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Abstract. This paper investigates the potential benefits of using an infinite-horizon formulation of Model-based Predictive
Control (MPC) for a three-degrees of freedom (3DOF) helicopter model. The infinite-horizon formulation guarantees
nominal closed-loop stability of the system. Moreover, if the prediction model is linear and the constraints over the states
and inputs are given as linear inequalities, then the cost function can be written in a form that involves a finite horizon
and a terminal cost. Under these hypotheses, it can also be shown that state constraints only need to be imposed over a
finite number of steps in order to guarantee constraint satisfaction over the infinite horizon. The resulting optimization
problem involves a finite number of decision variables and constraints. Therefore, Quadratic Programming techniques
can be employed to obtain the optimal control at each sampling time. The present study is carried out by using a nonlinear
simulation model of a 3DOF helicopter. The investigation ismainly concerned with robustness of the controller regarding
possible failures in the helicopter motors. Such failures are modeled as gain changes in the actuators. The results are
evaluated through simulations in the Matlab/Simulink environment. For this purpose, the transient response of the closed-
loop system and the satisfaction of state constraints are considered. For comparison, a finite-horizon MPC formulationis
also employed.
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1. INTRODUCTION

1.1 Model-based Predictive Control

Model-based Predictive Control (MPC) techniques consist of solving a moving-horizon optimal control problem in
real time. Such a solution is reiterated at periodic intervals (normally at each sample period) based on sensor feedback
information (Camacho and Bordons, 1999), (Rossiter, 2003). Historically, this strategy was developed to cope with the
demands of the petrol industry (Cutler and Ramaker, 1980), but its application to other fields is currently increasing (Qin
and Badgwell, 2003). One of the main advantages of Predictive Control is the ability to deal with constraints over the
inputs and states of the plant (Maciejowski, 2002).

Figure 1 depicts the basic elements of a predictive controller, which are:

• A model employed to predict the state of the plant over a horizon ofN steps in the future, based on the current state
x(k) and the control sequence to be applied.

• An algorithm for optimization of the control sequence{û(k + i|k), i = 0, 1, . . . , N − 1}, considering a designated
cost function for the problem and the constraints over the inputs and states of the plant.

In regulation problems, the cost function is typically of the form

J [û(k|k), û(k + 1|k), . . . , û(k + N − 1|k)] =

N∑

i=1

‖x̂(k + i|k)‖2
Q + ‖û(k + i − 1|k)‖2

R (1)

in which‖x‖2
Q = xT Qx and‖u‖2

R = uT Ru, with Q ≥ 0 andR > 0 being the weight matrices adjusted by the designer.
Such a cost may be defined over an infinite-horizon as in (Maciejowski 2002) in order to guarantee closed-loop

stability.
In this work the cost function of Eq. (1) with infinite-horizon was adopted and its advantages when compared to a

standard finite horizon formulation were studied.
Regarding constraint enforcement, if the prediction modelis linear and the constraints over states and control are given

as linear inequalities, it can be proven (Rawlings and Muske, 1993) that there exists a finite horizon (N1) over which the
constraints must be enforced to ensure that they will be enforced at all future times.

The present paper investigates the potential benefits of using an infinite-horizon formulation of Model-based Predictive
Control (MPC) for a three-degrees of freedom (3DOF) helicopter model. Simulation results of the control of the nonlinear
helicopter model pre-stabilized by state feedback were compared for the finite and infinite-horizon controllers. A model
mismatch was simulated by diminishing the voltage gain of one of the helicopter motors. The output of the plants were
compared regarding deviation from the nominal behavior andenforcement of constraints.
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Figure 1. Predictive control loop employing state feedback. In this figure,u ∈ R
p andx ∈ R

n denote the input and state variables of the plant,

respectively. Moreover,̂x(k + i|k) represents the predicted state value at time(k + i) calculated on the basis of the current statex(k). The optimal

control to be applied to the plant at timek is denoted bŷu∗(k|k).

The remaining sections are organized as follows. Section 2 describes the infinite-horizon MPC formulation adopted
in this work as well as the formulation of the constraints over inputs and states as linear inequalities involving the op-
timal control produced by the MPC controller. Section 3 presents the 3DOF-helicopter nonlinear simulation model, the
linearized model used as reference in the MPC controller andalso the proposed algorithm used to find the finite constraint
horizon (Rawlings and Muske 1993). Next, section 4 presentsthe simulation results and a comparative analysis of the
finite and infinite-horizon formulations. Finally, concluding remarks are given in section 5.

2. PREDICTIVE CONTROL FORMULATION

Using a shortened notation, the cost given in Eq. (1) is usually denoted byJ(k), clarifying that this is the function to
be optimized at thekth sample period. If the prediction model is linear:

x̂(k + i|k) =

{
x(k), i = 0
Ax̂(k + i − 1|k) + Bû(k + i − 1|k), i > 0

(2)

and the constraints are represented as linear inequalitiesover the control and states:
{

Suû(k + i − 1|k) ≤ bu, i = 1, . . . , N
Sxx̂(k + i|k) ≤ bx, i = 1, . . . , N

(3)

then Quadratic Programming algorithms (Camacho and Bordons 1999), (Maciejowski 2002) may be employed to obtain
the optimal control sequence{û∗(k + i − 1|k), i = 1, . . . , N}. The first element of this sequence (u(k) = û∗(k|k)) is
applied to the plant and the optimization is repeated at the next sample period, withu(k + 1) = û∗(k + 1|k + 1). Such a
strategy is known asreceding horizon(Rossiter, J. A. 2003).

Nominal stability of the control loop can be guaranteed through the introduction of a terminal constraintx̂(k+N |k) =
0, provided that the resulting optimization problem is feasible (Keerthi and Gilbert, 1988), (Mayne, Rawlings, Raoet
al. 2003). An alternative approach for ensuring stability consists of employing a cost function with infinite prediction
horizon (Maciejowski 2002):

J(k) =

∞∑

i=0

‖x̂(k + i|k)‖2
Q + ‖û(k + i|k)‖2

R (4)

subject to

Suû(k + i|k) ≤ bu, i = 0, 1, . . . , N − 1 (5)

Sxx̂(k + i|k) ≤ bx, i ≥ 1 (6)

û(k + i|k) = 0, i ≥ N (7)

If the prediction model is of the form presented in Eq. (2), and the control is set to zero afterN steps, as imposed in
Eq.(7), it follows that:

x̂(k + N + j|k) = Aj x̂(k + N |k), j = 0, 1, . . . (8)
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Using Eq. (8), the sum involving the states in Eq. (4) can be rewritten as:

∞∑

i=0

‖x̂(k + i|k)‖2
Q =

N−1∑

i=0

‖x̂(k + i|k)‖2
Q +

∞∑

i=N

‖x̂(k + i|k)‖2
Q (9)

The second term in the right-hand side of Eq. (9) is then calculated with aid of Eq. (8) as:
∑∞

i=N ‖x̂(k + i|k)‖2
Q =

∑∞
j=0 x̂T (k + N |k)(Aj)T Q(Aj)x̂(k + N |k) =

= x̂T (k + N |k)

[
∑∞

j=0(A
j)T Q(Aj)

]

x̂(k + N |k)
(10)

Therefore, the cost in Eq. (4) can be rewritten as

J(k) = x̂T (k + N |k)Q̄x̂(k + N |k) +

N−1∑

i=0

‖x̂(k + i|k)‖2
Q + ‖û(k + i|k)‖2

R (11)

where

Q̄ =
∞∑

j=0

(Aj)T Q(Aj) (12)

provided that the eigenvalues ofA are inside the unit circle (Muske and Rawlings, 1993). From Eq. (12):

AT Q̄A =

∞∑

j=1

(Aj)T Q(Aj) = Q̄ − Q (13)

Therefore,Q̄ is the solution of the following Lyapunov equation:

AT Q̄A − Q̄ + Q = 0 (14)

Thus, the cost function form Eq. (11) involves a finite horizon of N steps and a terminal cost term. Moreover, it can
be shown (Rawlings and Muske 1993) that∃N1 > 0 such thatSxx̂(k + i|k) ≤ bx, i = 1, . . . , N1 ⇒ Sxx̂(k + i|k) ≤
bx, ∀i > N1. As a result, the number of constraints to be imposed becomesfinite, which allows the use of Quadratic
Programming algorithms for obtaining the optimal control sequence.

This infinite-horizon approach can also be employed for plants with unstable dynamics. However, it must be imposed
that the unstable modes must be taken to zero until the end of the horizon ofN steps. Alternatively, an internal loop can
be employed to stabilize the plant, leaving for the predictive controller the task of providing the reference signal forthis
loop (Chisci, Rossiter and Zappa, 2001). In this case, the control law assumes the form:

u(k) = −Kx(k) + v(k) (15)

with v(k) being the signal generated by the predictive controller. Matrix A must then be replaced bỹA = A − BK and
the constraints over the signalu(k) must be written in terms of constraints overv(k). This is the approach adopted in the
present work.

2.1 Matrix formulation

In order to use a more concise notation, the following columnvectors are introduced:

X̂ =






x̂(k + 1|k)
...

x̂(k + N |k)






nN×1

, V̂ =






v̂(k|k)
...

v̂(k + N − 1|k)






pN×1

(16)

A modified version of the cost function can then be written by removing the term containinĝx(k|k) = x(k), which is
a constant value in the optimization process:

Jmod = X̂TQX̂ + V̂ TRV̂ (17)

where:

Q =








Q 0 · · · 0
0 Q · · · 0
...

...
. . .

...
0 0 · · · Q̄








nN×nN

, R =








R 0 · · · 0
0 R · · · 0
...

...
. ..

...
0 0 · · · R








pN×pN

(18)
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Given a linear model as in Eq. (2) and a control law of the form of Eq. (15), a prediction equation for the state can be
written as:

X̂ = HV̂ + F̂ (19)

where:

H =








B 0 · · · 0

ÃB B · · · 0
...

...
. . .

...
ÃN−1B ÃN−2B · · · B








, F̂ =








Ã

Ã2

...
ÃN








x(k) (20)

and

Ã = A − BK (21)

By using Eqs. (17) and (19), the cost can be rewritten as:

Jmod = V̂ T (HTQH + R)V̂ + 2FTQHV̂ + FTQF (22)

Since Eq. (22) is quadratic in terms ofV̂ , Quadratic Programming algorithms can be used to obtain theoptimal control
sequence{v̂∗(k + i|k), i = 0, 1, . . . , N − 1}.

2.2 State Constraints

As demonstrated in (Rawlings and Muske 1993), there exists afinite horizonN1 = N + k2 such that, if the state
constraints are enforced over this horizon, they will also be enforced in all future times. Therefore, given lower and upper
bounds on the state (xmin andxmax, respectively), it is sufficient to impose:

Hl ≤ X̂k2+N =








X̂
x̂(k + N + 1|k)

...
x̂(k + N + k2|k)







≤ Hu (23)

whereHl andHu are given as:

Hl =






xmin

...
xmin






n(N+k2)×1

, Hu =






xmax

...
xmax






n(N+k2)×1

(24)

State constraints given as linear inequalities, as in Eq. (23), can be transformed in input constraints with aid of Eq.(19).
For this purpose,̂Xk2+N is initially written in terms of the control̂V as:

X̂k2+N =








X̂
x̂(k + N + 1|k)

...
x̂(k + N + k2|k)








=








H
AN−1B AN−1B . . . B

...
AN−1B AN−1B . . . B








︸ ︷︷ ︸

HN+k2

V̂ +








F̂
AN+1x(k)

...
AN+k2x(k)








︸ ︷︷ ︸

F̂N+k2

(25)

Then, Eq (23) can be rewritten as:
[

X̂N+k2

−X̂N+k2

]

≤

[
Hu

−Hl

]

⇒

[
HN+k2

−HN+k2

]

V̂ ≤

[
Hu − F̂N+k2

−Hl + F̂N+k2

]

(26)

2.3 Input Constraints

Let the control applied to the plant be given by Eq. (15). Since the input constraints are given in terms ofu, they must
be translated as constraints in terms ofv for the optimization algorithm:

Hcl ≤ Ûk2+N =













v̂(k|k) − Kx̂(k|k)
...

v̂(k + N − 1|k) − Kx̂(k + N − 1|k)
−Kx̂(k + N |k)

...
−Kx̂(k + N + k2|k)













≤ Hcu (27)

ABCM Symposium Series in Mechatronics - Vol. 4 - pp.90-99
Copyright © 2010 by ABCM



Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

where:

Hcl =






umin

...
umin






n(N+k2)×1

, Hcu =






umax

...
umax






n(N+k2)×1

(28)

in whichumin is the lower bound of the control andumax, the upper one.
The linear inequalities expressed in Eq. (27) can be rewritten in terms of̂V andx(k) by using Eq. (25) and rearranging:

Hcl ≤















IpN

0
...
0







− DK

N+k2+1

[
0

HN+k2

]








︸ ︷︷ ︸

S

V̂ − DK
N+k2+1

[
x(k)

F̂N+k2

]

≤ Hcu (29)

in which IpN is the (pN × pN ) identity matrix andDK
N+k2+1 is a block-diagonal matrix of the form:

DK
N+k2+1 =








K 0 . . . 0
0 K . . . 0
...

...
.. .

...
0 0 . . . K








p(N+k2+1)×n(N+k2+1)

(30)

Finally, following the procedure used to obtain the linear inequalities over the states, the constraints onV̂ can be
expressed as:

[
S
−S

]

V̂ ≤







Hcu + DK
N+k2+1

[
x(k)

F̂N+k2

]

−Hcl − DK
N+k2+1

[
x(k)

F̂N+k2

]







(31)

3. METHODOLOGY

3.1 Plant Model

The simulation model used in this work was derived in (Lopes,2007) and improved in (Handro, 2008). It is a nonlinear
model for a three-degrees of freedom (3DOF) laboratory helicopter represented in the schematic design of Fig. 2 having
as state variables the angles ofTravel (T ), Elevation(E) and Pitch (P ), as well as their respective rates of variation
(Ṫ , Ė, Ṗ ). The two control inputs (u1, u2) correspond to the voltages applied to the power amplifiers of the front and
back helicopter motors. The model obtained by (Handro 2008)is of the form:

ẋ1 = x2

ẋ2 = ξ16

{
ξ1(u

2
1 − u2

2) + ξ2(u1 − u2) − ν2x2

}

ẋ3 = x4

ẋ4 = x2
6 {ξ3 sin 2x3 + ξ4 cos 2x3} + ξ5 sin x3 + ξ6 cos x3 +

{
ξ7(u

2
1 + u2

2) + ξ8(u1 + u2)
}

cos x1

ẋ5 = x6

ẋ6 = {ξ13 + ξ14 sin 2x3 + ξ15 cos 2x3}
−1 {

ν1 − ν3x6 +
[
ξ9(u

2
1 + u2

2) + ξ10(u1 + u2)
]
sin x1+

x4x6 [ξ11 sin 2x3 + ξ12 cos 2x3]}

(32)
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Figure 2. (a) Schematic design of the laboratory helicopterconsidered in this work. (b) View of the main helicopter body
in the plane orthogonal to the main supporting axis.FFM andFBM represent the forces generated by the front and back

motors, respectively.

In Eq. (32), the statesx1, x3 andx5 represent thePitch, ElevationandTravelangles (in radians), respectively. The
values of the constantsξ1, . . . ξ16, ν2 andν3 are adopted as the ones experimentally determined in (Handro 2008). ν1,
however, is made equal to0 for simplicity, resulting in an angle of0 deg for thePitch in equilibrium. This results in the
following linearized model matrices for an horizontal equilibrium point (x = 0, u1 = u2 = 2.9735 V ):

Ac =











0 1.0000 0 0 0 0
0 −0.7530 0 0 0 0
0 0 0 1.0000 0 0
0 0 −1.0389 0 0 0
0 0 0 0 0 1.0000

−1.3426 0 0 0 0 −0.4377











, Bc =











0 0
2.966 −2.966

0 0
0.4165 0.4165

0 0
0 0











(33)

3.2 Internal Loop

In order to achieve zero steady-state error for theElevationandTravelangles, integral action is inserted in these states
after discretization of the linear model matrices given in Eq. (33). The resulting matrices for the augmented discrete-time
model,for a sampling timeTs = 0.040 s are:

A =















1.0000 0.0394 0 0 0 0 0 0
0 0.9703 0 0 0 0 0 0
0 0 0.9992 0.0400 0 0 0 0
0 0 −0.0415 0.9992 0 0 0 0

−0.0011 0 0 0 1.0000 0.0397 0 0
−0.0532 −0.0011 0 0 0 0.9826 0 0

0 0 −1.0000 0 0 0 1.0000 0
0 0 0 0 −1.0000 0 0 1.0000















,

B =















0.0023 −0.0023
0.1169 −0.1169
0.0003 0.0003
0.0167 0.0167

0 0
0 0
0 0
0 0















(34)

An internal loop with state feedback is used to stabilize theplant. The control is given as in Eq. (15) and the gainK
is obtained by solving a discrete linear quadratic regulator (LQR) problem (Lewis, 1986) with weight matricesQlqr = In
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andRlqr = Ip.

3.3 Algorithm to calculate k2

Let the linear constraints over the states be given as:

Sxk ≤ b, k = 1, 2, . . . (35)

with h ∈ R
s andhi > 0, i = 1, 2, . . . , s.

Now define:

hmin = min
i

hi, λmax = max λ(AT A) (36)

The expression given in (Rawlings and Muske 1993) to calculate the finite horizon necessary to enforce the state
constraints in order to guarantee that they will be enforcedat all future times is:

k2 = max

{

ln

(
hmin

‖S‖ ‖xN‖

)

/ ln (λmax) , 0

}

(37)

However, the value ofxN = x̂(k + N |k) is not known before the optimal control is calculated. In thepresent paper,
the following algorithm is proposed to circumvent this problem:

ALGORITHM CALCULATE_k2

1 Letk2 = ∞, k3 = 0
2 while k2 6= k3 do
3 k2 = k3;
4 Solve Quadratic Programming problem with state constraints untilN + k2;
5 Use the linearized model to obtainxN employing the control obtained in step 4;

6 Letk3 = max
{

ln
(

hmin

‖S‖‖xN‖

)

/ ln (λmax) , 0
}

;

3.4 Simulation Scenarios

For comparison of performance and robustness of both MPC formulations (with finite and infinite-horizons), a control
horizon ofN = 50 steps (i.e.2 s, with the sampling timeTs = 0.040 s) was adopted, after which the MPC controlv is set
to zero. For the finite horizon approach, the prediction horizon adopted is also of50 steps. The helicopter is initially at rest
at aTravelposition of−10 deg and the objective is to bring the helicopter to the equilibrium pointP = T = E = 0 deg.
The weights of the inputs and states in the cost were made equal and the same in both cases (Q = In andR = Ip).

The constraints were imposed over the inputs (voltage applied to the front and back motors), which are the same for
both motors and must remain in the interval[0, 5 V ]. Moreover, it is desirable to limit thePitch angle, as would occur in
a real flight situation. The constraints over thePitch angle are so that it must remain in the interval[−10 deg, 10 deg].
However, in order to guarantee that thePitch angle remains within this interval, tighter constraints are imposed (P ∈
[−9 deg, 9 deg]) to allow for small violations in case of infeasibility of the optimization problem. In order to solve
the optimization problem, thequadprog function of the Optimization Toolbox of Matlab was employed. In case of
infeasibility, thequadprog function returns a solution that minimizes the maximum distance to the violated constraint
boundaries (Afonso and Galvao, 2007), which may lead to a non-admissible control value. Therefore, a saturation was
placed on the control, so that it remains within the allowed interval.

Robustness was evaluated through a simulated failure in theback motor. Such a failure consists of a change in the
gain of the voltage applied to the power amplifier of this motor, which, for illustration purposes corresponded to a drop
of 0 to 30% in constant steps of10%. The results of both controllers were evaluated and theTravelangle was chosen for
performance analysis. The enforcement of constraints was also considered. All simulations were carried out for a period
of 15 s. A Fourth-order Runge-Kutta solver with fixed step sizeTs/10 was employed for simulation of the nonlinear
model.

4. RESULTS

Figure 3 presents thePitchandTravelangles obtained in the closed-loop simulation with nominalgain. It can be noted
in Fig. 3a that both controllers violate the lower bound for the Pitch angle (−9 deg), possibly because of model-plant
mismatch, since the model used for prediction is linear and the one used in the simulation is nonlinear. Nevertheless,
the actual desired constraint (−10 deg) is enforced by the infinite-horizon controller as shown in the inset of Fig. (3)a.
Figure 3b shows the behavior of theTravel angle. As can be seen, both controllers achieve the desired equilibrium

ABCM Symposium Series in Mechatronics - Vol. 4 - pp.90-99
Copyright © 2010 by ABCM



Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

condition without steady-state error. However, the infinite-horizon controller results in a response with smaller overshoot
and settling time.
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Figure 3. (a)Pitchand (b)Travelangle responses obtained in the simulation with nominal gain for both infinite (continu-
ous line) and finite (dashed line) horizon approaches.

Figure 4 depicts the control voltages applied to the motors after saturation to the interval0 − 5V . It is worth observing
that the infinite-horizon controller generates a smoother control signal, with less pronounced variations as comparedto
the finite-horizon controller.
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Figure 4. (a) Front and (b) back motor voltages obtained in the simulation with nominal gain for both infinite (continuous
line) and finite (dashed line) horizon approaches.

Both MPC approaches were subjected to tests where the back motor voltage gain was reduced. Figure 5 shows a
comparison between the cases with nominal voltage gain and voltage gain reduced by30% with respect to the nominal
value. As can be seen, the gain mismatch has little effect on the overshoot and settling time with the infinite-horizon
method. In contrast, the finite-horizon method has a substantial degradation in performance.
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Figure 5. (a)Travelangle responses for finite and (b) infinite-horizon approaches obtained in the simulation with nominal
gain (continuous line) and a30% drop in the back motor voltage gain (dashed line).

In order to have a comparison criterion for robustness of thecontroller, the root mean square (RMS) value of the
difference between theTravelangle response with nominal gain and with reduced gain was calculated for different values
of voltage gain drop in the back motor. The results presentedin Tab. 1 demonstrate a superior performance of the infinite-
horizon approach. The RMS deviation from the nominal response for this approach is at most51.0% of the correspoding
value obtained with the finite-horizon MPC controller. As expected, in both cases the RMS value becomes larger as the
gain is made smaller.

Table 1. RMS values of the deviation from the nominalTravelangle response

Back motor voltage gain drop RMSinfinite RMSfinite RMSinfinite/RMSfinite

10% 1.57 3.08 0.510
20% 3.05 9.95 0.306
30% 4.72 45.72 0.103

5. CONCLUSION

The results obtained in this work show that the infinite-horizon MPC formulation provided smaller overshoot and
settling time as compared to the finite-horizon approach. Inaddition, the infinite-horizon MPC controller was found to be
superior to the finite-horizon one when it comes to robust performance. Through simulation of a 3DOF-helicopter using a
nonlinear model and actuator gain mismatch, it was observedthat such a mismatch has greater effects on the performance
of the finite horizon controller.

These results motivate the use of infinite-horizon MPC as an advantageous alternative to the finite-horizon formula-
tion. Further studies concerning the handling of constraint violations might be of interest, in order to extend previous
investigations involving the finite-horizon approach (Afonso, R. J. M. and Galvao, R. K. H. 2007).
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