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Abstract. Conventional Pl (Proportional-Integral) controllers are characterized with simple structure and simple design
procedures. They enable good control performance and are therefore widely applied in industry. However, in a number of nonlinear
processes cases, such as those when parameter variations take place and/or when disturbances are present, design of Pl control
system based on a multiobjective optimization approach may be a better choice. In this paper, we introduce an improved
multiobjective particle swarm optimization (IMPSO) approach. This paper presents the design and the tuning of a Pl control
through IMPSO. Smulation numerical results of Pl control and convergence of the IMPSO is presented and discussed with
application in a multivariable quadruple-tank process. The proposed design method is intuitive and practical that offers an effective
way to implement simple but robust solutions covering a wide range of process perturbation and, in addition, provides excellent
tracking performance without resorting to excessive control.
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1. INTRODUCTION

In many fields of science, the procedure of optaticn sometimes has more than one objective, theiméed for
multiobjective optimization is obvious. One of tliectors that differentiate single objective optiation when
compared to multiobjective optimization is that thigimum solution for multiobjective optimizatioa hot necessarily
unique. In a typical multiobjective problem optimiion (also known as multicriterion optimizatiotfere exists a
family of equivalent solutions that are superiottte rest of the solutions and are considered dgual the perspective
of simultaneous optimization of multiple (and pbdsi competing) objective functions. In other wordis
multiobjective optimization there is no single opdl solution. Instead, the interaction of multiplejectives yields a
set of efficient (noninferior) or non-dominated widns, known as Pareto-optimal solutions, whichega decision
maker more flexibility in the selection of a sui@llternative.

The Pareto optimal solutions of a multiobjectivetimization problem often distribute very regulaily both
decision and objective space. A problem that afisers the existence of multiple optimal solutiormaever is how to
normalize, prioritize and weight the contributicsfsthe various objectives in arriving at a suitableasure. Also these
objectives can interact or conflict with each otHfer example, increasing one can reduce othetarimand this can
happen in nonlinear ways. Most of the classical r@jenal Research methods of obtaining solutionapproaching
the Pareto front (including the multicriterion d&on-making methods) focus on the first stage ofkirsg the
objectives, i.e. trying to reduce the design spece more easily managed mathematical form (sinostrauch
problems are far too complex to enumerate and etalall the possible combinations in any reasontifvle) (Khare,
2002).

For a multiobjective optimization problem, any teolutions can have one of two possibilities: onenthates the
other or none dominates the other. In generalgta of a multiobjective optimization algorithmrnst only to guide
the search towards the Pareto-optimal front bud sdsmaintain population diversity in the set o tRareto optimal
solutions. The recent studies on evolutionary atlyors (Van Veldhuizemt al., 2000; Deb, 2001; Coello, 1999; Coello
et al., 2002) have shown that the population-based ighgos, such as genetic algorithms, tabu searcferdiitial
evolution, and evolution strategies, are poterta@ididate to solve multiobjective optimization pgeshs and can be
efficiently used to eliminate most of the diffidek of classical single objective methods suchhassensitivity to the
shape of the Pareto-optimal front and the necessityultiple runs to find multiple Pareto-optimadlstions (Abido,
20009).

On the other hand, most optimization problems intcd systems (Carvalho and Ferreira, 1995; Liu svahg,
2000; Liao and Li, 2002; Zambrano and Camacho, 200la and Coelho, 2008; Panda, 2009) involve the
optimization of more than one objective functiorhieh in turn can require a significant computatiotime to be
evaluated. In some studies this problem of evalgatnore than one objective function was treatedres only
objective function that summarizes all objectivendtions to be optimized, as a sum of all of them dgample.



ABCM Symposium Series in Mechatronics - Vol. 4 - pp.72-79
Copyright © 2010 by ABCM

However, the limitation of this method has alredgyn commented in literature (Van Veldhuiztral., 2000; Deb,
2001).

In this context, a modern meta-heuristic algoritiat can be useful and effective tool for optimi@atapplications
in control systems is the particle swarm optimat{PSO). PSO is a population-based approach ahsivaelligence
field that was first developed by James Kennedy Rodsell Eberhart (Kennedy and Eberhart, 1995; lizrerand
Kennedy, 1995). Their original idea was to simuldie social behavior of a flock of birds tryingreach an unknown
destination (fitness function), e.g., the locatidriood resources when flying through the fieldaf®d space).

In recent literature, several PSO approaches tdlbanultiple objectives have been proposed (Siant Coello,
2006). This paper presents the design and thedwofitwo decoupled proportional-integral (Pl) catigrs through of
an improved multiobjective PSO (IMOPSO) approacépired on Raquel and Naval (2005). Simulation nicaér
results of Pl control and convergence of the IMOHS@resented and discussed with application inuftivariable
guadruple-tank process.

The remaining sections of this paper are organ&etbllows: in section 2, a description of quadediaink process
is detailed. Section 3 presented the fundamenfatsuttiobjective optimization, MOPSO and IMOPSO amgches. In
sections 4 and 5, the simulation results and cermbuare presented, respectively.

2. DESCRIPTION OF QUADRUPLE-TANK PROCESS

The quadruple-tank process and consists of foardnhnected water tanks and two pumps. Its inpets;sandv,
(input voltages to the pumps) and the outputsyarendy, (voltages from level measurement devices) (Jolaamss
2000). The quadruple-tank process can easily bé&l thyi using two double-tank processes, which aemndsird
processes in many control laboratories. The schiemi@igram of quadruple-tank process is presemtddgure 1.
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For this process, mass balances and Bernoulli'syleld (Johansson, 2000):

Figure 1. Schematic diagram of quadruple-tank Bece
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whereA, is the cross-section of tamnka; is the cross-section of outlet hole ands the water level. The voltage applied
to pumpi isv;, and the corresponding flowks/. The parameters, y, O (0, 1) are determined from how the valves are
set. The flow to Tank 1 ig;k;v; and the flow to tank 4 is (1 %) kv, and similarly to tank 2 and tank 3. The
acceleration of gravity is denoted gsThe measured level signals &, and kh,. These signal represented the
outputs signaly, i.e.,y:(t)=k:h(t) andy,(t)=k.h,(t), wheret is the time. The adopted time sampling in thisknwas 1 s.
The parameter values used in this paper, as im3sba (2000), are given in Table 1.

Table 1. Parameters values adopted for the quatapk process.

Parameter Unit Valug
A, Az cm?2 28
Ao, Ay cm? 32
ay, a3 cm? 0.071
a, Ay cm? 0.057

ke Vicm 0.50
g cm/s? 981

In terms of two PI controllers, in this work is citeredK(s) with the following classical structure:

kia(s) -+ kan(9)
K= : . i |0

(®)
k() -+ Knn(9)
wheren = 2. The form oki(s), i,j O n={1,2,...n} is given by
ki (s) = Kp; 1+L +Td;; [$], (6)
: ooy

whereKpj is the proportional gain, antj; is the integral gain. In this work, the decoupRiddesign was adopted,

where the proportional and integral gains are failli # j. The MOPSO and IMOPSO approaches must search the
parameters of a 2x2 decoupled PI, i. e., searchdreEmeter&p; 1, Kp,,, Tizy andTig,.

3. FUNDAMENTALSOF MULTIOBJECTIVE OPTIMIZATION AND THE PSO APPROACH

This section presents the fundamentals of multaibje optimization and PSO. First, a brief overvied the

multiobjective optimization is provided, and finalthe design of the MOPSO proposed by Raquel ancalN2005)
and the IMOPSO algorithm are discussed.

3.1. Multiobjective optimization

In contrast to single-objective optimization, itdéssential to obtain a well-distributed and divesskition set for
finding the final tradeoff in multi-objective optization. Multiobjective optimization can be definad the problem of
finding a vector of decision variables that sagisfconstraints and optimizes a vector function wlelsments represent
the objective functions. A general multiobjectivptimization problem containing a number of objeetivio be
minimized and (optional) constraints to be sattsfian be written as:

Minimize f(X),m=1,2,...M
subject to constrairg(X) <c., k=1, 2, ...K

whereX = {x,, n =1, 2, ...,N} is a vector of decision variables akd= {f,,, m= 1, 2, ...,M} are M objectives to be
minimized (Lu and Yen, 2003).
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In a typical multiobjective optimization problemetre exists a family of equivalent solutions thrat superior to the
rest of the solutions and are considered equal frlmenperspective of simultaneous optimization ofitiple (and
possibly competing) objective functions. Such dohg are called noninferior, nondominated, or Raogtimal
solutions, and are such that no objective can rawed without degrading at least one of the othensl, given the
constraints of the model, no solution exist beytimel true Pareto front. The goal of multiobjectitgoaithms is to
locate the (whole) Pareto front.

Each objective component of any nondominated smiuth the Pareto optimal set can only be improved b
degrading at least one of its other objective camepts. A vectof, is said to dominate another vecfgrdenoted as

fa<fyiff f, <, 0i={12..M} and[jO{12.. M}, where f,; < fy;.

Summarizing, there are two goals in multiobjectiygtimization: i) to discover solutions as closdhe Pareto-front
as possible, and ii) to find solutions as divers@assible in the obtained nondominated front.

Methods of multiobjective optimization can be cléisd in many ways according to different critertdwang and
Masud (1979) classify the methods according toptaeticipation of the decision maker in the solutjgmocess. The
classes are: i) methods where no articulation efgpence information is used (no-preference medhadilsnethods
where a posteriori articulation of preference infation used (a posteriori methods); iii) methodsesgha priori
articulation of preference information used (a primethods); and iv) methods where progressivecugtion of
preference information is used (interactive methods

3.2. PSO algorithm for multiobjective optimization

The PSO algorithm employs a number of particleg twmstitute a swarmln PSO, it starts with a random
initialization of a population (swarm) of individisa(particles) in the search space and works orstle&gal behavior of
the particles in the swarm.

These particles fly with a certain velocity anddfithe global best position after some iteration.eath iteration,
each particle can adjust its velocity vector, basadits momentum and the influence of its best tposi(pbest -
personabest) as well as the best position of its neighbgts¢t - global best), and then compute a new position that the
“particle” is to fly to. On other words, it finslthe global optimum by simply adjusting the trégeg of each individual
towards its own best location and towards the pasiicle of the swarm at each generation of evofutiTfhe swarm
direction of a particle is defined by the set oftigées neighboring the particle and its historypesience.

Moore and Chapman (1999) proposed the first exdensi the PSO strategy for solving multi-objectpreblems in
an unpublished manuscript. There have been seveceht fundamental proposals using PSO to handlkiphau
objectives, surveyed in Sierra and Coello (2006).

However, the high speed of convergence in MOPSQaggpes often implies a rapid loss of diversityinyithe
optimization process. In this context, several MOR#ve difficulties in controlling the balance beem explorations
and exploitations.

Raquel and Naval (2005) propose a multiobjectiv® RBIOPSO) incorporating the concept of nearest hizg
density estimator for selecting the global bestiglar and also for deleting particles from the em&d archive of
nondominated solutions. When selecting a leaderatibhive of nondominated solutions is sorted iscdeding order
with respect to the density estimator, and a particrandomly chosen from the top part of the I&h the other hand,
when the external archive is full, it is again sdrtn descending order with respect to the demsitynator value and a
particle is randomly chosen to be deleted, fromhkbttom part of the list. This approach uses theatman operator
proposed in Coello, Pullido and Lechuga (2004) uchsa way that it is applied only during a certaumber of
generations at the beginning of the process. Kin#tle authors adopt the constraint-handling teqpimifrom the
NSGA-II (Debet al., 2002).

The procedure for implementing the MOPSO giverRaduel and Naval, 2005) is given by the followitgps:

i) Initialize a population or swarm of particlestivrandom positions and velocities in thdimensional problem space
using uniform probability distribution function. &he generation countdrs= O;

ii) Evaluate the particles and store the nondoreihgiarticles in swarm in an external archive
iii) Compute the crowding distance values of eagchauominated solution in archive
iv) Sort the nondominated solutionsArin descending crowding distance values;

v) Randomly select the global best guide for tharswform a specified top portion (e.g. top 10%) floe sorted
archiveA and store its position wghest.
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vi) Change the velocity;, and position of the particlg, according to equations:

Vi (t+D) =wivi () + ¢ [ud ([ p; (t) =% (O] +c2 [UdI[ pg (t) =% (1)] (7)
X (t+D)=x ) +Ath(t+D) (8)

wherew is the inertia weighti=1,2,... N indicates the number of particles of populatiomgsn);t=1,2,.. .. indicates

the generations (iterationsy,is a parameter called the inertial Weigb]tF[\/,1,\/.2,...,\/”,]-r stands for the velocity of the
i-th  particle % =[>q1,>§2,...,>qn]T stands for the position of thei-th particle of population, and

n =[pl, pz,...,nn]T represents the best previous position ofi ttreparticle.

Positive constants, andc, are the cognitive and social factors, respectivefyich are the acceleration constants
responsible for varying the particle velocity todspbest andgbest, respectively. Index represents the index of the
best particle among all the particles in the swa¥fariablesud and Ud are two random functions with uniform
distribution in the range [0,1].

Equation (8) represents the position update, agogtad its previous position and its velocity, culesingAt =1.

vii) Perform the mutation operation proposed in &oet al. (2004) with probability of 0.5;

viii) Evaluate the particles in swarm;

ix) Insert all new nondominated solution in swanto A if they are not dominated by any of the stored tsmhs. All
dominated solutions in the archive by the new smtuire removed from the archive. If the archivdul, the
solution to be replaced is determined by the folhgwsteps: a) compute the crowding distance vabfesach
nondominated solution in the archipe b) sort the nondominated solutionsAnn descending crowding distance
values, and iii) randomly select a particle frospacified bottom portion (e.g. lower 10%) which goise the most
crowded particles in the archive then replace ihwhe new solution;

x) Increment the generation countest + 1;

xi) Return to Step (iii) until a stop criterion iwet, usually a sufficiently good fithess or a maxim number of
iterations tyax In this work, the,,, value is adopted.

3.3. The proposed |M OPSO approach
The proposed IMOPSO approach uses social and eggtiine-variant factors (Ratnaweera and Halgam@gé4)

and an operator of velocity updating based on &itett Gaussian distribution (Coelho and Krohlind)®)0In this case
the equation (7) presented in section 3.2 is mediifor:

W (t+D) =wivi () + ¢ fud([p; (t) = ()] +c2 [GI[ pg (t) = (1)] (9)

whereGd are numbers generated with Gaussian distributiaiamge [0,1]. The updating of is given by Ratnaweera
and Halgamuge (2004):

t
Cp = (sz ‘Cz)Bt—H‘fz (10)
max

wherec, andcy are positive constants.

4. SSIMULATION RESULTS

The experiments were conducted for 30 independer to evaluate the performance of MOPSO and IMOBSO
the tuning of two PI controllers applied to the dugole-tank process. The adopted setup for the MD®R&sc, = ¢, =
1.0 andc; = 1.0,¢y5 =0.4,cx= 1.0 for the IMOPSO, and the range of the inest@aghtw is from 0.5 to 0.3 during the
generations for the MOPSO and IMOPSO approaches pdpulation size was 20 particles, stopping Goteft sy, Of
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200 generations, and external archive size equéD@ The search space wdg,, Kp, 0[-50, 50] andTi4, Ti, O[O0,
400]. The total of samples to evaluate the fitrffasstion and time samplings = 1 s. Unstable solutions are penalized.
The fitness function (minimization problem) is givey

f= f1+ fz (10)
N 2

=2 [ a0 -10) (1)
N 2

f2= 3% 20-y200) 12)

where y, ; and y, , are the setpoints for the outputs 1 and2and y, are the outputs of process.

Simulation results were presented in Figs. 2(a) (i) showed that the non-dominated solutions sf ben of 30
runs obtained by MOPSO with 59 solutions and IMOP®Iith 290 solutions. It is observed that the IMOPSO
dominated the solutions obtained by MOPSO. Furtbeemother important information is about the mearPareto
solutions in 30 runs. In this work, the MOPSO ofxtai mean of 35 solutions and the IMOPSO obtaineannoé 88
solutions in Pareto front.

The metric of spacingS gives an indication of how evenly the solutioms distributed along the discovered front.
The spacing of Pareto front (mean of 30 runs) of 8O was 1.5889. On the other hand, the spacing©OPISO was
5.7998. In terms of spacing, the IMOPSO maintainslatively good spacing metric and obtained aebetistribution
that the MOPSO of non-dominated solutions in Paiiretat.

A good compromise solution in terms of harmonic meéf; andf, values for the IMOPSO (with = 119.6016 and
f, = 165.5758) is presented in Fig. 3. The gaingsiabtl by IMOPSO in this case wek@,=37.8455,Kp, =-0.4821,
Ti;=239.7113 andi,= 210.4079.

In this context, an important comment related thdtiobjective optimization must be mentioned. A tirobjective
optimization problem differs from a single-obje&iwptimization problem because it contains seva@ctives that
require optimization. In case of single-objectiy@imization problems, the best single design soiuts the goal. But
for multi-objective problems, with several and pbbs conflicting objectives, there is usually nongie optimal
solution. Therefore, the decision maker is requi@delect a solution from a finite set by makimmmpromises. A
suitable solution should provide for acceptabldgrarance over all objectives (Panda, 2009).
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Figure 2. Pareto front of MOPSO and IMOPSO appresach
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Figure 3. Best result in terms of harmonic meaf ahdf, for the IMOPSO.

5. CONCLUSION

PSO is a powerful metaheuristic approach inspingaliiserving the bird flocks and fish schools. Récgorks
(Sierra and Coello, 2006; Abido, 2009) showed bHzatic PSO algorithm can be modified to accommottetgroblem
formulation of multiobjective problems, which isdearch for a well extended, uniformly distributadd near-optimal
Pareto front.

In this paper, the MOPSO (Raquel and Naval, 2008)the proposed IMOPSO design presented promisisgts
to tune the decoupled PI controllers when applied tuadruple process. The IMOPSO allows the dergoef a well-
distributed and diverse solution set for Pl tunimghout compromising the convergence speed of tigeridhm.
Furthermore, the MOPSO presented competitive resnltterms of proximity, diversity, and distributiovith the
MOPSO for the studied case.

The proposed IMOPSO method is expected to be estbrid other multivariable processes with parameter
uncertainties and perturbations. The aim of futuogks is to investigate the use of MOPSO and IMORB@roaches
tune model-based predictive controllers.
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