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Abstract. It is well-known that conventional control theories are widely suited for applications where the processes can 
be reasonably described in advance. However, when the plant’s dynamics are hard to characterize precisely or are 
subject to environmental uncertainties, one may encounter difficulties in applying the conventional controller design 
methodologies. Despite the difficulty in achieving high control performance, the fine tuning of controller parameters is 
a tedious task that always requires experts with knowledge in both control theory and process information. Nowadays, 
more and more studies have focused on the development of adaptive control algorithms that can be directly applied to 
complex processes whose dynamics are poorly modeled and/or have severe nonlinearities. In this context, the design of 
a Model-Free Learning Adaptive Control (MFLAC) based on pseudo-gradient concepts and optimization procedure by 
Differential Evolution (DE) is presented in this paper. DE algorithms are evolutionary algorithms that have already 
shown appealing features as efficient methods for the optimization of continuous space functions. Motivation for 
application of DE approach is to overcome the limitation of the conventional MFLAC design, which cannot guarantee 
satisfactory control performance when the plant has different gains for the operational range when designed by trial-
and-error by user. Numerical results of the MFLAC with particle swarm optimization for a nonlinear control valve are 
showed. 
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1. INTRODUCTION  
 
Model-based control techniques are usually implemented under the assumption of good understanding of process 

dynamics and their operational environment. These techniques, however, cannot provide satisfactory results when 
applied to poorly modeled processes, which can operate in ill-defined environments. This is often the case when dealing 
with complex dynamic systems for which the physical processes are either highly nonlinear or are not fully understood 
(Karray et al., 2002). 

The conventional Proportional-Integral-Derivative (PID) algorithm is still widely used in process industries because 
its simplicity and robustness. PID controllers are the most common controllers in industry. In fact, 95% of control loops 
use PID and the majority is PI control (Åström and Hägglund, 2005). Consequently, many different methods have been 
proposed for determining the three controller parameters, i.e., proportional, integral, and derivative gains, to meet 
different requirements of various control applications. However, its performance is not adequate in many chemical 
processes. A change in the signal and the directionality of the process gain is a complex practical situation and, so, still 
becoming complex the design of a control system (Bisowarno et al., 2003). 

It is believed that a fixed-parameter PID may not do well for nonlinear, time-variant, or coupled processes. It needs 
to be re-tuned adequately to retain robust control performance over a wide range of operating conditions (Ali, 2000). 
Alternatively, several approaches have been proposed in the literature for controlling nonlinear processes, such as 
model predictive control, neural control, fuzzy control, robust control, sliding mode control, and adaptive control. 

Adaptive control methods are able to cope with control problems involving internal process uncertainties as well as 
external environmental uncertainties. The aim of this paper is to merge for nonlinear systems, the model-free learning 
adaptive control structure (Hou and Huang, 1997; Hou et al., 1998) with the controller design optimization based on 
Differential Evolution (DE). DE is an evolutionary algorithm originally proposed by Storn and Price (1995) and Storn 
(1997) whose main design emphasis is real parameter optimization. DE is based on a mutation operator, which adds an 
amount obtained by the difference of two randomly chosen individuals of the current population, in contrast to most 
evolutionary algorithms, in which the mutation operator is defined by a probability function. Despite DE’s apparent 
simplicity, the interacting key evolutionary operators of mutation and recombination are present and effective. In 
particular, DE has the advantage of incorporating a relatively simple and efficient form of self-adapting mutation. 

The remainder of this paper is organized as follows. In section 2, a model-free learning adaptive control structure is 
described, while section 3 explains the concepts of DE optimization method. Section 4 presents the simulation results 
for the control of a valve with nonlinear behaviour. Lastly, section 5 outlines our conclusion and future research. 
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2. MODEL-FREE LEARNING ADAPTIVE CONTROL 
 

It is well-known that conventional control theories are widely suited for applications where the processes can be 
reasonably described in advance. However, when the plant’s dynamics are hard to characterize precisely or are subject 
to environmental uncertainties, one may encounter difficulties in applying the conventional controller design 
methodologies. 

Adaptive control schemes are alternatives for handling processes with unknown nonlinearities. In the past few 
decades, there has been considerable interest in the development of adaptive control systems that automatically adjust 
controller parameters to compensate for unanticipated changes in the process and/or the environment. The ability of 
dealing with time-varying characteristics, nonlinearities, and uncertainties enables adaptive control algorithms to have 
significant potential for the operation of complex processes whose dynamics is imprecisely known and/or are subject to 
changes in unpredictable ways.  

Closed-loop adaptive control methods may be divided into two broad categories: (i) indirect or explicit control, (ii) 
direct or implicit control. Indirect control methods utilize separate parameter identification and control schemes. The 
plant parameters are estimated explicitly on-line and the control parameters are then adjusted based on these 
estimations. In contrast to this, direct control methods do not utilize an explicit identification of the process parameters. 
The identification and control functions are merged into one scheme. The controller parameters are adjusted directly, 
only using plant input and output signals (Ozcelik and Kaufman, 1999). 

In this paper, a direct adaptive control of the following general discrete SISO (Single-Input and Single-Output) 
nonlinear system is considered 
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where na and nb are the orders of system output, y(k), and input, u(k), respectively, and f(·) is a general nonlinear 
function. The plant (equation 1) can be rewritten as follows: 
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where Y(k) and U(k-1) are the sets of system outputs and inputs up to sampling instant k and k-1. 

The following assumptions are considered about the controlled plant: (A1) the system (1) and (2) is observable and 
controllable; (A2) the partial derivative of f(·) with respect to control input u(k) is continuous; and (A3) the system (1) is 
generalized Lipschitz. 

For a nonlinear system (2), satisfying assumptions (A1-A3), then there must exist )k(φ , called pseudo-gradient 

vector, when control change ,)k(u 0≠∆  and 
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where the control change ∆u(k) = u(k) - u(k-1); ,)( Lk ≤φ  and L is a constant.  

 Details of the theoretical basis and the mathematical proof of the MFLAC are given in Hou and Huang (1997) and 
Hou et al. (1998). In this proof, the equation ( ))1(),(),()1( −=+ kUkukYfky  gives 
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 Using assumption (A2) and the mean value theorem, equation (5) gives 
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 Considering the following equation 
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where )k(η  is a variable. Since condition ,)k(u 0≠∆  equation (8) must have solution )k(η . Let  
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 From (8) and (9), then (7) can be rewritten as )k(u)k()k(y T ∆=+∆ φ1 . This is the same as (3).  In this case, by 

using (3) and assumption (A3), and ,)k(u 0≠∆ we have  

 

 )k(uL)k(u)k(T ∆≤∆φ                                                            (10) 

 Hence L)k( ≤φ . For the learning control law algorithm, a weighted one-step-ahead control input cost function is 

adopted, and given by 
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 For the control design, where yr(k+1) is the expected system output signal (true output of the controlled plant), and 
λ  is a positive weighted constant. The equation (3) can be rewrite as follows 
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 Substituting (12) into (11), differentiating (11) with respect to u(k), solving the equation 0=∂∂ )k(u/))k(u(J , and 

using the matrix-inversion-lemma, the control law is obtained: 
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 The control law (13) is a kind of control that has no relationship with any structural information (mathematical 
model, order, structure, etc.) of the controlled plant. It is designed only using I/O data of the plant. 

The cost function proposed by Hou et al. [5] for parameter estimation is used in this paper as 
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 Using the similar procedure of control law equations, we can obtain the parameter estimation algorithm as follows: 
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 Summarizing, the MFLAC scheme is 
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where step-size series ρ  and η , and the weighted constants λ  and µ  are design parameters optimized by differential 

evolution in this paper. The parameter ε  is a small positive constant (adopted 0.00001), M is adopted with value 10, 

and )(ˆ)k(ˆ 1φ=φ  is the initial estimation value of ).k(φ  

 
 
3. OPTIMIZATION OF MFLAC DESIGN USING DIFFERENTIAL EVOLUTION 

 
Evolutionary algorithms are a broad class of stochastic optimization algorithms inspired by biology and, in 

particular, by those biological processes that allow populations of organisms to adapt to their surrounding 
environments: genetic inheritance and survival of the fittest. Evolutionary algorithms have a prominent advantage over 
other types of numerical methods. They only require information about the objective function itself, which can be either 
explicit or implicit (Brest et al., 2007). 

The DE algorithm (Storn and Price, 1995; Storn, 1997) is an evolutionary algorithm which uses a rather greedy and 
less stochastic approach to problem solving than do classical evolutionary algorithms such as genetic algorithms, 
evolutionary programming, and evolution strategies. DE also incorporates an efficient way of self-adapting mutation 
using small populations.  

DE is a very simple but very powerful stochastic global optimizer. The crucial idea behind DE is a scheme for 
generating trial parameter vectors. Like all genetic algorithms, DE is population based. It evolutes generation by 
generation until the termination conditions have been met (Qing, 2006).  

The different variants of DE are classified using the following notation: DE/α/β/δ, where α indicates the method for 
selecting the parent chromosome that will form the base of the mutated vector, β indicates the number of difference 
vectors used to perturb the base chromosome, and δ indicates the recombination mechanism used to create the offspring 
population. The bin acronym indicates that the recombination is controlled by a series of independent binomial 
experiments. The variant implemented here of DE was the DE/rand/1/bin, which involved the following steps: 

 
Step 1: Parameter setup 

The user chooses the parameters of population size, the boundary constraints of optimization variables, the mutation 
factor (fm), the crossover rate (CR), and the stopping criterion of maximum number of iterations (generations), tmax. 

Step 2: Initialization of the population 

Set generation t=0. Initialize a population of i=1,..,M individuals (real-valued n-dimensional solution vectors) with 
random values generated according to a uniform probability distribution in the n dimensional problem space. These 
initial individual values are chosen at random from within user-defined bounds (boundary constraints). 

Step 3: Evaluation of the population 

Evaluate the fitness value of each individual.  

Step 4: Mutation operation (or differential operation) 

Mutation is an operation that adds a vector differential to a population vector of individuals according to the 
following equation: 
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where i =1,2,...,M is the individual’s index of population; j=1,2,..., n is the position in n dimensional individual; t is the 

time (generation); [ ]T
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vector; r1, r2 and r3 are mutually different integers and also different from the running index, i, randomly selected with 
uniform distribution from the set { }Nii ,,1,1,,2,1 LL +− ; fm > 0 is a real parameter called mutation factor, which 

controls the amplification of the difference between two individuals so as to avoid search stagnation and is usually 
taken from the range [0.1, 1]. 

 Step 5: Recombination (crossover) operation 

Following the mutation operation, recombination is applied to the population. Recombination is employed to 
generate a trial vector by replacing certain parameters of the target vector with the corresponding parameters of a 
randomly generated donor vector. 

For each vector, zi(t+1), an index { }nirnbr ,,2,1)( L∈  is randomly chosen using uniform distribution, and a trial 

vector, [ ]T
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21
+++=+ , is generated with 

 







≠>
=≤+

=+
)( or )   if   ),(

,)(or )  if   ),1(
)1(

irnbrjCRrandb(j)tx

irnbrjCRrandb(j)tz
tu

ji

ji

ji                                           (21) 

 

 In the above equations, randb(j) is the j-th evaluation of a uniform random number generation with [0, 1] and CR is 
a crossover or recombination rate in the range [0, 1]. The performance of a DE algorithm usually depends on three 
variables: the population size N, the mutation factor fm, and the recombination rate CR. 

Step 6: Selection operation 

Selection is the procedure of producing better offspring. To decide whether or not the vector ui(t + 1) should be a 
member of the population comprising the next generation, it is compared with the corresponding vector xi(t). Thus, if f 
denotes the objective function under minimization, then 
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 In this case, the cost of each trial vector ui(t+1) is compared with that of its parent target vector xi(t). If the cost, f, of 
the target vector xi(t) is lower than that of the trial vector, the target is allowed to advance to the next generation. 
Otherwise, the target vector is replaced by the trial vector in the next generation [26]. 

Step 7: Verification of stopping criterion 

 Set the generation number for t = t + 1. Proceed to Step 3 until a stopping criterion is met, usually tmax. The stopping 
criterion depends on the type of problem. 

 

 In this paper, the DE optimization technique is adopted to obtain φ(1), ρ , η , λ  and µ  for the MFLAC design. The 

setup of DE applied in this work was the following:  
• population size: M = 20; 
• crossover rate: CR = 0.8; 
• mutation factor: fm = 0.5; 
• stopping criterion: tmax = 50 generations. 
 

The objective of the DE in the MFLAC optimization is to maximize the fitness equation given by 
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where u(k) is the control signal, y(k) is the process output, and yr(k) is the reference (setpoint), and ξ is a scale factor 
(adopted ξ = 0.3). 
 

 

4. SIMULATION RESULTS 
 

The control valve system is an opening with adjustable area. Normally it consists of an actuator, a valve body and a 
valve plug. The actuator is a device that transforms the control signal to movement of the stem and valve plug. Wigren 
(1993) describes the plant where the control valve dynamic is described by a Wiener model (the nonlinear element 
follows linear block) and it is given by 
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where u(k) is the control pressure, x(k) is the stem position, and y(k) is the flow through the valve which is the 
controlled variable. The input to the process, u(k), is constrained between [0; 1.2]. The nonlinear behavior of the control 
valve described by equation (25) is shown in Figure 1.  

 
 

 
Static characteristic of a control valve. 

 
 
The space search adopted in DE setup is: 50.0)1(0 ≤≤ φ , 10 ≤≤ ρ ,  20 ≤≤ η , 00.10 ≤≤ λ , and .10 ≤≤ µ In 

Table 1 is presented the convergence of DE  for the design of MFLAC in 30 runs. An analysis of Table 1 reveals that 
DE found the mean fitness value closed to the best fitness value and also with small standard deviation value. 

 
Table 1. Simulation results for MFLAC’s tuning (analysis of best fitness of each run) in 30 runs.   

fitness function, f 
best mean minimum standard deviation 

0.5102 0.4605 0.4079 0.0338 
 
 
For the MFLAC design, the optimization procedure by DE obtains 880843.0)1( =φ , 237826.0=ρ , 965818.1=η , 

λ = 0.119052, and 16102 −⋅=µ  with fitness f = 0.5102 (best result of Table 1 in 30 runs).  



 

Results for servo and regulatory responses of MFLAC are shown in Figures 2 and 3, respectively. Regulatory 
behavior analysis of the MFLAC was based on parametric changes (disturbances) in the plant output when: (i) sample 
10: y(k) = y(k) + 0.05; (ii) sample 140: y(k) = y(k) - 0.3; (iii) sample 260: y(k) = y(k) – 0.2; (iv) sample; and (iv) sample 
320: y(k) = y(k) + 0.1. 

Simulation results presented in Figures 2 and 3 showed that the MFLAC using DE approach have good control 
performance. The nonlinear nature of control valve implies changes of the parameters due to the different operating 
conditions or operating point. In this case, the MFLAC was designed to follow the changes of setpoint using DE. 

Performance of MFLAC design was affected by nonlinearity of control valve. Furthermore, the MFLAC design 
obtained fast response, reasonable control activity, and good setpoint tracking ability. The good performance indicated 
by the MFLAC using DE approach confirms the usefulness and robustness of the proposed method for practical 
applications.  Although the simulation results had shown only the step responses to reference changes, good disturbance 
rejection properties can be obtained using MFLAC. 

In Table 2, a summary of simulation results and performance of the MFLAC design based on DE is presented. 
 
 

Table 2. Performance indices for the best MFLAC design using DE optimization. 

MFLAC performance servo behavior regulatory behavior 
mean of u  0.4630 0.4663 

variance of u 0.0753 0.0770 
mean of error 0.0024 0.0016 

variance of error 0.0037 0.0045 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    
Input and output signals for the MFLAC (servo behavior) 

 

        
Input and output signals for the MFLAC (regulatory behavior) 

 
 

 
 
 

5. CONCLUSION AND FUTURE RESEARCH 
 
The DE algorithm is a direct method and it has a role to play where the gradient of the function is not available. 

Design of DE certainly brought a new dimension to the direct search techniques in the field of global optimization. In 
this paper, numerical results for controlling a control valve have shown the efficiency of a MFLAC design using DE 
optimization algorithm that guaranteed the convergence of the tracking error for servo and regulatory responses.  

However, it still has a distance to industrial applications and more practical issues must be done. A further 
investigation can be directed to analyze the DE for model-free adaptive control methods (Spall and Cristion, 1998) in 
essential control issues such as control performance, robustness and stability in multivariable processes.  
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