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Abstract. It is well-known that conventional control theori® widely suited for applications where the peses can
be reasonably described in advance. However, wherpfant's dynamics are hard to characterize pebcisr are

subject to environmental uncertainties, one mayenter difficulties in applying the conventionalntmller design
methodologies. Despite the difficulty in achievimgh control performance, the fine tuning of colimoparameters is
a tedious task that always requires experts withwedge in both control theory and process inforomatNowadays,
more and more studies have focused on the develtpsh@daptive control algorithms that can be diyeapplied to

complex processes whose dynamics are poorly moaelétbr have severe nonlinearities. In this contiwet design of
a Model-Free Learning Adaptive Control (MFLAC) bdsin pseudo-gradient concepts and optimizationgoioe by
Differential Evolution (DE) is presented in thispe. DE algorithms are evolutionary algorithms thave already
shown appealing features as efficient methods Her dptimization of continuous space functions. Matibn for

application of DE approach is to overcome the ktinin of the conventional MFLAC design, which cahgoarantee
satisfactory control performance when the plant diffierent gains for the operational range wherigiesi by trial-

and-error by user. Numerical results of the MFLAGhwparticle swarm optimization for a nonlinear tohvalve are
showed.
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1. INTRODUCTION

Model-based control techniques are usually impldéetmunder the assumption of good understandingratgss
dynamics and their operational environment. Thesdhrtiques, however, cannot provide satisfactoryli®avhen
applied to poorly modeled processes, which canatpén ill-defined environments. This is often ttese when dealing
with complex dynamic systems for which the physmacesses are either highly nonlinear or are witt éinderstood
(Karrayet al, 2002).

The conventional Proportional-Integral-DerivativD) algorithm is still widely used in process irsthies because
its simplicity and robustness. PID controllers e most common controllers in industry. In fa&%®of control loops
use PID and the majority is PI control (Astrém atégglund, 2005). Consequently, many different mashicave been
proposed for determining the three controller patans, i.e., proportional, integral, and derivatyains, to meet
different requirements of various control applioas. However, its performance is not adequate inynehemical
processes. A change in the signal and the direadttgrof the process gain is a complex practicalation and, so, still
becoming complex the design of a control systerad®arncet al., 2003).

It is believed that a fixed-parameter PID may notwkll for nonlinear, time-variant, or coupled pesses. It needs
to be re-tuned adequately to retain robust comteosformance over a wide range of operating conaitifAli, 2000).
Alternatively, several approaches have been prapasehe literature for controlling nonlinear preses, such as
model predictive control, neural control, fuzzy troh robust control, sliding mode control, and jpiilze control.

Adaptive control methods are able to cope with dngroblems involving internal process uncerta@stas well as
external environmental uncertainties. The aim of fraper is to merge for nonlinear systems, theaifvde learning
adaptive control structure (Hou and Huang, 1997y Etbal, 1998) with the controller design optimizatiorsed on
Differential Evolution (DE). DE is an evolutionaajgorithm originally proposed by Storn and Price93) and Storn
(1997) whose main design emphasis is real pararoptenization. DE is based on a mutation operatdich adds an
amount obtained by the difference of two randonfigsen individuals of the current population, in tcast to most
evolutionary algorithms, in which the mutation agter is defined by a probability function. Despid&’s apparent
simplicity, the interacting key evolutionary openat of mutation and recombination are present dfetteve. In
particular, DE has the advantage of incorporatinglaively simple and efficient form of self-adiqgt mutation.

The remainder of this paper is organized as folldwsection 2, a model-free learning adaptive drstructure is
described, while section 3 explains the concept®Bfoptimization method. Section 4 presents theukition results
for the control of a valve with nonlinear behavioluastly, section 5 outlines our conclusion andifatresearch.



2. MODEL-FREE LEARNING ADAPTIVE CONTROL

It is well-known that conventional control theoriage widely suited for applications where the peses can be
reasonably described in advance. However, wheplthd's dynamics are hard to characterize preciselgre subject
to environmental uncertainties, one may encountfficulties in applying the conventional controllestesign
methodologies.

Adaptive control schemes are alternatives for hagdprocesses with unknown nonlinearities. In tlastpfew
decades, there has been considerable interest idetelopment of adaptive control systems thatraatically adjust
controller parameters to compensate for unantieppahanges in the process and/or the environmédsat.ability of
dealing with time-varying characteristics, nonlirigas, and uncertainties enables adaptive comtigrithms to have
significant potential for the operation of complerocesses whose dynamics is imprecisely known amdésubject to
changes in unpredictable ways.

Closed-loop adaptive control methods may be dividéal two broad categories: (fdirect or explicit control, (i)
direct or implicit control. Indirect control metheditilize separate parameter identification andtrobrschemes. The
plant parameters are estimated explicitly on-limel dhe control parameters are then adjusted basedhese
estimations. In contrast to this, direct controkimeels do not utilize an explicit identification thfe process parameters.
The identification and control functions are merget one scheme. The controller parameters anaestat] directly,
only using plant input and output signals (Ozcaliki Kaufman, 1999).

In this paper, a direct adaptive control of thddi@ing general discrete SISO (Single-Input and &ir@utput)
nonlinear system is considered

y(k+1)= f(y(k ), y(ke p )u(kd- uck ,n) )@@

wheren, andn, are the orders of system outputk), and input,u(k), respectively, and(-) is a general nonlinear
function. The plant (equation 1) can be rewritterfalows:

y(k +1) = (Y (K),u(k),U (k - 1)) )

whereY(k) andU(k-1) are the sets of system outputs and inputs sprpling instank andk-1.

The following assumptions are considered aboutdmgrolled plant: (Al) the system (1) and (2) isetvable and
controllable; (A2) the partial derivative &f) with respect to control inpu(k) is continuous; and (A3) the system (1) is
generalized Lipschitz.

For a nonlinear system (2), satisfying assumpti@ts-A3), then there must exisp(k), called pseudo-gradient

vector, when control chang&u(k) # 0, and
By(k+1)=g¢" (k)Au(k) 3)
where the control changi(k) = u(k) - u(k-1);||l@(k)[ < L, andL is a constant.

Details of the theoretical basis and the matherabgiroof of the MFLAC are given in Hou and Huad§%7) and
Houet al (1998). In this proof, the equatioyik +1) = f(Y(k),u(k),U (k —1)) gives

Ay(k+1) = £ (Y(K),u(k),U (k-1))- f(Y(k -2),u(k-1),U (k- 2)) (4)
or
Ay(k+1) = f(Y(K),u(k),U (k-1))- f(Y(k),u(k-1),U (k-1))+ ©)
f (Y (k),u(k),U (k-2))- f(Y(k-12),u(k —1),U (k- 2))
Using assumption (A2) and the mean value theoegmation (5) gives
of =
Ay(k+1) = Au(k)+é&(k) (6)

au(k)



where denotes the value of gradient vectorfc(f{(k),u(k),u (k —1)) with respect ta at some point between

ou(k)
u(k-1) andu(k), and (k) given by
g(k) = f(Y(k),u(k =1),U (k -1))- f (Y(k-1),u(k -1),U (k - 2)) (7)
Considering the following equation

£(k)=nT (k)du(k) ®)

wherenp(k) is a variable. Since conditiohu(k ) # 0, equation (8) must have solutigr{k) . Let

of =

AR =50

+77(k) 9)

From (8) and (9), then (7) can be rewritter®agk +1) = (oT (k)Au(k). This is the same as (3). In this case, by
using (3) and assumption (A3), addi(k ) # 0,we have

‘qu (k)Au(k)‘ < Ljau(k) (10)

Hencel||@(k )| < L. For the learning control law algorithm, a weightee-step-ahead control input cost function is
adopted, and given by

J(u(K))=[ y(k+1 - y (k1) +AJA u(Kf (11)

For the control design, wheygk+1) is the expected system output signal (truewduspthe controlled plant), and
A is a positive weighted constant. The equatiorcéB) be rewrite as follows

y(k+1) = y(k) +@" (k)Au(k) (12)

Substituting (12) into (11), differentiating (1d4jth respect tai(k), solving the equatio@J(u(k))/du(k) =0, and
using the matrix-inversion-lemma, the control lawbtained:

_ @k)
u(k)= u(k=1 PRy (a1 ) y(k (13)
i )

The control law (13) is a kind of control that has relationship with any structural information gtinematical
model, order, structure, etc.) of the controlleginpl It is designed only using I/O data of the plan
The cost function proposed by Hetial [5] for parameter estimation is used in this pagse

2 ~ 2
36 = [y - y(c-2) - " Buk -] + etk -k -1 (14)

Using the similar procedure of control law equasiowe can obtain the parameter estimation algoréh follows:

309 = k-1 + MUK ) 6T (k-Dauk-1) (15)
e aut)
Summarizing, the MFLAC scheme is
309 = k-1 + MUK )T (k-Dauk-1) (16)
e aut)



ok)=q1) if

sign( (1)) # sign( ¢(k)) (17)
ok)=q1) if
Hgb(k)” >M ,or”qb(k)“ <e (18)
. PEK) oj1
u(k)=u(k-1 p—F—"—ly (k+1 )} y(k §
nefaor )

where step-size serigs and ), and the weighted constamkssand p are design parameters optimized by differential
evolution in this paper. The parameteris a small positive constant (adopted 0.00001)s adopted with value 10,
and (k) = @(1) is the initial estimation value af(k).

3.OPTIMIZATION OF MFLAC DESIGN USING DIFFERENTIAL EVOLUTION

Evolutionary algorithms are a broad class of stettbaoptimization algorithms inspired by biology danin
particular, by those biological processes that vallpopulations of organisms to adapt to their sumdiog
environments: genetic inheritance and survivaheffittest. Evolutionary algorithms have a prominadvantage over
other types of numerical methods. They only requifermation about the objective function itselfhieh can be either
explicit or implicit (Brestet al, 2007).

The DE algorithm (Storn and Price, 1995; Storn,7)98 an evolutionary algorithm which uses a ratjreedy and
less stochastic approach to problem solving tharcldssical evolutionary algorithms such as genelgorithms,
evolutionary programming, and evolution strateglBE. also incorporates an efficient way of self-aap mutation
using small populations.

DE is a very simple but very powerful stochastiobgll optimizer. The crucial idea behind DE is aesoh for
generating trial parameter vectors. Like all genetigorithms, DE is population based. It evolutemaration by
generation until the termination conditions haverbmet (Qing, 2006).

The different variants of DE are classified usihg following notation: DE#/£/ 9, wherea indicates the method for
selecting the parent chromosome that will form ltlase of the mutated vectgf,indicates the number of difference
vectors used to perturb the base chromosomegdardicates the recombination mechanism used tdetba offspring
population. Thebin acronym indicates that the recombination is cdieloby a series of independent binomial
experiments. The variant implemented here of DE thaDEfand/1/bin, which involved the following steps:

Step 1:Parameter setup

The user chooses the parameters of populationteizdsoundary constraints of optimization variabthe mutation
factor (), the crossover rat€R), and the stopping criterion of maximum numbeit@fations (generationsyay

Step 2initialization of the population

Set generatiott=0. Initialize a population of=1,..M individuals (real-valuea-dimensional solution vectors) with
random values generated according to a uniformgiitity distribution in then dimensional problem space. These
initial individual values are chosen at random fraithin user-defined bounds (boundary constraints).

Step 3:Evaluation of the population
Evaluate the fitness value of each individual.
Step 4:Mutation operatior(or differential operation)

Mutation is an operation that adds a vector difiée¢ to a population vector of individuals accamglito the
following equation:

Z(t+2) =X (O + i DX rp (1) = X515 (0)] 20



wherei =1,2,...M is the individual’s index of populatiofx1,2,...,n is the position im dimensional individualt is the
time (generation)yx; (t) = [Xil (t),xiz(t),...,xin ®) T stands for the position of theh individual of population oN real-

valuedn-dimensional vectorsz (t) :[zil(t),zi2 (t),...,zin(t)]T stands for the position of theh individual of amutant
vector, ry, r, andrz are mutually different integers and also differsotn the running index, randomly selected with
uniform distribution from the se{tl 2, i=Li+1-, N}; fm> 0 is a real parameter callecutation factor which

controls the amplification of the difference betwda®o individuals so as to avoid search stagna#ind is usually
taken from the range [0.1, 1].

Step 5:Recombination (crossover) operation

Following the mutation operation, recombinationajgplied to the population. Recombination is empibye
generate a trial vector by replacing certain patarseof the target vector with the correspondingapeeters of a
randomly generated donor vector.

For each vectorz(t+1), an indexrnbr(i)D{ l2,---,n} is randomly chosen using uniform distribution, aniial

vector, u (t+1) =|u,(t+1), qz(t+1),...un(t+1)r, is generated with

zij(t+]), if randb(j)< CR) orj =rnbi),
uii(t+]): X; (), if randb(j)> CR) or j # rnbi) (21)

In the above equationsandb(j) is thej-th evaluation of a uniform random number generatidth [0, 1] andCRis
a crossoveror recombination raten the range [0, 1]. The performance of a DE atbar usually depends on three
variables: the population si2& the mutation factdf;, and the recombination raBR

Step 6:Selection operation

Selection is the procedure of producing betterpofify. To decide whether or not the veatgt + 1) should be a
member of the population comprising the next geti@rait is compared with the corresponding vec§€). Thus, iff
denotes the objective function under minimizatitwen

X; (t+1):{ui (t+2), if fut+1D)<f(xt), -

X; (t), otherwise

In this case, the cost of each trial veatdir+1) is compared with that of its parent target weg{(t). If the costf, of
the target vectoki(t) is lower than that of the trial vector, the tdrgge allowed to advance to the next generation.
Otherwise, the target vector is replaced by tta #ector in the next generation [26].

Step 7 Verification of stopping criterion

Set the generation number fort + 1. Proceed to Stepustil a stopping criterion is met, usuaths,. The stopping
criterion depends on the type of problem.

In this paper, the DE optimization technique isgteéd to obtaing1), p, n, A andp for the MFLAC design. The

setup of DE applied in this work was the following:
 population sizeM = 20;

» crossover rateCR = 0.8;

* mutation factorf,,= 0.5;

* stopping criteriont,,ox= 50 generations.

The objective of the DE in the MFLAC optimizatioto maximize the fitness equation given by

_ é
f = . .
1+ {zl| y(K) = yr ()| + 0.004u(k) - u(k -] }

(23)



whereu(k) is the control signaly(k) is the process output, agdk) is the reference (setpoint), adgds a scale factor
(adoptedf = 0.3).

4. SIMULATION RESULTS

The control valve system is an opening with adjlistarea. Normally it consists of an actuator, lsevdody and a
valve plug. The actuator is a device that transfotine control signal to movement of the stem ardevalug. Wigren
(1993) describes the plant where the control valyeamic is described by a Wiener model (the noalirdement
follows linear block) and it is given by

x(k) = L5714%(k —1) + 0.6873X(k - 2) + 0.0616(k4) + 0.0543(k-2) (24)
y(K) = folx()] = x(k) 125
1010+ 09dx(k)J?

where u(k) is the control pressureqk) is the stem position, angk) is the flow through the valve which is the
controlled variable. The input to the procagg), is constrained between [D;2]. The nonlinear behavior of the control
valve described by equation (25) is shown in Figure
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The space search adopted in DE setuplis:¢gl) < 050, 0< p<1, 0<p<2, 0£1<100, and0<spu<liIn
Table 1 is presented the convergence of DE fod#dsign of MFLAC in 30 runs. An analysis of Tableelieals that
DE found the mean fithess value closed to the fifesss value and also with small standard deviatiaiue.

Table 1. Simulation results for MFLAC's tuning (&yss of best fithess of each run) in 30 runs.

fitness functionf
best mean minimum standard deviation
0.5102 0.4605 0.4079 0.0338

For the MFLAC design, the optimization procedureDfy obtains¢(l) = 0.880843 o =0.237826, /7 =1.965818
A=0.119052, angt = 210718 with fitnessf = 0.5102 (best result of Table 1 in 30 runs).



Results for servo and regulatory responses of MFLaAE shown in Figures 2 and 3, respectively. Regryla
behavior analysis of the MFLAC was based on parmamehanges (disturbances) in the plant output wkigrsample
10: y(K) = y(k) + 0.05; (ii) sample 140i(k) = y(K) - 0.3; (iii) sample 260y(k) = y(k) — 0.2; (iv) sample; and (iv) sample
320:y(k) =y(k) + 0.1.

Simulation results presented in Figures 2 and 3vsHothat the MFLAC using DE approach have goodrobnt
performance. The nonlinear nature of control vahaplies changes of the parameters due to the diffeoperating
conditions or operating point. In this case, thelME was designed to follow the changes of setposing DE.

Performance of MFLAC design was affected by nomliitg of control valve. Furthermore, the MFLAC dgsi
obtained fast response, reasonable control actisitg good setpoint tracking ability. The good perfance indicated
by the MFLAC using DE approach confirms the usefgbrand robustness of the proposed method forigakct
applications. Although the simulation results shdwn only the step responses to reference chagges,disturbance
rejection properties can be obtained using MFLAC.

In Table 2, a summary of simulation results andquverance of the MFLAC design based on DE is presknt

Table 2. Performance indices for the best MFLAQgtessing DE optimization.

MFLAC performance servo behavior| regulatory behavig
mean ofu 0.4630 0.4663
variance ol 0.0753 0.0770
mean of error 0.0024 0.0016
variance of error 0.0037 0.0045
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5. CONCLUSION AND FUTURE RESEARCH

The DE algorithm is a direct method and it hasla to play where the gradient of the function ig awvailable.
Design of DE certainly brought a new dimensionhe tlirect search techniques in the field of gladgaimization. In
this paper, numerical results for controlling a ttcohvalve have shown the efficiency of a MFLAC igsusing DE
optimization algorithm that guaranteed the convecgeof the tracking error for servo and regulat@sponses.

However, it still has a distance to industrial éggtions and more practical issues must be dondurther
investigation can be directed to analyze the DEnfiodel-free adaptive control methods (Spall angt©m, 1998) in
essential control issues such as control performaebustness and stability in multivariable preess
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