N/m;   krx =  kry = 2 x 1011 N/rad and krz = 0 N/rad, and an upward force  
Fy = 50N applied on center of mass of the coupler link  , the compliant displacement is shown in Fig. 7a. 
 Thus, the new configuration of the four-bar linkage by considering both the joint clearance effects and the compliant 
displacements has been obtained by superposing the results as shown in Fig. 7c. 
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(a) 
 

 
 

(b) 
 

 
 

(c) 
 

Figure 7.  Configurations of the four-bar linkage. (a) structure behavior due to compliant displacement; (b) structure 
behavior due to the effects of joint clearance; (c) final configuration superposing both displacements. 

 
5. CONCLUSION 
 
 In this paper the compliant displacement of parallel structure due to the compliance of joints and links, and 
displacements originated from joint clearance had been analyzed in order to study the structure accuracy.  
 The methodology to obtain the compliant displacements by using the matrix structural analysis (MSA) had been 
described. In the following a proposed methodology to compute the effects of joint clearance in the structure 
configuration had been detailed. The total displacements had been obtained by superposing both kinds of cited 
displacements, defining a new structure configuration. 
 Finally, the presented numerical simulations show the feasibility of the proposed approach. Experimental activities 
are still undergoing to validate the proposed formulation. 
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