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Abstract. This paper investigates the potential benefits of using famiie-horizon formulation of Model-based Predictive
Control (MPC) for a three-degrees of freedom (3DOF) helieopnodel. The infinite-horizon formulation guarantees
nominal closed-loop stability of the system. Moreovehéf prediction model is linear and the constraints over tlatest

and inputs are given as linear inequalities, then the costfion can be written in a form that involves a finite horizon
and a terminal cost. Under these hypotheses, it can also derskthat state constraints only need to be imposed over a
finite number of steps in order to guarantee constraint &attion over the infinite horizon. The resulting optimipati
problem involves a finite number of decision variables anastraints. Therefore, Quadratic Programming techniques
can be employed to obtain the optimal control at each samgpiine. The present study is carried out by using a nonlinear
simulation model of a 3DOF helicopter. The investigatiomeinly concerned with robustness of the controller regagdi
possible failures in the helicopter motors. Such failures modeled as gain changes in the actuators. The results are
evaluated through simulations in the Matlab/Simulink emuinent. For this purpose, the transient response of theedle
loop system and the satisfaction of state constraints ansidered. For comparison, a finite-horizon MPC formulatisn
also employed.

Keywords: predictive control; infinite-horizon,; stability
1. INTRODUCTION
1.1 Model-based Predictive Control

Model-based Predictive Control (MPC) techniques condisiotving a moving-horizon optimal control problem in
real time. Such a solution is reiterated at periodic intisrgaormally at each sample period) based on sensor feedback
information (Camacho and Bordons, 1999), (Rossiter, 20Bi&torically, this strategy was developed to cope with the
demands of the petrol industry (Cutler and Ramaker, 19&@)iibapplication to other fields is currently increasindn(Q
and Badgwell, 2003). One of the main advantages of Predi@ntrol is the ability to deal with constraints over the
inputs and states of the plant (Maciejowski, 2002).

Figure[d depicts the basic elements of a predictive coetrolthich are:

e A model employed to predict the state of the plant over a looraf NV steps in the future, based on the current state
z(k) and the control sequence to be applied.

e An algorithm for optimization of the control sequeng@&k + i|k),i = 0,1,..., N — 1}, considering a designated
cost function for the problem and the constraints over thetisiand states of the plant.

In regulation problems, the cost function is typically oétiorm
N

Jla(klk), u(k + 1|k),...,a(k + N — 1]k)] = Z llz(k + z‘\k)Hé + |k + i — 1]k)||% Q)
=1

in which [|z(|3, = " Qx and||u|% = " Ru, with Q@ > 0 and R > 0 being the weight matrices adjusted by the designer.

Such a cost may be defined over an infinite-horizon as in (Ntaggki 2002) in order to guarantee closed-loop
stability.

In this work the cost function of Eq[J(1) with infinite-horizavas adopted and its advantages when compared to a
standard finite horizon formulation were studied.

Regarding constraint enforcement, if the prediction malihear and the constraints over states and control aemgiv
as linear inequalities, it can be proven (Rawlings and Mu$R83) that there exists a finite horizalN() over which the
constraints must be enforced to ensure that they will bereatbat all future times.

The present paper investigates the potential benefitsiod asi infinite-horizon formulation of Model-based Predieti
Control (MPC) for a three-degrees of freedom (3DOF) helieomodel. Simulation results of the control of the nonlinea
helicopter model pre-stabilized by state feedback werepesed for the finite and infinite-horizon controllers. A mbde
mismatch was simulated by diminishing the voltage gain & ofthe helicopter motors. The output of the plants were
compared regarding deviation from the nominal behaviorearfdrcement of constraints.
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Figure 1. Predictive control loop employing state feedback. In thisiigu € RP andz € R™ denote the input and state variables of the plant,
respectively. Moreoveti:(k + ¢|k) represents the predicted state value at t{ifne- 7) calculated on the basis of the current staté). The optimal

control to be applied to the plant at timkes denoted by * (k|k).

The remaining sections are organized as follows. Sectioas2ribes the infinite-horizon MPC formulation adopted
in this work as well as the formulation of the constraintsramputs and states as linear inequalities involving the op-
timal control produced by the MPC controller. Section 3 prds the 3DOF-helicopter nonlinear simulation model, the
linearized model used as reference in the MPC controlleatsalthe proposed algorithm used to find the finite constraint
horizon (Rawlings and Muske 1993). Next, section 4 presgr@simulation results and a comparative analysis of the
finite and infinite-horizon formulations. Finally, conciand remarks are given in section 5.

2. PREDICTIVE CONTROL FORMULATION

Using a shortened notation, the cost given in E§. (1) is Wsdahoted byJ(k), clarifying that this is the function to
be optimized at th&!" sample period. If the prediction model is linear:

. oy oxk), i=0
m(k+z|k)—{ Az(k+1i—1k)+ Ba(k+i—1|k), i >0 @

and the constraints are represented as linear inequalitegshe control and states:

Sk +i—1|k) <b,, i=1,...,N @)
S,a(k+ilk) <bg, i=1,...,N

then Quadratic Programming algorithms (Camacho and Bard®89), (Maciejowski 2002) may be employed to obtain
the optimal control sequendei*(k +i — 1|k),i = 1,..., N}. The first element of this sequenegk) = u*(k|k)) is
applied to the plant and the optimization is repeated at éxé sample period, with(k 4+ 1) = 4*(k + 1|k + 1). Such a
strategy is known aeceding horizor{Rossiter, J. A. 2003).

Nominal stability of the control loop can be guaranteedtigiothe introduction of a terminal constrair(tc + N |k) =
0, provided that the resulting optimization problem is fessi(Keerthi and Gilbert, 1988), (Mayne, Rawlings, Reto
al. 2003). An alternative approach for ensuring stability ¢stssof employing a cost function with infinite prediction
horizon (Maciejowski 2002):

T(k) =D &k +i[k) 3 + ak +ilk)||% 4)
=0
subject to
Syi(k+ilk) <b,, i=0,1,...,N—1 (5)
Sp@(k 4 ilk) < bz, i >1 (6)
ak+ilk)=0,i>N (7)

If the prediction model is of the form presented in Eg. (2)j &me control is set to zero aftéf steps, as imposed in
Eq.[?), it follows that:

i(k+ N +jlk) = Al2(k + Nlk), 7 =0,1,... (8)
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Using Eq. [8), the sum involving the states in EHd. (4) can beiteen as:

00 N-1 0o
D olEk+ilk)IE =D ek +ik)lG + Y 2k +ilk) 9)
i=0

=0 =N
The second term in the right-hand side of Eq. (9) is then tatied with aid of Eq.[(B) as:
Yoy 2k + k)G = 32720 &7 (k + N|k)(A) T Q(A)a(k + Nk) =

o , . 10
= 7k + NIR)| S5tk + N (a0
Therefore, the cost in EJ.](4) can be rewritten as
N—-1
J(k) =27 (k + N|k)Qi(k + N|k) + Z 1&(k + k)| + [la(k + ilk)||% (11)
=0
where
Q=) (A)TQA) (12)
j=0
provided that the eigenvalues dfare inside the unit circle (Muske and Rawlings, 1993). Fram &2):
ATQA=Y (A)"Q(A) =Q-Q (13)

j=1
ThereforeQ is the solution of the following Lyapunov equation:
ATQA-Q+Q =0 -

Thus, the cost function form EJ_{[11) involves a finite horizif V steps and a terminal cost term. Moreover, it can
be shown (Rawlings and Muske 1993) tR&Y; > 0 such thatS, & (k +ilk) < by, ¢ = 1,..., Ny = S,@(k +ilk) <
b, Vi > Ni. As a result, the number of constraints to be imposed becdimits which allows the use of Quadratic
Programming algorithms for obtaining the optimal contexdjsence.

This infinite-horizon approach can also be employed fortglarith unstable dynamics. However, it must be imposed
that the unstable modes must be taken to zero until the erkdfdrizon of NV steps. Alternatively, an internal loop can
be employed to stabilize the plant, leaving for the predéictiontroller the task of providing the reference signaltfis
loop (Chisci, Rossiter and Zappa, 2001). In this case, th&ralbdaw assumes the form:

u(k) = —Kx(k) + v(k) (15)

with v(k) being the signal generated by the predictive controllertridad must then be replaced by = A — BK and
the constraints over the signalk) must be written in terms of constraints ovéfk). This is the approach adopted in the
present work.

2.1 Matrix formulation

In order to use a more concise notation, the following colwectors are introduced:
&(k+ 1|k) 0(k|k)

X = , V= (16)

B+ NIk | oo ok +N—1k) |

A modified version of the cost function can then be writtend&yoving the term containing(k|k) = x(k), which is
a constant value in the optimization process:

Jimod = XTOX + VIRV (17)
where:
Q 0 0 R 0 - 0
0 Q 0 0O R --- 0
Q=1 . . . ., R=\| . . . . (18)
0 0 Q nN xXnN 00 - R pN XpN
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Given a linear model as in Eq.](2) and a control law of the fofreaq. (I3), a prediction equation for the state can be
written as:

X=HV+F (19)
where:
B 0 0 A
AB B - 0 . A?
H= : : s F= : x(k) (20)
AN-lp AN-2p ... B AN
and
A=A-BK (21)
By using Eqgs.[(TI7) and(19), the cost can be rewritten as:
Jmod = VI(HTQH + R)V + 2FTQHV + FTQF (22)

Since Eq.[[2R) is quadratic in termséf Quadratic Programming algorithms can be used to obtaiogtimal control
sequencéo*(k +ilk),i=0,1,...,N — 1}.

2.2 State Constraints

As demonstrated in (Rawlings and Muske 1993), there exifitsta horizonN; = N + ko such that, if the state
constraints are enforced over this horizon, they will als@bforced in all future times. Therefore, given lower angarp
bounds on the state(,;, andz,,.., respectively), it is sufficient to impose:

X
. Z(k+ N+ 1]k)
Hy < Xpoqn = . < H, (23)
Z(k+ N + ko|k) |
whereH; andH,, are given as:
Tmin _ Tmazx
=1 , Hu= | (24)
Lmin n(N+kz)x1 L Tmaz n(N+ka)x1

State constraints given as linear inequalities, as in[E3), (an be transformed in input constraints with aid of Ed).(1
For this purposeXy,+ v is initially written in terms of the control” as:

X H F
. Z(k+ N + 1]k) AN-IB AN-1p .. B | . ANFLy (k)
Xyt N = : = : V+ : (25)
Z(k+ N + kalk) AN-IB AN-1B .. B ANz (k)
HN 4 ko ﬁ’NJrkz

Then, Eq[(ZB) can be rewritten as:
XNtk ] { H, ] [ Hy 1k } - { H, — Fyix }
B < = V<L LY 26

{ ~Xngr, |~ L —H —HN ks L —Hi+ Fynyg, (26)
2.3 Input Constraints

Let the control applied to the plant be given by Hql(15). 8ithe input constraints are given in termagthey must
be translated as constraints in term® d6r the optimization algorithm:
i (k|k) — Kz(k|k) |

| kN —1k) - Ki(k+ N — 1]k)
~Ki(k + N|k) < Heu @7

—K#(k+ N + ko|k)
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where:
Umin Umax
Hcl = ) ch = (28)
Umin | (N 1ke)x1 Umaz | (N 1ky)x1

in which u,,;, is the lower bound of the control ang, .., the upper one.
The linear inequalities expressed in Hq.1(27) can be rexritt terms of” andz (k) by using Eq.[(2b) and rearranging:

Iy
0 0 5 z(k)
K
Her = : ~ DNt { Hy i, } V= DNert [ Fnir, } = Hew (29)
0

S

in which I,y is the N x pN) identity matrix andD% ., is a block-diagonal matrix of the form:

K 0 ... 0

x 0O K ... 0
DN+k2+1 = : : . : (30)

O o0 ... K

p(N+ka+1)xn(N+ka+1)

Finally, following the procedure used to obtain the linesedualities over the states, the constraintsionan be
expressed as:

(k)
S . H(:U+D§+k2+1 |: F :|
[ } < Ntk (32)
-5 _ | — DK |: Ail'(k) }
c Ntkatl | o

3. METHODOLOGY
3.1 Plant Model

The simulation model used in this work was derived in (LoR€§€,7) and improved in (Handro, 2008). It is a nonlinear
model for a three-degrees of freedom (3DOF) laboratorychpter represented in the schematic design of[Big. 2 having
as state variables the anglesTofvel (1), Elevation(F) and Pitch (P), as well as their respective rates of variation
(T, E, P). The two control inputsu(;, us) correspond to the voltages applied to the power amplifietae@front and
back helicopter motors. The model obtained by (Handro 2808} the form:

1 = @9

iy = &6 {&i(uf —ud) + La(ur — u2) — vaxa}

T3 = @4

iy = x2{&sin2w3 + & cos2x3) + Esinag + &g coswz + {&(u% +u) + &s(ug + uz)} CoS T'1 (32)
T5 = g

i6 = {€13+&asin2zy + &5 c0s2x3} " {1 — vare + [Eo(ud + ud) + Ero(ur + u2)] sina+

T4Tg [511 sin 2x3 + £12 cos 2$3}}



ABCM Symposium Series in Mechatronics - Vol. 4 - pp.90-99
Copyright © 2010 by ABCM

(a) (b)
A Z Helicopter
@) body

o]
—

Counter-

S

<

\

X
-

X ~

/|
/
2

Figure 2. (a) Schematic design of the laboratory helicoppesidered in this work. (b) View of the main helicopter body
in the plane orthogonal to the main supporting a¥is,; and Fz;; represent the forces generated by the front and back
motors, respectively.

In Eq. [32), the states;, x3 andx; represent th@itch, Elevationand Travel angles (in radians), respectively. The
values of the constants, ... &4, v2 andys are adopted as the ones experimentally determined in (d&2@b8). vy,
however, is made equal tofor simplicity, resulting in an angle df deg for the Pitchin equilibrium. This results in the
following linearized model matrices for an horizontal difuium point (z = 0, u; = uz = 2.9735 V):

0 1.0000 0 0 0 0 0 0
0 —0.7530 0 0 0 0 2.966 —2.966
0 0 0 1.0000 0 0 0 0
Ao = 0 0 —1.0389 0 0 0 » Be= 0.4165 0.4165 (33)
0 0 0 0 0 1.0000 0 0
—1.3426 0 0 0 0 —0.4377 0 0

3.2 Internal Loop

In order to achieve zero steady-state error forEleyationandTravelangles, integral action is inserted in these states
after discretization of the linear model matrices given @n B3). The resulting matrices for the augmented disdigte-
model,for a sampling tim&; = 0.040 s are:

1.0000  0.0394 0 0 0 0 0 0
0 0.9703 0 0 0 0 0 0
0 0 0.9992  0.0400 0 0 0 0
Ao 0 0 —0.0415 0.9992 0 0 0 0
—0.0011 0 0 0 1.0000  0.0397 0 0 '
—0.0532 —0.0011 0 0 0 0.9826 0 0
0 0 —1.0000 0 0 0 1.0000 0
0 0 0 0 —1.0000 0 0 1.0000
] ] (34)
[ 0.0023 —0.0023 ]
0.1169 —0.1169
0.0003  0.0003
p_ | 00167 0.0167
0 0
0 0
0 0
|0 0

An internal loop with state feedback is used to stabilizeplamt. The control is given as in E4._{15) and the gAin
is obtained by solving a discrete linear quadratic regul@tQR) problem (Lewis, 1986) with weight matric€g,, = I,
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and Ry, = I,.
3.3 Algorithm to calculate k-

Let the linear constraints over the states be given as:

Sz <b, k=1,2,... (35)
with h € R® andh; > 0,i=1,2,...,s.

Now define:

Pomin = minh;,  Apae = max A\(AT A) (36)

The expression given in (Rawlings and Muske 1993) to caleulae finite horizon necessary to enforce the state
constraints in order to guarantee that they will be enfoateall future times is:

hmin
ko = max {ln <S||||~'L"N||> /1n (M naz) 0} (37)

However, the value of y = @(k + N|k) is not known before the optimal control is calculated. Inphesent paper,
the following algorithm is proposed to circumvent this piesh:

ALGORITHM CALCULATE_ k,
1Lletk, = o, k3 =20
2 while ko # ks do

3 ko = ks;

4 Solve Quadratic Programming problem with state condsaintil N + ks

5 Use the linearized model to obtaif, employing the control obtained in step 4;
6  Letks — max {m (m) /10 (Amaz) ,o};

3.4 Simulation Scenarios

For comparison of performance and robustness of both MR@uiations (with finite and infinite-horizons), a control
horizon of N = 50 steps (i.e2 s, with the sampling tim&’, = 0.040 s) was adopted, after which the MPC contodb set
to zero. For the finite horizon approach, the predictionzamriadopted is also 60 steps. The helicopter is initially at rest
at aTravelposition of—10 deg and the objective is to bring the helicopter to the equilibripointP = 7'= E = 0 deg.

The weights of the inputs and states in the cost were madé aqddhe same in both case$ & I, andR = I,,).

The constraints were imposed over the inputs (voltage egpdi the front and back motors), which are the same for
both motors and must remain in the inter{@l 5 V]. Moreover, it is desirable to limit thRitch angle, as would occur in
a real flight situation. The constraints over figch angle are so that it must remain in the interjral 0 deg, 10 deg].
However, in order to guarantee that tRéch angle remains within this interval, tighter constrainte anposed P €
[—9 deg, 9 deg]) to allow for small violations in case of infeasibility oféhoptimization problem. In order to solve
the optimization problem, thquadprog function of the Optimization Toolbox of Matlab was employebh case of
infeasibility, thequadprog function returns a solution that minimizes the maximumatise to the violated constraint
boundaries (Afonso and Galvao, 2007), which may lead to aatbnissible control value. Therefore, a saturation was
placed on the control, so that it remains within the allowgdrival.

Robustness was evaluated through a simulated failure ibahk motor. Such a failure consists of a change in the
gain of the voltage applied to the power amplifier of this motehich, for illustration purposes corresponded to a drop
of 0 to 30% in constant steps df0%. The results of both controllers were evaluated andrtagelangle was chosen for
performance analysis. The enforcement of constraints isascansidered. All simulations were carried out for a perio
of 15 s. A Fourth-order Runge-Kutta solver with fixed step sizg'10 was employed for simulation of the nonlinear
model.

4. RESULTS

Figure3 presents tHeitch andTravelangles obtained in the closed-loop simulation with nomgyaaih. It can be noted
in Fig. [3a that both controllers violate the lower bound foe Pitch angle (-9 deg), possibly because of model-plant
mismatch, since the model used for prediction is linear &edone used in the simulation is nonlinear. Nevertheless,
the actual desired constraint [0 deg) is enforced by the infinite-horizon controller as showntia tnset of Fig. [(B)a.
Figure[3b shows the behavior of tieavel angle. As can be seen, both controllers achieve the desipaitioeium
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condition without steady-state error. However, the indifiibrizon controller results in a response with smallersveot
and settling time.

(@) (b)
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Figure 3. (a)Pitchand (b)Travelangle responses obtained in the simulation with nominal fpaiboth infinite (continu-
ous line) and finite (dashed line) horizon approaches.

Figure[4 depicts the control voltages applied to the motites aaturation to the interval — 5V . It is worth observing

that the infinite-horizon controller generates a smootloatrol signal, with less pronounced variations as compéred
the finite-horizon controller.

(@) (b)
5 T T T
: —— MPC with Infinite Horizon —— MPC with Infinite Horizon
F] = = =MPC with Finite Horizon = = = MPC with Finite Horizon

Commanded Front Motor Voltage (V)

Commanded Back Motor Voltage (V)

10 15 5
Time (s) Time (s)

10 15

Figure 4. (a) Front and (b) back motor voltages obtainedérstmulation with nominal gain for both infinite (continuous
line) and finite (dashed line) horizon approaches.

Both MPC approaches were subjected to tests where the baitk modtage gain was reduced. Figlide 5 shows a
comparison between the cases with nominal voltage gain alage gain reduced b30% with respect to the nominal
value. As can be seen, the gain mismatch has little effecherovershoot and settling time with the infinite-horizon
method. In contrast, the finite-horizon method has a subiatalegradation in performance.
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Figure 5. (a)Travelangle responses for finite and (b) infinite-horizon appreadabtained in the simulation with nominal
gain (continuous line) and%0% drop in the back motor voltage gain (dashed line).

In order to have a comparison criterion for robustness ofctir@roller, the root mean square (RMS) value of the
difference between thEravelangle response with nominal gain and with reduced gain wasleged for different values
of voltage gain drop in the back motor. The results preseint@elb.[1 demonstrate a superior performance of the infinite-
horizon approach. The RMS deviation from the nominal respdar this approach is at mast.0% of the correspoding
value obtained with the finite-horizon MPC controller. Agegted, in both cases the RMS value becomes larger as the
gain is made smaller.

Table 1. RMS values of the deviation from the nomifiedvelangle response

Back motor voltage gain drop RM S;,, tinite RM S¢inite RM Sin pinite/ RMSfinite
10% 1.57 3.08 0.510
20% 3.05 9.95 0.306
30% 4.72 45.72 0.103

5. CONCLUSION

The results obtained in this work show that the infinite-honi MPC formulation provided smaller overshoot and
settling time as compared to the finite-horizon approacladutition, the infinite-horizon MPC controller was found ® b
superior to the finite-horizon one when it comes to robusioperance. Through simulation of a 3DOF-helicopter using a
nonlinear model and actuator gain mismatch, it was obsehatduch a mismatch has greater effects on the performance
of the finite horizon controller.

These results motivate the use of infinite-horizon MPC asdsargageous alternative to the finite-horizon formula-
tion. Further studies concerning the handling of constraimlations might be of interest, in order to extend pregou
investigations involving the finite-horizon approach (Afo, R. J. M. and Galvao, R. K. H. 2007).
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