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Abstract. This paper investigatesthe potential benefits of using an appropriate infeasibility handling scheme for the
constrained predictive control of a magnetic levitation system. In this case, the input constraints are related to physi-
cal limits on the intensity and rate of variation of the current applied to the electromagnet coil. The output constraints
refer to the width of the air gap between the electromagnet core and the suspended object, which should be kept within
proper operational limits. Infeasibility may arise, for instance, because of modelling errors and sensor noise. In order
to circumvent such difficulties, the technique adopted in this work allows a progressive relaxation of the upper and lower
output constraints in the entire prediction horizon until the resulting quadratic programming problem becomes feasible.
Results obtained by simulation show that such a relaxation procedure leads to an appropriate recovery from constraint
violations. Moreover, it also circumvents infeasibility problems associated to future violations, which may be caused by
incorrect predictions. In this case, because of the receding horizon implementation of the controller, such violations may
actually be avoided. The results are compared to those obtained by using a standard quadratic programming implemen-
tation, which minimizes the distance between the compromise solution and the feasibility boundary, if a feasible solution
cannot be found. It is shown that such an alternative may actually fail to maintain closed-loop stability.
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1. Introduction

The importance of magnetic levitation (maglev) technology has been increasing in a significant manner in the recent
past. Growing interest in this technology can be found in a wide range of fields, with applications including, for instance,
photolithography devices for semiconductor manufacturing (Kim and Trumper 1998), high-speed transportation systems
(Holmer 2003), seismic attenuators for gravitational wave antennas (Varvellaet al. 2004) and self-bearing blood pumps
(Masuzawaet al.2003) for use in artificial hearts.

It is indispensable to keep most maglev systems working under tight constraints to ensure good energy conversion
performance. In addition, failure to enforce such constraints may lead to catastrophic faults, since the magnetic force may
not be strong enough to bring the object back to its reference position. Moreover, the current at the electromagnet coil
is usually subject to slew rate and amplitude limitations, which places a constraint on the control variables. Therefore,
the natural handling of constraints presented by Model Predictive Control (MPC) implementations arises as an interesting
approach to this problem, as discussed in (Famaet al.2005).

In the context of MPC, infeasibility handling becomes an important issue because external perturbations, measurement
noise, modelling errors, among other factors, may make it impossible to respect all the constraints (Maciejowski 2002).
In this case, the use of an infeasibility handling technique is vital to bring the system back to a feasible region in a graceful
manner. However, it is often not obvious which constraints to relax and the amount by which they should be relaxed in
order to attain a feasible optimization problem.

In this work, the benefits of a progressive relaxation of output constraints for the operation of a single-axis, attractive
maglev system under MPC control are studied. A standard solution provided by the Matlabquadprog function, which
minimizes the distance between the compromise solution and the feasibility boundary, is used for comparison.

The remaining sections are organized as follows. The adopted MPC formulation and the controller equations are
described in Section 2. In Section 3, some of the main infeasibility handling approaches are discussed and the technique
under study is detailed. Section 4 describes the simulation model of the maglev system considered in this work, as well
as the linearized model used in the predictive control law and the simulation scenarios employed in the investigation.
Section 5 presents the results obtained with the constraint relaxation method under consideration, as well as with the
default infeasibility handling approach provided by Matlab. Finally, concluding remarks are given in Section 6.

2. Predictive control formulation

Figure 1 presents the main elements of the discrete-time predictive control formulation adopted in this work. A plant
model is employed to calculate output predictions up toN steps in the future, whereN is termed “Prediction Horizon”.
Such predictions are determined on the basis of the state measured at the present time (kth sampling instant), and are also
dependent on the control sequence that will be applied.
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Figure1. Predictive control loop employing state feedback. The optimal control at instantk is denoted byu∗(k).

In the mathematical formulation presented below, the following notation is adopted. The controlled (plant output),
manipulated (plant input), reference and state variables at thekth sampling instant are denoted byy(k) ∈ R, u(k) ∈ R,
r(k) ∈ R, x(k) ∈ Rn, respectively. Increments are denoted by∆y(k) = y(k)− y(k − 1). The hat symbol(ˆ) denotes a
predicted value. Reference and predicted values are stacked in column vectors as

R =




r(k + 1)
...

r(k + N)


 , Ŷ =




ŷ(k + 1|k)
...

ŷ(k + N |k)


 , ∆Û =




∆û(k + 1|k)
...

∆û(k + M |k)


 (1)

whereN andM are the prediction and control horizons, respectively. Finally,TN , IN andΓN denote aN × N lower
triangular matrix of ones, aN ×N identity matrix, and aN × 1 column vector of ones, respectively.

The optimizer depicted in Fig. 1 determines the sequence of future control increments∆û(k− 1+ i|k), i = 1, . . . , M
that minimizes the cost function specified for the problem, subject to constraints on the plant inputs and outputs. The
value ofM (“Control Horizon”) is typically smaller thanN , and the optimization assumes that∆û(k − 1 + i|k) = 0 for
M < i ≤ N . The control is implemented in a receding horizon manner, that is, only the first element of the optimized
control sequence is applied to the plant and the optimization is repeated at the next sampling instant, on the basis of fresh
measurements.

The following cost function, which penalizes tracking errors at the plant output and control variations at the plant
input, was adopted:

J(∆Û) =
N∑

i=1

[ŷ(k + i|k)− r(k + i)]2 +
M∑

i=1

ρ[∆û(k − 1 + i|k)]2 (2)

whereρ > 0 is a weight parameter that can be used to tune the performance of the control loop. Using vector-matrix
notation, the cost function can be rewritten in the form

J(∆Û) = (Ŷ −R)T (Ŷ −R) + ρ∆ÛT ∆Û (3)

The relation between̂Y and∆Û can be expressed by a prediction equation based on an incremental state-space model.
By assuming a linearized model of the formx(k + 1) = Ax(k) + Bu(k), y(k) = Cx(k), the incremental model can be
written as∆x(k + 1) = A∆x(k) + B∆u(k), ∆y(k) = C∆x(k). Therefore, a prediction equation for∆y can be written
as (Maciejowski 2002)

∆Ŷ =




CB 0 · · · 0
CAB CB · · · 0

...
...

. ..
...

CAN−1B CAN−2B · · · CAN−MB




︸ ︷︷ ︸
P

∆Û +




CA
CA2

...
CAN




︸ ︷︷ ︸
Q

∆x(k) = P∆Û + Q∆x(k) (4)

It can be easily seen that∆Ŷ andŶ are related as

Ŷ =




1 0 · · · 0
1 1 · · · 0
...

...
. ..

...
1 1 1 1


 ∆Ŷ +




1
1
...
1


 y(k) (5)



or Ŷ = TN∆Ŷ + ΓNy(k). Moreover, by using (4), it follows that

Ŷ = TNP︸ ︷︷ ︸
G

∆Û + TNQ∆x(k) + ΓNy(k)︸ ︷︷ ︸
F

= G∆Û + F. (6)

Therefore,the cost function (3) can be rewritten as

J(∆Û) = (G∆Û + F −R)T (G∆Û + F −R) + ρ∆ÛT ∆Û (7)

= ∆ÛT (GT G + ρIM )∆Û + 2(F −R)T G∆Û + (F −R)T (F −R) (8)

which is quadratic in∆Û .
If restrictions on the manipulated and controlled variables of the formumin ≤ û(k− 1 + i|k) ≤ umax, i = 1, . . . , M

andymin ≤ ŷ(k + i|k) ≤ ymax, i = 1, . . . , N , are to be satisfied, the minimization of the cost is subject to the following
linear constraints on∆Û (Camacho and Bordons 1999):




TM

−TM

G
−G


 ∆Û ≤




BlM [umax − u(k − 1)]
BlM [u(k − 1)− umin]

BlN [ymax]− F
F −BlN [ymin]


 (9)

whereBlN [•] is an operator that stacksN copies of a given column vector. The set of constraints (9) can be rewritten in
compact form asS∆Û ≤ b. Therefore, the optimization problem to be solved at each sampling period is one of Quadratic
Programming (quadratic cost, linear constraints), for which efficient numerical algorithms are available (Maciejowski
2002).

It is worth noting that the formulation presented above has inherent integral control action, as can be seen from the
presence of a discrete integrator in fig. 1. Such a feature stems from the use of an incremental state-space model. In this
sense, the present formulation is more elegant than the version employed in (Famaet al.2005).

3. Constraint relaxation approaches

As mentioned in Section 1, it is not always possible to enforce all constraints because the effects of measurement
noise, external disturbances and modelling errors may cause the optimization problem to become infeasible. In this case,
some technique has to be applied to drive the system state back to a feasible region. There are different approaches for
this purpose, some of which will be briefly discussed in this section.

Initially, one must differentiate between two types of constraints, according to (Alvarez and Prada 1997):

Physical constraints: those limits that can be never surpassed and are determined by the physical functioning of the
system. For instance, a valve cannot be opened more than100%.

Operating constraints: those limits fixed by the plant operator. These limits, which are more restrictive than the physical
constraints, define the band within which the variables are expected to be under normal operating conditions.

The physical constraints are also denominated hard constraints, given that they cannot be relaxed. In contrast, the
operating constraints are called soft constraints.

(Alvarez and Prada 1997) describe a relaxation procedure that can be applied either to the controls or to the system
outputs. The control-related approach consists of relaxing the operating constraints on the control amplitude or rate of
change according to a priority schedule. The output-related approach consists of relaxing the operating constraints on the
output amplitude or modifying the time interval where such constraints are imposed within the prediction horizon.

More sophisticated infeasibility handling techniques are described in (Rawlings and Muske 1993) and (Scokaert and
Rawlings 1999):

Minimal time approach: An algorithm identifies the smallest time,κ(x), which depends on the current statex, beyond
which the state constraint can be satisfied over an infinite horizon. Prior to timeκ, the state constraint is ignored,
and the control law enforces the state constraint only after that time. An advantage of this method is that it leads to
the earliest possible constraint satisfaction. Transient constraint violations, however, can be large.

Soft-constraint approach: Violations of the state constraints are allowed, but an additional term is introduced in the cost
function to penalize the constraint violation.

The present work employs a gradual output constraint relaxation procedure, which consists of progressively relaxing
the constraints until the optimization problem becomes feasible. It is worth noting that, by forcing the relaxations to be
made on the output variable, the algorithm always produces control actions that are within the physical constraints for the
plant.



For comparison, the standard approach for infeasibility handling employed by the quadratic programming solver
available in the Matlab environment (quadprogfunction) is also investigated. In this case, when infeasibility occurs,
the algorithm delivers a solution that minimizes the maximum distance to the violated constraint boundaries. Since no
priorities are ascribed to the constraints, this solution may violate the control variable limits (related to either amplitude
or rate of change), which, in the simulation scenario studied in this paper, are physical constraints. As will be seen in the
simulation results, the consequences of adopting such an approach can be catastrophic.

4. Methodology

4.1 Plant model

The simulations carried out in this work concerned the dynamics of the Feedback Magnetic Levitation Systemc©,
which is depicted in Figure 2. The infrared photo-sensor is assumed to be linear in the required range of operation,
yielding a voltagey that is related to distanceh asy = γh + y0, where the gainγ > 0 and the offsety0 are such
thaty ∈ (−2V, +2V ). Currenti is regulated by an inner control loop, and is linearly related to the input voltageu as
i = ru + i0 with r > 0 and i0 > 0. The working excursion ofu is limited between−3V (corresponding to a null
coil current) and+5V (saturation value). Rates of change larger than50V/s for u cannot be implemented by the current
driver along its entire working range.
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Figure2. Main components of the control loop. The attraction forcef is related toi andh in the formf = Ki2/h2,
whereK > 0 is an electromechanical conversion gain.

The dynamics of the vertical movement of the suspended sphere can be modelled by the following equation:

m
d2h

dt2
= mg −K

i2

h2
(10)

whereK > 0 is an electromechanical conversion gain,m is the mass of the sphere,g is the acceleration of gravity, andi
is the coil current. As discussed in (Famaet al. 2005) and (Galvãoet al. 2003), in view of the sensor and current driver
characteristics, the model can be realized in state-space form as

ẋ1 = x2, ẋ2 = γg − K(ru + i0)2γ3

m(x1 − y0)2
(11)

wherex = [y, dy/dt]T .
By using a first-order Taylor expansion around a given equilibrium pointx̄ = [ȳ, 0]T , a linearized model can be

written as

˙̃x =
[

0 1
α 0

]
x̃ +

[
0
−β

]
ũ (12)

whereα = 2γg(ȳ − y0)−1, β = 2rγ2(ȳ − y0)−1
√

m−1Kg andthe tilde denotes deviations from the equilibrium.
The following values for the physical model parameters were experimentally determined in (Grimm 2002):m =

2.12× 10−2kg, g = 9.8m/s2, y0 = −7.47V, γ = 328V/m, i0 = 0.514A, r = 0.166A/V, K = 1.2× 10−4Nm2/A2.
The predictive control law was based on the model linearized around the center of the working range of the position

sensor (̄y = 0). A 5ms sampling period was adopted, relying on a previous study (Galvãoet al. 2003) concerning the
digital control of the system. Assuming that a zero-order hold will keep the control signal constant between sampling



instants(Hemerly2000), the model matrices resulting after linearization and discretization are

A =
[

1.0109 0.0050
4.3773 1.0109

]
, B =

[ −0.0144
−5.7552

]
, C =

[
1 0

]
(13)

4.2 Simulation scenarios

All simulations were carried out in the Matlab 6.5/Simulink environment by using the nonlinear differential equations
describing the system dynamics. A specific Matlab S-function was written to implement the predictive control law. The
Quadratic Programming problem was solved by using thequadprog function of the Matlab Optimization Toolbox.

Appropriate prediction and control horizons were chosen on the basis of a previous paper (Famaet al.2005), in which
the authors determined that a prediction horizonN = 20 and a control horizonM = 4 produce a good compromise
between speed of response and damping. Moreover, the control weight was set toρ = 10 as recommended in (Fama
et al. 2005) to achieve good rejection of measurement noise. The output constraints were set toymin = −0.01V and
ymax = +0.01V.

Two different simulation scenarios were considered in the study.
a)Starting from an infeasible point, without noise. In this first case, the sensor was assumed to be ideal (no measure-

ment noise) and the initial conditions were set toy = −0.1V and ẏ = 0. The initial position is such that it violates the
constraints, and thus the system starts at an infeasible point.

b)Starting from a feasible point, with noise. In this second case, the initial conditions were set within the feasible
region (y= 0 andẏ = 0) and white Gaussian noise with zero mean and variance of1.6× 10−5V was added to the sensor
measurements. In addition, since there is only a position sensor at the actual magnetic levitator, the speed was estimated
from the position measurements by a filter with transfer function100s/(s + 100).

In order to compensate the fact that thequadprog function may generate control actions outside the operational limits
in infeasibility situations, an amplitude saturator and a rate limiter were introduced at the controller output, so that the
control applied to the system is in agreement with the physical limits.

A constant-step relaxation scheme applied to the output constraints was compared with the default algorithm for
infeasibility handling implemented in thequadprog function. In both simulation scenarios, the relaxation step was set
to 0.05V for both the positive and negative output constraints (added to the positive constraint and subtracted from the
negative one).

5. Results and discussion

5.1 Starting from an infeasible point, without noise

In this simulation scenario, the purpose consists of investigating the recovery from an initial infeasible point. No
noise was added to the position measurements. The reference value for the sensor output was maintained at0, but the
initial condition was set to a position corresponding toy = −0.1V with null speed. It is worth noting that negative
sensor measurements correspond to positions above the central line of the apparatus. Fig. 3a shows that the scheme with
relaxation of output constraints deals with the infeasibility problem in a satisfactory manner, leading the system to the
desired setpoint. In contrast, the default approach without relaxation leads to divergence (i.e. the suspended ball moves
away from the magnetic core and falls).
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Figure3. (a) Output and (b) control signals obtained in the simulation starting from an infeasible initial condition.

Figure 3b clarifies the action of the controller without the policy of constraint relaxation. Since the initial conditions
violate the constraints, the controller applies a very small control signal (i.e., a very small current in the magnet coil) in
the beginning and the ball starts to fall rapidly toward the feasible region. However, when the controller tries to recover
the ball from its fall, the control action is limited, first by the rate of variation of the current (until approximately0.1s)
and then by the upper bound on the current. As a result, the controller cannot prevent the ball from falling.

Finally, Fig. 4 demonstrates that the number of relaxations needed to circumvent the infeasibility problem is quite
small, showing that the computational overhead involved in this approach is not significant. Also, it can be seen that
the relaxations occur mostly when they are actually needed (when the constraint violation is bigger), and no more than
the necessary. In fact, since the initial violation is of−0.09V and the relaxation step is0.05V , only two relaxations are
employed at the initial instant.
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Figure4. Number of relaxations at each time step for the first simulation scenario.

5.2 Starting from a feasible point, with noise

In this case, the simulation was carried out with the system starting from the reference value,y = 0V, which, of course,
respects the constraints. White Gaussian noise was introduced at the sensor output in order to simulate measurement noise.
Since there is no speed sensor, the velocity is estimated by the filtered derivative of the position.

Again, the performance obtained with output constraint relaxation is superior, as shown in Fig. 5a. As can be seen,
the noise leads the system controlled without relaxation of constraints to diverge (the ball falls), while the one endowed
with relaxation of constraints maintains the output around the reference value. It is important to note, however, that
the relaxation of constraints cannot avoid the output oscillations, which occasionally violate the constraints. As in the



previoussimulation, the control action of the approach without output constraint relaxation saturates the rate limiter and
hits the upper bound for the current as shown in Fig. 5b.
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Figure5. (a) Output and (b) control signals obtained in the simulation with measurement noise.

Finally, Fig. 6 illustrates the persistent acting of the relaxation algorithm every time that a violation occurs (or is
predicted to occur) because of the noise. It is important to observe, however, that only one or two relaxation steps are
enough to bring the system back to a feasible region in most cases.
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Figure6. Number of relaxations at each time step for the second simulation scenario.

6. Conclusion

The results obtained in this work show that a simple policy of constraint relaxation in an MPC controller for a mag-
netic levitator can be quite benefic in comparison with the default approach implemented in a commercial optimization
software. The study comprised two different situations: system starting from an infeasible point without noise and starting
from a feasible point with noise. In both cases, the solution yielded by the approach without relaxation of constraints di-
verged, i.e., the suspended sphere fell down. In contrast, the scheme with relaxation of constraints was always capable of
maintaining the plant working in a band around the setpoint. It is worth noting that the extra computational effort involved
in the relaxation procedure was not significant, as seen from the small number of relaxations required in the process.

Such positive results motivate additional investigations concerning different techniques of constraint relaxation to
circumvent infeasibility problems arising in the predictive control of magnetic levitation systems. Further research is
needed to assess the benefits and disadvantages of each technique in terms of speed of recovery from initial infeasibility



conditionsandregulation performance in the presence of disturbances and measurement noise.
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