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Abstract. Vapor flow rate (VFR) is one of the main variabléfeeting the nebulization quality of oil flamespgatroleum refinery
furnaces. Too low values of VFR are directly contethto a significant increase of the solid partatgl material rate; as a
consequence, the overall efficiency of the prodesseases. As it has been observed, changes ingW€Rise to modifications of
the flame visual patterns. Using characteristictoes based on geometric properties of the graglléistogram of instantaneous
flame images related to combustion processes witbwk a priori VFR values, feature vectors were daliad for all the images
of a properly organized training set; then, a cléisation algorithm created a fuzzy measurementtoreavhose components
represented membership degrees to the ‘high nediidh quality’ fuzzy set. Aiming at developingealftime diagnostic system to
describe the nebulization quality of the processwMER is unknown, the fuzzy classification veaa@ssumed to be a state-vector
in a random-walk model, and a Kalman filter attesnfut predict this state after temporal input dagavie. The successful validation
of the output data, based on small training dats sedicates that the proposed approach couldyg@iad to synthesize a real-time
algorithm dedicated to the evaluation of the nedation quality of combustion processes developgekiroleum refinery furnaces
that use oil flames as the heating source.
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1. INTRODUCTION

In order to project a control system that couldriowe the energetic efficiency of petroleum refinfuynaces and
reduce the emission rate of pollutabtsespecially CO, NQand particulate material it is necessary to set up a large
network of heterogeneous sensors (thermocouptas, fieters, air-fuel ratio gauges, opacity metersssure sensors
etc) dedicated to measure the main variables ofptbeess and to give feedback to the controllerthin last two
decades, however, vid&CD cameras and frame grabbers have been incorpdmteid measurement apparatus, since
image sequences of flames captured by a near rnedrasensitiveCCD and properly analyzed by suitable computer
vision methods may provide a large quantity of ukefformation to the control. Correlations betweabe brightness,
spectral and geometric properties of flame imageksthe corresponding variables of the combustiatgss have been
reported by several authors, who developed diffemeathods to build characteristic vectors and heentto estimate a
subset of the state variables that characterizenabastion point of operation; consequently, it pected that a
computer vision based system may eventually reptheemajority of the sensors used in traditionanitoring
instrumentation of combustion processes.

Using average images of flames propagating insidssgfurnaces operated at knoamriori physical conditions,
Santos-Victoret al. (1993) constructed a flame classification traingeg whose feature vectors were based on simple
luminous and geometric properties of those imaghe. classification results generated by a Bayedissifier and an
MLP neural network with back propagation learning destated that it was possible to identify the ctodi
operation point of the furnace from simple estimasi of the properties of their average images.

Tuntrakoon and Kuntanapreeda (1993), after estabtiscorrelations between the colors of flames atiag from
a premixed gas burner and the physical charadtsrist the process, generated a pair of fuzzy rodeed on triangular
membership functions whose inputs measured the dildeorange content &GB instantaneous images. Using those
rules as a nonlinear controller, the authors haeeeeded in implementing a real-time system torobttie air and gas
flow rates used in the combustion process.

Considering that the light intensity of the flanseproportional to combustion rate and, consequetttlijeat release,
Bertuccoet al. (2000) developed an original computer vision bawsethod to describe the hot spots dynamics, which
may cause the rise of CO and N@missions. Using a high speed camera to grab isnag¢he frequency of 250
frames/s, these authors apply a sequence of thdésfi@nd logicaAND operators to a collection of sequential images,
in order to identify the regions associated to heghperatures. A characteristic vector, based omeéic properties of
these regions, is calculated, and the time sedsscéated to each of its components, when reprdémtphase space,
properly describes the vortex dynamics of the pots

Baldini et al. (2000) investigated the correlation between patarseof image flames and the phenomenon of
combustion instability that emerges when premixeahloustors are used in industrial processes. Afiplyang to each
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instantaneous image a thorough segmentation processparate the interest area (hottest zone dighee) from the
background, these authors constructed a charaemstor based on some geometric propertiesefdblated region.
Considering the trend of those parameters as tresumements describing the temporal varying comtmigirocess,
their respective power spectra are generated ampefdy analyzed. As the relative importance of tharacteristic
vector parameters becomes explicit through theepias or absence of peaks in the spectra, a simgtieochto select
the most significant parameters to control the pssaan be immediately elicited.

Yan et al. (2002) found out correlations between flame imagesasured parameters (area and centroid of the
luminous region, ignition point position and spreanjle) and physical data (particle size of thevgrized coals tested
and mass flow rate of the primary air) and usednttie build a characteristic vector of the combustfwocess.
Working in the same project, Let al. (2004) added to the previous characteristic veatiame flickering measure,
based on the power spectral density of the temwigihtness of individual pixels. Later on, kual. (2005) improved
the characteristic vector with measures of the daemperature distribution, using estimations baze®D flame
images reconstructed from 2D images captured bgettr26 separated cameras. Working on data and images
proceeding from both laboratorial and industriainaces, these authors demonstrated that it iskessi monitor a
real-time combustion process on the basis of amamis analysis of flame images.

Sousaet al. (2003), in a previous project developed at IPTt{tato de Pesquisas Tecnoldgicas do Estado de Séo
Paulo - Brazil), proposed various computer visitggoathms to extract features of instantaneous average flame
images, in order to generate crisp decision riias ¢ould be used to diagnose several kinds of ratmdiies of the
combustion process, encompassing flame extincaik, of symmetry, instability, low nebulization ditaand high or
low excess air. Despite the good agreement bettveedecisions issued by the application of thosesrto image test
sets and the knowa priori physical conditions concerning the capture ofhsirnages, three drawbacks of this
diagnostic system must be pointed out: firstlyreiuired the calculation of average images andafi@ication of
heterogeneous computer vision methods to gendnat@drameters used by the majority of the diagnalgcision
rules, what imposed a limitation to the system cotational performance; secondly, only two stdfeseither strict
normality or abnormality of the proceBs could be diagnosed, although the decisions thatbeamade by a human
expert on the combustion process are not so stimettly, history of measurements were completgigared, for the
diagnostics were proposed on the basis of preseasuned values only.

Aiming at eliminating the above mentioned drawbactke referred combustion diagnostic system has bee
completely reformulated in this way: 1) computatibperformance has increased, since feature vebtmsd only on
few properties of instantaneous images are useldthenalgorithms applied to calculate such propsiiecome simpler
than those in Sousat al. (2003); 2) fuzzy linguistic variables are usedtl® classification process, making the
diagnostics more realistic; 3) decision-making lmes more robust, since predictions are obtaineditiir a stochastic
minimum variance least squares estimator.

Although the range of this diagnostic system ermasses five classes of abnormalities, as descebede, only
the modeling of nebulization quality diagnosis viié approached in this paper. It must be emphasimegever, that
this parameter is of utmost importance in the caostibo process, since low nebulization quality givese to an
increase of the particulate material emission eaté to a decrease of the furnace thermal efficiengg it will be
described in the next topics, nebulization qual#pends mainly on the vapor flow rate, defined as:

VFR=& 1)
(o]
whereQ, refers to the nebulization vapor flow a@d to the fuel oil flow that compose the combustioixtare flow. It
can be verified experimentally that low valuesMiR are associated to combustion processes with Idwlization
quality. Hence, as it will be explained below, tipiaper focuses on the development of an image-bdisgmhostic
method to classify combustion processes accordinig nebulization quality and to establish, byeieihce, an indirect
correlation with the correspondirdiR value.

2. EXPERIMENTAL APARATUS

Experiments have been carried out at the IPT's Gmtnin Laboratory, where a comprehensive infrastinecto
measure and actuate on the variables of combystamesses is fully available.

As illustrated in Fig. 1-a, the furnace used inélperiments is a vertical one, with the burnetlestat the bottom
and the gases exhaustion at the top. Having a height of 4.0m, it is subdivided in 12 independesiter cooled
blocks and can process no. 1 fuet @il a maximum flow rate of 80 kg/h. The burner tvas (primary and secondary)
air entrances for natural air suction with mani@hfregulation valves (Fig. 1-b).

! Fuel oil is classified into classes 1 to 6, aciagdo its boiling point, composition and applicati Number 1 fuel oils
are distillated oils, i.e., they have low viscostyd are free of sediments and inorganic ash.
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Figure 1. (a) Vertical furnace used in the experits; (b) Burner schematics.

Flame images are generated by a standard monocticoR#:170CCD camera (Marshall Model 1070) using an
objective lens (6mm, f1.2) supplied with a narroant-pass#10nm) interferometric filter at the 900 nm referenc
wave length, near to the sensitivity luminance p&&0 nm) of theCCD sensor and in the range of radiation of the
soot, that corresponds to the major part of theatimh emitted by a typical fuel oil flame. All the optical components
lie inside an air-water cooled housing with a deugllass window, which is inserted into the furndweugh a proper
orifice (Fig. 2). TheCCD camera output composed video signals are sampl28Hz by a frame grabber (Sensoray
Model 611) as a series of interlaced 640x480 pixelages that are finally transferred to a Pentiurmefnputer
memory, using specific frame grabber driver funcs.
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Figure 2. (a) Installation of the air-water cooleslising; (b) Housing details.

Flame images are processed by the image-basedogiggaystem application, whose main tasks wilbbscribed
in the next topics.

3. IMAGE FLAME ANALYSIS

Although combustion process characterization cdaddmade on the basis of a large number of imageirtea
properties, encompassing geometry, luminance aectrsph aspects of the flame image, it was estaddighat, to attend
real-time performance requirements, only the sistpd@d fastest algorithms should be applied. Ngithat the shape
of image gray-level histograms changed for flameth wlifferent nebulization qualities (Figs. 3-4gnt geometric
properties of these histograms have been selexteanipose the characteristic vec{olr} of a particular image flame

li: viy = x-coordinate of the centroid;, = y-coordinate of the centroidi; = x-projection of the radius of gyratiosy =
y-projection of the radius of gyration; = coordinatex corresponding to 33% of the accumulated areaeohtstogram;
Vi¢ = coordinatex corresponding to 66% of the accumulated area ohigtegramy;; = coordinatex of the highest peak
of the histogram;vig = coordinatey of the highest peak of the histograwg;= coordinatex of the second highest peak
of the histogramy;;o= coordinatey of the second highest peak of the histogram.

The characteristic vector{s/i} referred before have been calculated to evergaimsheous imagde of a training set

with 214 deinterlaced flame images correspondingjne differentvFR values (0.17, 0.21, 0.23, 0.26, 0.29, 0.36, 0.43,
0.50, 0.57) associated to increasing nebulizatialities; at the same time, their respective fuzagsifications to the
fuzzy setFlames with high nebulization qualitjyfave been made by an expert in combustion proe¢Bag 5).
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Figure 3. (a) Flame with high nebulization qualiffa) Flame with low nebulization quality.

GRAY LEVEL HISTOGRAM: FLAME WITH HIGH NEBULIZATION QUALITY (VFR=0.57) GRAY LEVEL HISTOGRAM: FLAME WITH LOW NEBULIZATION Q UALITY (VFR=0.17)
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Figure 4. Gray level histograms of image flamesHa@h nebulization quality; (b) low nebulizationajity.
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Figure 5. Fuzzy set associated to the ‘High nehtibn quality’ concept.

After calculating the average histograms and tlspeetive average characteristic vectp@(i =1 ,9) for each of
these nine image subsets, it has been establiskgdightforward method to determine the memberdpigree vector
{xi } of a training set imagk to the fuzzy set = ‘Flames with high nebulization quality’

Let Vi be an element of the matrix of 214 characteriselsir:):c\yrsflvj } wherej D{ZL. .. ,9} . Then

for every vectorv, ,i =1,...,214,
for every componern, ; , j=1,..10
calculated ; = min{|viyj —\7kyj|},k =1..9
determineK ., | d, = min{|vi’j —\7kyj|},k =1...9

determinex, ; = (U, Ky )
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Applying the above fuzzy measurement algorithm,tme{x} has been calculated for all the 214 images of the

training set. Table 1 shows a collection of suclasneements for five images of low nebulization dyabrabbed at
VFR=0.21.

Table 1: Membership degree vec{oq} to fuzzy setJ = ‘Flames with high nebulization quality’,
calculatedor images of low nebulization quality FR=0.21).

Images\ {x} X1 X2 X3 X4 X5 Xe X7 Xg Xg X10
1 0,00 0,00 0,00 0,40 0,00 0,00 1,00 0,00 0,10 0/00
2 0,00 0,00 0,00 0,00 0,00 0,00 1,00 0,00 0,00 0/00
3 0,30 0,30 0,40 1,00 0,3¢ 0,30 1,00 0,40 0,30 0/00
4 0,00 0,00 0,00 0,00 0,00 0,30 1,00 0,00 0,00 0/00
5 0,00 0,00 0,00 0,40 0,00 0,00 1,00 0,00 0,00 0/00

4. ESTIMATION PROBLEM

The literature presents some attempts to modeldyimamics of flame propagation in a woodland fireotigh
discretization of reaction-diffusion partial diféertial equations in one or two dimensions by fimiifferences and to
estimate the state, the temperature distributiahtae remaining amount of fuel, using the Ensenidéman Filter
(Mandelet al, 2008; Balbi, Santoni and Dupuy, 1999). Manetedl, for instance, generate synthetic ensembles @r th
Kalman Filter from the numerical solution of theacdon-diffusion equation. Combustion parametershef model
result from monitoring real woodland fire; as aulgsthe uncertainties are restricted to the PDderditization. On the
other hand, Hong, Yang and Ray (2000) simulateate-stpace model of the truncated solution of theewequation
incorporating effects of acoustic waves and combaogtynamics in a generic gas-turbine engine cotifmughamber.
The researchers aim at designing a controller fwe omith combustion instability, and their systemdeloinclude
uncertainties due to combustion parameters, madilation (truncation) and boundary conditions. Bigéindel and
Hong admit the difficulty in describing combustibahavior based on theoretical models. This brigfulsion is meant
to introduce and justify the approach this papepas!

The problem of determining the quality of flameddesmulated as a state-estimation problem in whieh state to
be estimated is a vector containing ten image petens obtained as described on the previous se&itnear Kalman
filter is implemented to observe the state. Sinaketiled discussion on stochastic estimation oKalman filtering
theory is out of scope, only the main hypothes@samsumptions for applying the filter equationssiated. First of all,
both the system and observation models must bmtie-space form. The system model is given byte siguation that
describes the evolution of the state, the ten-patanvector in this case.

The difficulty that arises is: since those imageapseters are geometric statistical properties ef ghay level
histogram, a physical relationship between them thedgrabbed images is not straightforward. A mdHbat can be
used when there is little knowledge on the protesse random walk model, whose state-equation stbat system
dynamics is governed by a noise vector, as givethéyliscrete-time equation, Eq. (2).

{xt)} =[® . t )Xt} +{w(t)} ®)

Where{x(tk)} OR" is the state at thé" time step Wt, [P(t,,t,,)] is the transition matrix, in this case the identit
matrix of ordern, and {a)(tk)}~ N(O,[Q(x(t,)])IR" is a white zero-mean Gaussian noise vector with
symmetrical positive semi-definite covariance maffQ(x(t,))])JR™", a necessary condition for Kalman filter
implementation.

In order to build the observation model, it is takir granted that each state-vector computed lyftizzy
classification algorithm carries an inherent uraiety, which can be modeled as a measurement tt@seorrupts the
state-vector. Mathematically, then, measurememtgiaen by Eq. (3),

{yt)} ={xt}+{v )k 3)



ABCM Symposium Series in Mechatronics - Vol. 4 - pp.1-10
Copyright © 2010 by ABCM

Where{y(tk)}D R" represents the measurementatnd {V(tk)}~ N(O,[R(y(t,))])OR" is a white zero-mean
Gaussian noise vector with symmetrical positiveinief covariance matrix[ R(Y(t,))])OJR™".  The white
sequence{a)(tk)} and {I/(tk)} are assumed mutually independent; therefore, @mnsequence of being Gaussian,
they are also uncorrelated among themselves. Howewese covariance matrices shall not be assurizgbdal, once

it is possible to compute them from the availaldéagdas it will be discussed in the next section.

Recursive estimation theory based on Kalman filggris extensively discussed in the literature, feeanstance
Jazwinski (1970); thus, for the moment, it suffitesbriefly describe the algorithm framework thrbuigs equations.
For the model given by Equations (2) and (3), thera forecast stage that seeks to produce theelséstates (in a
stochastic least-squares sense) by propagatingréwious estimated state based on the process randets known
(or admitted) statistics before new informatiomigilable. This way, Eq. (4)

et ={xel @
constitutes the state estimation forecast and®q. (
[P1" (x(te)) =[P1" (X(tr)) +[Q(X(te )] (5)

gives the estimation error covariance matrix fosec®Vhen new data is available, an update stageide® proper
correction to the forecasted estimates of the stiatieerror covariance according to Equations (6)(&,

(XN LX) +K I Ly@)r —{xt ) (6)
[P = ([ -[K DIPKE))]' )

The correction is provided by the Kalman gain nxattomputed by Eq. (8)

[K ] =PI (PRI + R D™ 8)
thus completing the prediction-correction stepsessary for the next iteration.

5.NEBULIZATION QUALITY ESTIMATION

As it was stated on the previous section, the m®a®variance matri[Q (X(t,_;))] to be included in Eq. (5) is

calculated from available data in the following man According to the dynamical model from Eq. §2d (3), state
and measurement are the same for each trainir(daet set). It is admitted that the state, on easie, is corrupted by
a white zero-mean Gaussian noise sequence thatseyis the uncertainty generated by the fuzzy memsunt
algorithm. In order to quantify this uncertainthetcomplete history of state vector evolution, kndar all sets, is

assembled in a matrif X (X(t,))] O R™™, with n=10 (the dimension of the state vector) amweR14 (the complete
history of state evolution); once it is done, tlevariance of the state for the whole set of measearngs, matrix
[FTEOR™", can be computed according to Eq. (9)

[F]=E{IX-E(X)L[X-E(X)]"} ©)

The calculation of matri:['] involved data in the range from “high” to “low” nelization quality characteristic
experiments and, therefore, states the uncertaiatiean actual process, whose nebulization au#itynknown a
priori; on that ground, although the actual state cawag for a particular set is not available, mell]is assumed to
be an estimator of matrilQl for each individual process, thus completing thedoan walk model for the state
evolution.

As to the observation model, measurements are etycaly generated for each set by adding to theest white
zero-mean Gaussian noise sequence with 10% of #xémmum value assumed by the state variables thiaugine
process. The noise sequence is calculated usimgtiae from Presst al. (2002), operating within a self-made driver.
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The estimation procedure was evaluated by runtiad<alman filter alaorithm with the model from E@) and (3),
state covariance matr[Q] and measurement noise covariance md{ R computed by Eq. (9) using vect{ ¥}
instead of matri[ X] , and using three training sets, nam¢lR= 0.17, 0.29 and 0.5, respectively reproducing "low
“medium” and “high” quality nebulization condition$he initial state vector assumes a “high” nelatien quality,
i.e., the state variables are given the valuelhifial error covariance matrix, fp is assumed diagonal with variances
0.3 for all experiments.

Validation of the process is achieved by compatirggestimates for the three training sets withrtegpected fuzzy
measured values.

6. RESULTSAND DISCUSSION
Estimates obtained with the proposed approachhierthree situations appear in Figures 6, 7 and &hich the
evolution of every state variable is separatelyaspnted with coloured lines. In order to classijpulization quality,

we averaged state variables for every time steppéotted it with a bold black line with triangle nkars; this way, it is
possible to visualize the trend of the state vetttayughout the process.

State evolution for VFR=0.17 nebulization quality data set
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Figure 6: State evolution f&fFR=0.17 nebulization quality data set.

State evolution for VFR=0.29 nebulization quality data set
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Figure 7: State evolution fafFR=0.29 nebulization quality data set.



ABCM Symposium Series in Mechatronics - Vol. 4 - pp.1-10
Copyright © 2010 by ABCM

State evolution for VFR=0.5 nebulization quality data set
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Figure 8: State evolution f&fFR=0.5 nebulization quality data set.

The mean values for the state estimates obtaiea diata reproducing théFR=0.17 (“low” nebulization quality),
Figure 6, show that the process converges aftrations to values ranging from 0.0 to 0.3, megutiirat the estimated
nebulization quality, in average, agreed with thpeeted result. However, the behavior of stateakdei no. 7, plotted
in brown line, is not in accordance with the expéon for the following reason: It correspondstie 253 pixel gray
level, that is the most frequent for all imagesgcsithe relatively low dynamic range of 8€D camera used in the
experiments gives rise to images with luminancaratéd pixels at the higher gray levels. As similahavior for this
state variable is observed in Figures 7 and 8,coneludes that it is unable to distinguish nebtiliraquality features.
On the other hand, it asserts the proper implertientaf the Kalman filter for the three processgsce it represents a
forcing term that actually converges for the reentvalue, 1.0 in average.

The “medium” and “high” nebulization qualities agstimated respectively after 15 and 25 iteratidrhi® Kalman
filter processing data fro’dFR=0.29 andVFR=0.5, as depicted by the bold black line in Figureand 8. Figure 7
shows that the estimates of average state variall@Bate around 0.45, whereas in Figure 8 thel Ibnddck line has a
positive decreasing gradient towards the “high” uliglation range. Despite those results, actual eggence of the
estimation process must be asserted by the inspeofithe observation residuals (Jazwinski, 197, difference
between the effective measurement and its valumkgsilated by the filter using the last availabigtes estimate. An
estimation process is considered convergent oneentiimalized observation residuals is zero-means§an with

standard deviation between3d, and 30, , given by Eq. (10)

%2({ Yt} ~{X €)D) 10)

v j=l

r, =

wherel represents measurement vector dimension (Fle@85)1 In Figure 9, it is shown that those requiretaare
fulfilled for experiments withVFR set to 0.17 and 0.29; therefore, one concludesthiggt converge. In relation to
VFR=0.50 experiment, the mean criterion is not acc@hpt. A possible explanation is the reduced nundfer
measurements available for procedure validatiovelbeless, one observes that the triangle-markededas a clear
tendency towards the null value.
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Figure 9. Normalized observation residuals

7. CONCLUSION

This work has investigated a method that potegtalows the classification of nebulization qualifyoil flames in
industrial processes. The method is based on tedigtion of the dynamic behavior of a charactaristector of
parameters extracted from the gray level histogadninstantaneous flame images by the applicatiora dtizzy
measurement algorithm to those images. A stateesppproach through the Kalman filter provided eaten of image
parameter vectors from data including experimemésults of all the training image sets, reproducseyeral
nebulization quality conditions.

Validation of the method was accomplished by colimgathose estimates with experimental data for whtwe
nebulization quality, according to a defin&R, was previously known. Results show that therfiistimates can be
considered statistically convergent towards thepeeted values after few iterations. Since the adatpnal time
necessary to generate the histograms and the éssifios the parameter vector is on the order obsaoonds, the only
limitation for using the method as a real-time moniof the combustion process nebulization quaktyhe image
sampling rate. For instance, the experimental atpsrdescribed in this paper is able to grab imagesfrequency of
25 Hz and, as it took the estimation algorithm asti20 iterations to track the state, nebulizatjoality is determined
in less than one second.

We stress that, despite the poor state model ubedresults obtained are promising; this suggdss such a
method could be applied to real-time monitoring tiedulization quality of an oil refinery furnaceithvthe following
advantages over conventional methods: the instrumentation setup is based on a singeD camera; i{)
measurements are simple properties of the gray testogram of flame instantaneous imagég) iagnostics consider
the time history of the process.
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