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Abstract. In this work, a metaprogramming language is proposed for task specification of an unmanned underwater 
vehicle (UUV) named VSOR. The VSOR  is an open frame type UUV with pressure vessels for embedded electronics 
and batteries, and a set of eight undersea thrusters. The vehicle has been devised to provide inspection and 
intervention capabilities in deep water oil field missions. The software consists of two parts, the first one interacts with 
the user through a programming language and the second one implements a command line interpreter that can send 
commands to low-level layers of the embedded system software. The use of metaprogramming is specially usefull when 
users must program the VSOR to perform complex tasks without knowing the low level programming details of the 
embedded system. The metaprogramming system has been initially used to specify vehicle maneuvering in test tank 
trials. The tasks specify different optimal maneuvers, that must be accomplished by the vehicle, in order to estimate its 
hidrodynamic coefficients (both drag coefficients and added mass inertia). The metaprogramming system offers a 
flexible environment which allows easy modification of instructions and parameters during experimental trials. These 
features allow much faster deployment of task specifications when compared to customised programming solutions that 
need to access  low-level layers of the embedded system software. 
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1. INTRODUCTION  
 

Nowadays, the brazilian oil production in offshore fields represents a significant portion of the total oil production. 
Although costly, deepwater exploration - water depths of more than 400m - is already successful. Nevertheless, there is 
a great technological demand arising from the need to reduce deepwater production costs and to enable oil production in 
new offshore fields which have been discovered in ultra-deepwaters (3000m). In this context, a semi-autonomous 
unmanned underwater vehicle (UUV), named VSOR, is being developed at the Mechatronics Engineering Department 
at the University of Sao Paulo. The name VSOR is an acronym for Veículo Submarino Operado Remotamente, 
(Remotely Operated Underwater Vehicle). The classification of the VSOR, an open frame UUV type, as semi-
autonomous is due to the combination of a remotely operated mode together with some degree of autonomous 
behaviour. The autonomous behaviour is provided by a real-time embedded software that performs sensor data 
acquisition and can generate trajectory planning and position control when close to the target. Due to limited space in 
the pressure vessels for embedded electronics and the severe energy consumption constraints, only one single board PC-
104 computer with several I/O interfaces is utilised. Embedded software with hard constraints has been historically 
designed as custom solutions, using techniques such as the executive while (Burns, 2001). In the executive while the 
process scheduling is a priori estimated. Each process is given a set of time slots in a way that all processes are able to 
respect their deadlines. In the case of a complex embedded system as the VSOR, this hard coded solution is not 
adequate as the inclusion of new sensors and actuators would imply in recalculating the a priori scheduling. In order to 
accommodate new hardware and software configurations, the embedded system software is developed using a Real 
Time Operating System, the VxWorks from WindRiver Inc. The set of concurrent processes that composes the 
embedded system software are developed independently, and with priorities assigned, the VxWorks can handle the 
process scheduling. Although much more flexible, this solution still demands a great attention on process scheduling, 
process priorities, process interactions and resource allocation in order to meet process deadlines (Ramamritham and 
Stankovic, 1994). Usually, the control system designer does not have a fine knowledge about the embedded system 
low-level programming details. In this work, a new metaprogramming language for task specification of the VSOR is 
introduced. The metaprogramming system has been initially used to specify vehicle maneuvering in test tank trials. The 
tasks specify different optimal maneuvers that must be accomplished by the vehicle, in order to estimate its 
hidrodynamic coefficients (both drag coefficients and added mass inertia). The metaprogramming system offers a 
flexible environment which allows easy modification of instructions and parameters during experimental trials. These 
features allow much faster deployment of task specifications when compared to customised programming solutions that 
need to access low-level layers of the embedded system software. 

This paper is organized as follows. Section 2 summarises the mechanical design of the VSOR and its thruster 
system. Sections 3 and 4 present the control architecture and the sensor suite. Section 5 follows with the presentation of 
the metaprogramming language. Section 6 describes the basic procedures for programming the VSOR using the 
metaprogramming language. Section 7 presents some experimental results. And finally, some conclusions about the 
feasibility of the method are drawn in Section 8. 
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2. THE VSOR DESIGN: Mechanical Design and Thruster System 
 

The vehicle is constructed with aluminum tubular structure with the following dimensions, l = 1.4m x w = 1.2m x h 
= 0.9m, equipped with three pressure vessels with the same dimensions, l = 1.0m x d = 0.167m. Its weight in air is about 
200Kg and the weight buoyancy force is 2Kgf positive. 

 

 
 

Figure 1. Physical layout of the VSOR. 
 

On the top of the VSOR chassis there is a layer of PVC tubes for buoyancy properties, a pressure vessel for the 
electronics and sensors, and the four horizontal thrusters located in the corners (see Fig. 1). The bottom part of the 
vehicle chassis consists in two pressure vessels that contain batteries and four vertical thrusters arranged in the corners. 
A small vessel l = 0.15m x d = 0.12m is localised approximately in the vehicle mass center carries an Inertial 
Measurement Unit. Modular structural components allow that the vehicle can be easily reconfigured. The overall 
structure of the vehicle is symmetric with respect to both the xz and yz planes. This particular thruster configuration 
enables full controllability of the vehicle motion. 
 
3. CONTROL ARCHITECTURE 

 
The VSOR control architecture, Fig. 2, consists of two main modules: the surface computer system and the sub-sea 

computer system. The surface system (host) is a standard IBM-PC computer running Windows XP OS. This computer 
is responsible for the task-level control commands and it is connected to the sub-sea computer through a Ethernet 
cabling (4-26 AWG cable) using a TCP/IP stack. The sub-sea computer system is responsible for the sensor system 
processing (sensor raw data acquisition and position and velocity estimation) and the low-level control system. It 
consists of an embedded computer system with a set of PC-104 type boards that runs the VxWorks Real-Time operating 
system (VxOs). Apart from the CPU board with a low power NS Geode running on 300MHz, the set of PC-104 boards 
includes an A/D board, a D/A board and a multi-serial board. This computing platform provides a stable and familiar 
programming environment (Altshuler, 2003). 

The programs and the VxOS kernel are built in the surface computer using the WindRiver Tornado IDE and 
downloaded to the sub-sea computer system. Historically, software written for embedded systems has been designed 
using a simple control loop under the while executive concept. The loop calls subroutines, each of which manages part 
of the hardware or the software. This hardware oriented custom software construction is at the base of proposals on the 
hardware & software co-design (Coumeri & Thomas). In the case of a complex system such as the VSOR, this hard 
coded solution is not adequate as the need of inclusion of new sensor and actuators are always likely. The VSOR 
requires a preemptive multitasking software architecture, i.e., tasks must switch based on timing and priorities. In 
VxOS, each task is assigned a priority, and the scheduler ensures that the CPU is allocated to the highest-priority task 
that is on ready state (WindRiver, 2002). The scheduling algorithm tries to accomplish with all deadline constraints, 
responding for particular events (interrupt and task switching, for example) with minimal latency. The complexities of 
managing multiple tasks running seemingly concurrently are solved therefore by the Real-Time Operating System 
Scheduler. 

The VSOR embedded system software modules are designed to run on a VxOS microkernel. It consists of a set of 
sensors and actuators software interfaces and a control process that is responsible for: 

� Scheduling each sensor and actuator concurrent processes; 
� Managing communication with the remote control station; 
� Storing sensors and actuators data into an embedded hard disk; 
� Calculating position and velocity feedback loops; 
� Coordinating the global test. 

When the tests take place, all data are stored into an embedded hard disk for offline analysis. 
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Figure 2. Control architecture schematic diagram. 
 
4. SENSOR SUITE 
 

The VSOR sensor suite is composed by five different sensors that are summarised in Table 1. 
 

Table 1 – Sensor system. 
 

Variable Sensor(Manufacturer) Precision Update Rate Output Inteface 
Heading Compass TCM2 (PNI) ≈1º 13Hz Digital RS-232 

Roll and Pitch Tilt Series 757 (Applied Geomechanics) ≈2º 20Hz Analog A/D card 
Depth Pressure Sensor, MPX5100DP (Motorola) 3.5cm 20Hz Analog A/D card 

Yaw Rate Fiber Optic Gyro, E-Core 2000 (KVH) Bias < 2º/h 10Hz Digital RS-232 
Linear Acceleration Inertial Measurement Unit, VG700A (Crossbow) Bias < 12mg 100Hz Digital RS-232 
Angular Velocity Inertial Measurement Unit, VG700A (Crossbow) Bias < 20º/h 100Hz Digital RS-232 

 
For each sensor an interface software module is implemented allocating the required resources, such as physical 

memory used as circular buffers and a set of I/O and timer interrupts. 
 

5. METAPROGRAMMING 
 

One of the main goals of the use of metaprogramming is to let users work at a higher level of abstraction than if they 
decide to use hard coded solution. Essentially, metaprogramming is formally defined as writing computer programs that 
write or manipulate other programs. The use of a metalanguage, in which the user writes verbose statements to describe 
complex tasks in a human-readable fashion, simplifies the programming task, and broadens the range of actual users of 
the system. The VSOR embedded system software is therefore implemented to run programs written in a metalanguage 
organized in scripts. 

Scripting programming languages, also called scripting languages or script languages, are computer programming 
languages that do not require compilation, i.e., they are typically interpreted. Thus, scripts are often distinguished from 
programs, because programs are converted permanently into binary executable files before they can run. Scripts remain 
in their original form and are interpreted command-by-command each time they run. So, script reduces the traditional 
edit-compile-link-run process, as a result, it automates tests when there is a list of variables to be declared and updated 
frequently.  

In this work, metaprogramming is understood as writing of a set of verbose commands into scripts that specify tasks 
that the VSOR must perform. 
 
6. BASIC PROCEDURES FOR PROGRAMMING 

 
It might be worthwhile to express instances of the problem as sentences in a simple but powerfull language, which 

means allowing task specification into higher abstraction levels. In order to do this some basic metalanguage 



instructions are created:  
� Input thrusters signals: cosine, step, cosine-step combinations and respective parameters; 
� Tests control signals: timer, start, abort and stop execution test; 
� Basic services: sample signal visualization and process control; 
� VSOR motion: linear and rotational motion, and control tests using PID controllers; 
� The execution flow control and conditional statements were also included in the VSOR test instruction set. 

Basically, the grammar defines regular expressions of the VSOR metalanguage instructions, defined as the 
following (Gamma, 2001): 

 
<expression> <parameter_1> <parameter_2> ... <parameter_N> 

 
The symbol expression is the start symbol, that defines which instruction will be executed, than parameter_1, 

parameter_2,…, parameter_N are the instruction related parameters. 
For example: 

ms <sign> <amplitude> <period> <shift> 
 
The ms expression defines a thruster input signal instruction. The sign symbol selects which signal type (i.e., sine, 

step or both combined). Depending of the sign selected, it is necessary to provide a list of parameters. For example: ms 
sin 10 8 2 (a sine signal with amplitude: 10volts, period: 8seconds and shift: 2volts). 

 
The system offers flexible commands to control the VSOR. There are two methods for test execution: send 

instructions directly to the VSOR embedded system and through instruction scripts. The last method is used to automate 
complex maneuvering tests. Sending command-by-command is useful to customise tests, debug the system and make 
interventions during execution. Fig. 3 shows the ways to interact with the VSOR during tests. In Fig. 3, the top VSOR 
client window refers to an example of script use. And the bottom VSOR client window is an example of a direct 
interaction with VSOR, You must note that the embedded system send messages to notify the user about the request 
status. 

 

 
 

Figure 3.  Different methods to interact with the VSOR during experimental tests. 
 
 
7. EXPERIMENTAL RESULTS 
 

Two examples extracted from the trials that have been conducted in the Naval and Oceanic Engineering Department 
test tank are shown in the next two subsections. The main purpose of those tests was the estimation of hydrodynamic 
coefficients of the UUV and this work will focus on the use of metaprogramming and scripts. 

 
7.1. Proportional-Derivative control test 

 
This experimental trial consisted of a Proportional-Derivative (PD) control test. The main goal in this experiment is 

to maintain the VSOR geo-orientation. The initial geo-orientation reference, called by set point, is set manually sending 
an instruction directly to the VSOR before running the test. 

The PD test is programmed like in the script illustrated in Fig. 4. The script contains all parameters and conditions 
required by a usual test, such as name of the log file and start conditions. In addition, coefficients values are defined and 
all thrusters that can be used by the feedback controllers are setup. Basically, the PD controller calculates the control 
effort output based on the compass heading signal. The calculated control action is converted into an equivalent analog 
signal and then send to the specified thrusters. 



 
 

 
 

Figure 4. General view of a PD test. 
 

Figure 5 illustrate results achieved in the PD test. The plotted curve indicates that, in the beginning of the test, the 
VSOR angular orientation is not the same as the desired setpoint (314º). So, the test started with the controller being 
saturated. As a result, the vehicle heading orientation has a fast change. The plot illustrates that the VSOR heading 
orientation converges to 314º. 
 

 
 

Figure 5 - Experimental heading data from compass 
 
7.2. Sinusoidal control experiment 
 

In order to obtain hydrodynamic coefficients, it is necessary to apply specific torque profiles, such as sinusoidal 
torque. This torque is created by applying a sinusoidal signal into a pre-specified set of thrusters. With the correct 
torque profile the VSOR can spin 360 degrees around itself and can turn back to the original position. In Fig. 6, the 
torque that results from a sinusoidal input signal are illustrated.  The torque is estimated using the yaw rate signal 
provided by the gyroscope. 

 



 
 

Figure 6. VSOR torque during a rotation experiment. 
 
8. CONCLUSIONS 
 

In this work, an UUV embedded control system has been presented. Users without concurrent programming skills 
have a mean to define complex tasks for the VSOR. This has been achieved successfully using metaprogramming and 
scripts. Experimental trials performed in the test tank have been successful and allowed the acquisition of a great 
amount of experimental data in a short time, proving to be an efficient tool for task definition and automation.  

The use of metaprogramming to define tasks hid from the task programmer the complexities of the computational 
implementation of the concurrent tasks of the embedded software, such as: 

• The policies to write to the log file the data sampled from sensors. This task is I/O expensive and have to 
be well managed in order not to consume too much CPU time.  

• The policies to write and read from/to the circular buffers configured for each sensor. The configuration of 
the circular buffer size and its access to write and read must be well balanced as the writing access must be 
performed using hardware interruptions and reading access must be synchronized with the log file access. 

• Complex algorithms such as the prediction algorithm used to overcome the limited update rate of the 
compass caused by the embedded Earth electromagnetic field effect compensation of the compass. 
Without this prediction algorithm the sinusoidal control experiment could not be performed. 

• Careful implementation of reference signals to avoid drift problems using absolute time references.   
As result from this computational implementation details hiding the metaprogramming proved to be a very useful 

mean to define tasks to the VSOR in the experimental tests performed in the test tank. The following steps in this 
research and development field are the implementation of a planner task and a monitor task that interacts deliberatively 
with the VSOR through metaprogramming. 
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