ABCM Symposium Series in Mechatronics - Vol. 3 - pp.286-291
Copyright © 2008 by ABCM

UUV TASK DEFINITION USING METAPROGRAMMING

Milton Yukio Godoy Saito, saito.milton@gmail.com
Fabio Kawaoka Takase, fktakase@usp.br

Newton Maruyama, mar uyama@usp.br

Departamento de Engenharia Mecatrénica e de Sistbtaaanicos
Escola Politécnica da Universidade de Sao Paulo

Av. Prof. Mello Moraes, 2231, 005508-900, S&o PaBlasil

Abstract. In this work, a metaprogramming language is proposedafsk specification of an unmanned underwater
vehicle (UUV) named VSOR. The VSOR is an open figmeeUUV with pressure vessels for embedded electronics
and batteries, and a set of eight undersea thrusterge. Vghicle has been devised to provide inspection and
intervention capabilities in deep water oil field sians. The software consists of two parts, the firstieeacts with

the user through a programming language and the seocoedimplements a command line interpreter that cad sen
commands to low-level layers of the embedded sysifimare. The use of metaprogramming is specially liseffien
users must program the VSOR to perform complex tasks wihowing the low level programming details of the
embedded system. The metaprogramming system has besdly insted to specify vehicle maneuvering in test tank
trials. The tasks specify different optimal maneuverg,rthest be accomplished by the vehicle, in order tionast its
hidrodynamic coefficients (both drag coefficients amtled mass inertia). The metaprogramming system ddfers
flexible environment which allows easy modificatifrinstructions and parameters during experimental sridlhese
features allow much faster deployment of task spatiifitcs when compared to customised programming sakittoat
need to access low-level layers of the embedded syofemare.

Keywords. metaprogramming, scripts, programming, task definitiomnanned underwater vehicle.
1. INTRODUCTION

Nowadays, the brazilian oil production in offshoields represents a significant portion of the totapomduction.
Although costly, deepwater exploration - water tepif more than 400m - is already successful. Nevestheleere is
a great technological demand arising from the needduce deepwater production costs and to enalkpeasiliction in
new offshore fields which have been discovered inawdgepwaters (3000m). In this context, a semi-autonemo
unmanned underwater vehicle (UUV), named VSOR, isghdeveloped at the Mechatronics Engineering Depart
at the University of Sao Paulo. The name VSOR isaaronym forVeiculo Submarino Operado Remotamente
(Remotely Operated Underwater Vehjcl&he classification of the VSOR, an open frame Ute, as semi-
autonomous is due to the combination of a remotglgrated mode together with some degree of autonomous
behaviour. The autonomous behaviour is provided biead-time embedded software that performs sensor data
acquisition and can generate trajectory plannirgy @sition control when close to the target. Dudindted space in
the pressure vessels for embedded electronics and the seeegy consumption constraints, only one singlecbeérx
104 computer with several 1/O interfaces is utilisedibedded software with hard constraints has beenribity
designed as custom solutions, using techniques sudie azdcutive whilgBurns, 2001). In thexecutive whilehe
process scheduling is a priori estimated. Each proce$geis g set of time slots in a way that all processesable to
respect their deadlines. In the case of a complex @deoesystem as the VSOR, this hard coded solutiomtis n
adequate as the inclusion of new sensors and actuatarld imply in recalculating the a priori schedglifin order to
accommodate new hardware and software configurattbesembedded system software is developed using la Rea
Time Operating System, the VxWorks from WindRiver IfAce set of concurrent processes that composes the
embedded system software are developed independantlywith priorities assigned, the VxWorks can harbée
process scheduling. Although much more flexible, thistem still demands a great attention on process sdimegl
process priorities, process interactions and resoul@eaton in order to meet process deadlines (Ramhamitand
Stankovic, 1994). Usually, the control system desigioars not have a fine knowledge about the embeddgdnsy
low-level programming details. In this work, a newtaprogramming language for task specification of ISR is
introduced. The metaprogramming system has beeallyitised to specify vehicle maneuvering in test taialts. The
tasks specify different optimal maneuvers that mustabeomplished by the vehicle, in order to estimase i
hidrodynamic coefficients (both drag coefficients aadbed mass inertia). The metaprogramming system affers
flexible environment which allows easy modificationin$tructions and parameters during experimental tridiese
features allow much faster deployment of task sfatibns when compared to customised programmingdisokithat
need to access low-level layers of the embedded sysiftware.

This paper is organized as follows. Section 2 suns@sarthe mechanical design of the VSOR and its thruster
system. Sections 3 and 4 present the control araieeahd the sensor suite. Section 5 follows withptilesentation of
the metaprogramming language. Section 6 describedbdbie procedures for programming the VSOR using the
metaprogramming language. Section 7 presents someiragpéal results. And finally, some conclusions about the
feasibility of the method are drawn in Section 8.

2. THE VSOR DESIGN: Mechanical Design and Thruster System

The vehicle is constructed with aluminum tubular strrewith the following dimensions= 1.4mx w = 1.2mx h
= 0.9m, equipped with three pressure vessels with the samendions] = 1.0mx d = 0.167m. Its weight in air is about
200Kg and the weight buoyancy force is 2Kgf positive

Aluminum tubular PVC tube
structure
Pressure vessel
Thruster

Figure 1. Physical layout of the VSOR.

On the top of the VSOR chassis there is a layer of R\M@s for buoyancy properties, a pressure vessel for the
electronics and sensors, and the four horizontal tdmsigocated in the corners (see Fig. 1). The bottorhgiahe
vehicle chassis consists in two pressure vessels thiicdatteries and four vertical thrusters arranigethe corners.

A small vessell = 0.15m x d = 0.12m is localised approximately in the vehicle mass centeries an Inertial
Measurement Unit. Modular structural components altbat the vehicle can be easily reconfigured. Therall
structure of the vehicle is symmetric with respect athithexz andyz planes. This particular thruster configuration
enables full controllability of the vehicle motion.

3. CONTROL ARCHITECTURE

The VSOR control architecture, Fig. 2, consistsaad thain modules: the surface computer system and theesub
computer system. The surface system (host) is a starBlsi-(PC computer running Windows XP OS. This computer
is responsible for the task-level control commands iansl connected to the sub-sea computer throughharit
cabling (4-26 AWG cable) using a TCP/IP stack. The-sea computer system is responsible for the sensomsyste
processing (sensor raw data acquisition and positighvatocity estimation) and the low-level control yst It
consists of an embedded computer system with a s&@-G0R type boards that runs the VxWorks Real-Timeraiing
system (VxOs). Apart from the CPU board with a low poMS Geode running on 300MHz, the set of PC-104dsoa
includes an A/D board, a D/A board and a multi-sebizdrd. This computing platform provides a stable famadiliar
programming environment (Altshuler, 2003).

The programs and the VxOS kernel are built in thdase computer using the WindRiver Tornado IDE and
downloaded to the sub-sea computer system. HistoricaRyare written for embedded systems has been designe
using a simple control loop under tivbile executiveoncept. The loop calls subroutines, each of whiehages part
of the hardware or the software. This hardware tegtoustom software construction is at the base of pedp@n the
hardware & software co-design (Coumeri & Thomds)the case of a complex system such as the VSORhdnis
coded solution is not adequate as the need of includiorew sensor and actuators are always likely. TBONR
requires a preemptive multitasking software architegtue., tasks must switch based on timing and pestitin
VxOS, each task is assigned a priority, and the scaedukures that the CPU is allocated to the highasitprtask
that is on ready state (WindRiver, 2002). The schadulgorithm tries to accomplish with all deadlimmstraints,
responding for particular events (interrupt and wskching, for example) with minimal latency. Thengulexities of
managing multiple tasks running seemingly conculyeate solved therefore by the Real-Time Operatiggt&n
Scheduler.

The VSOR embedded system software modules are desigmed on a VxOS microkernel. It consists of a set of
sensors and actuators software interfaces and a cpniigalss that is responsible for:

Scheduling each sensor and actuator concurrent geEs;es
Managing communication with the remote control station
Storing sensors and actuators data into an embeddédlisk;
Calculating position and velocity feedback loops;
= Coordinating the global test.
When the tests take place, all data are stored intordo@dded hard disk for offline analysis.

User
Host

e

I_I VxO0S and VSOR
proggams

Targst

ROV

PC/104

Sensor and
Actuator Data

SERIAL

m | Gyroscope

o]

erva
Motor
Controller
1

Sevo

Mataor

(W] Controller
L

Erva
Motor
Contoller 47

Eva
Motor
Controller

I-{AID}-l

Pressure Tilt
sensor | |sensor

Compass

Erva
Motar
Contoller [

EIva
Matar
Controller

Brvo
Motar
Contoller [

Ervo
Matar
Controller

Uy Yy
048 48 5

Figure 2. Control architecture schematic diagram.
4. SENSOR SUITE
The VSOR sensor suite is composed by five different sstisat are summarised in Table 1.

Table 1 — Sensor system.

Variable Sensor (Manufacturer) Precision Update Rate Qutput Inteface
Heading Compass TCM2 (PNI) =1° 13Hz Digital RS-232
Roll and Pitch Tilt Series 757 (Applied Geomechajic =20 20Hz Analog A/D card
Depth Pressure Sensor, MPX5100DP (Motorola) 3.5cm 0Hz2 Analog A/D card
Yaw Rate Fiber Optic Gyro, E-Core 2000 (KVH) Biag%h 10Hz Digital RS-232
Linear Acceleration Inertial Measurement Unit, V@A)(Crossbow) Bias < 12mg 100Hz Digital RS-232
Angular Velocity Inertial Measurement Unit, VG70Q8rossbow) Bias < 20°h 100Hz Digital RS-232

For each sensor an interface software module is impldeallocating the required resources, such as tysic
memory used as circular buffers and a set of /O anertinterrupts.

5.METAPROGRAMMING

One of the main goals of the use of metaprogrammitmlet users work at a higher level of abstractiantti they
decide to use hard coded solution. Essentially, meagegmaming is formally defined as writing computer peogs that
write or manipulate other programs. The use of a megakge, in which the user writes verbose statementssteribe
complex tasks in a human-readable fashion, simplifiegptogramming task, and broadens the range of acdead of
the system. The VSOR embedded system software is theeiefplemented to run programs written in a metalaggu
organized in scripts.

Scripting programming languages, also called scriginguages or script languages, are computer prognagnmi
languages that do not require compilation, i.ey @@ typically interpreted. Thus, scripts are oftestinguished from
programsbecause programs are converted permanently intoybéxacutable files before they can run. Scripts irema
in their original form and are interpreted commaneebmmand each time they run. So, script reducesragiéional
edit-compile-link-run process, as a result, it auttasdests when there is a list of variables to beadedland updated
frequently.

In this work, metaprogramming is understood as writing sét of verbose commands into scripts that specifg task
that the VSOR must perform.

6. BASIC PROCEDURES FOR PROGRAMMING

It might be worthwhile to express instances of thebfgm as sentences in a simple but powerfull languahih
means allowing task specification into higher absiacievels. In order to do this some basic metalanguag

instructions are created:

= Input thrusters signals: cosine, step, cosine-step io@atitns and respective parameters;

= Tests control signals: timer, start, abort and sieeation test;

= Basic servicessample signal visualization and process control;

= VSOR motion: linear and rotational motion, and cohtests using PID controllers;

= The execution flow control and conditional statetsemere also included in the VSOR test instruction set.

Basically, the grammar defines regular expressionshef VYSOR metalanguage instructions, defined as the

following (Gamma, 2001):

<expression> <parameter_1> <parameter_2> ... <paganhtt

The symbolexpressionis the start symbol, that defines which instructioii e executed, thaparameter_1,
parameter_2,..., parameter_ae the instruction related parameters.
For example:
ms <sign> <amplitude> <period> <shift>

The ms expression defines a thruster input signal instoacti hesign symbol selects which signal type (i.e., sine,
step or both combined). Depending of Hign selected, it is necessary to provide a list of parasiefer examplems
sin 10 8 2 (a sine signal with amplitude: 10volts, period: &sets and shift: 2volts).

The system offers flexible commands to control the VSORere are two methods for test execution: send
instructions directly to the VSOR embedded systeththrough instruction scripts. The last method is useditomate
complex maneuvering tests. Sending command-by-comnsanskful to customise tests, debug the system and make
interventions during execution. Fig. 3 shows the sMayinteract with the VSOR during tests. In Figth& top VSOR
client window refers to an example of script use. Ahe bottom VSOR client window is an example of aectir
interaction with VSOR, You must note that the endsztisystem send messages to notify the user about thestequ
status.

— VSOR client [X]

database SCRIPT[Ciyams

ot
= | Dpen || annload\:
— G

VSOR clhient X

crmd:mi0 0000000

{Eresor: init cond Ok
cmd: fitter on
iErusar; fitter ON
crrd: PO Kp 300

(Enesor: param updated

Figure 3. Different methods to interact with the®G#S during experimental tests.

7. EXPERIMENTAL RESULTS

Two examples extracted from the trials that have leeaducted in the Naval and Oceanic EngineeringaDapent
test tank are shown in the next two subsections.rit&i@ purpose of those tests was the estimation odydamic
coefficients of the UUV and this work will focus dmetuse of metaprogramming and scripts.

7.1. Proportional-Derivative control test

This experimental trial consisted of a Proportionakiizative (PD) control test. The main goal in thipesiment is
to maintain the VSOR geo-orientation. The initiabgorientation reference, called gt pointis set manually sending
an instruction directly to the VSOR before runnihg test.

The PD test is programmed like in the script illustrate#fig. 4. The script contains all parameters andiitimms
required by a usual test, such as name of the logriiestart conditions. In addition, coefficients eaare defined and
all thrusters that can be used by the feedback @tars are setup. Basically, the PD controller clali@s the control
effort output based on the compass heading signalcdlbalated control action is converted into an egjgnt analog
signal and then send to the specified thrusters.

T =TT C:'IROVicontroll.s Qﬂ@

= test 3200
SCRIFT |CoR0Veontroll 5 & .

fiker on

— : PD Kp 300
Open | | Download | POTdDS
i —— PD AR 2141

e PD BB -10.061
| GOl | PO A& 2137

PO BET-B723

madula datensao "PLUKAM"
mf0 0000000

me pd

HOST # propulsores P10

horario (+P1[+P7)

mzH 1 0000010
Hanti-horario (+P2 +PE)
meAD1000100

controlador:BUSS0LA
goc

Figure 4. General view of a PD test.

Figure 5 illustrate results achieved in the PD teke plotted curve indicates that, in the beginningheftest, the
VSOR angular orientation is not the same as the desetpoint (314°). So, the test started with therotiar being
saturated. As a result, the vehicle heading oriemtdtias a fast change. The plot illustrates that the R/&€ading
orientation converges to 314°.

Heading: Compass
340 T T T

e
320 o e 1
// S s
300 / .
280 |- ,
/
—~ /
g 260
=
c
F240 7
S /
220} // .
200 //
180 g s
L "
160 i | \ |
2 4 [3 8 10 12 14 16

Figure 5 - Experimental heading data from compass
7.2. Sinusoidal control experiment

In order to obtain hydrodynamic coefficients, itngcessary to apply specific torque profiles, such rasssidal
torque. This torque is created by applying a sinusdidmal into a pre-specified set of thrusters. Wita torrect
torque profile the VSOR can spin 360 degrees arotgadf iand can turn back to the original positionFig. 6, the
torque that results from a sinusoidal input signal iBustrated. The torque is estimated using the yate signal
provided by the gyroscope.

1 T . T ! ! . .)
_ T : P4y : i :
=00 i S S e o e s Lomfin e e i .
= ; ik : Lo ie! : P :
= .
o) D DRSS (S S if (S T oEE—— R, A R o
\"_- * ¥
0 | —— | | " I o
0 10 20 30 40 50 &0 70 a0 a0

Time[s]

Figure 6. VSOR torque during a rotation experiment.
8. CONCLUSIONS

In this work, an UUV embedded control system has beesepted. Users without concurrent programming skills
have a mean to define complex tasks for the VSOfs flas been achieved successfully using metaprogragranih
scripts. Experimental trials performed in the test thake been successful and allowed the acquisitioa gfeat
amount of experimental data in a short time, protinge an efficient tool for task definition and@mation.

The use of metaprogramming to define tasks hid froentalsk programmer the complexities of the computational
implementation of the concurrent tasks of the embeddédare, such as:

* The policies to write to the log file the data sardpi®m sensors. This task is I/O expensive and have to
be well managed in order not to consume too much @Re&l

e The policies to write and read from/to the circilaffers configured for each sensor. The configuratibn
the circular buffer size and its access to write &ad must be well balanced as the writing access must be
performed using hardware interruptions and readiacgss must be synchronized with the log file access.

e Complex algorithms such as the prediction algoritteeduto overcome the limited update rate of the
compass caused by the embedded Earth electromadisticeffect compensation of the compass.
Without this prediction algorithm the sinusoidal cohgxperiment could not be performed.

« Careful implementation of reference signals to avoifi problems using absolute time references.

As result from this computational implementation dethiding the metaprogramming proved to be a vesgful
mean to define tasks to the VSOR in the experimeets performed in the test tank. The following stepthis
research and development field are the implementati@ planner task and a monitor task that inter@d&liberatively
with the VSOR through metaprogramming.

9. ACKNOWLEDGEMENTS

The authors would like to thank the CNPq (Conselhoiddeal de Desenvolvimento Cientifico e Tecnolégiam) f
the financial support (process no. 550934/2003k& CENPES-PETROBRAS research center for the logsipport,
the FDTE Fundagdo para o Desenvolvimento Tecnoldgico de Erage)hfor the awarded scholarship and the
WindRiver Inc. for the VxWorks 5.5.1 and the Toroai2.1 academic licenses.

10. REFERENCES

Altshuler, R.C., Apgar, J.F., Ashford, A.C., Broxtdn.,J., Edelson, J.S., Khan, C.J., Khripin, A., Knaiar\., Kraft,
A.D., Lovell, S.D., Mcletchie K.W., Mazzone, L.ANewburg, S.O., Rorschach, K.L., Stark, J.C., Hobn§;.,
Uechi, K.A., 2003. “ORCA-VI: An Autonomous Underwadéehicle”. Massachusetts Institute of Technology.

Burns, A., Wellings, A., 2001. “Real Time Systems &ndgramming Languages: Ada 95, Real-Time Java and Rea
Time C/POSIX” , Addison-Wesley %BEdition,.

Coumeri, S.L. e Thomas, D.E, 1995. “A Simulation Eoniment for Hardware-Software Codesign”. Prochef1995
International Conference on Computer Design: VLSTamputers and Processors, pp. 58-53, Oct. 1995.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 2@4sifn Patterns”. Ed. Addison-Wesley.

Ramamritham, K., Stankovic, J.A, 1994. Schedulingritigms and operating systems support for real-time sgstem
Proc. IEEE, vol.82, no.1, pp.55-67, Jan. 1994.

WindRiver, 2002. “User’s guide”.

11. RESPONSIBILITY NOTICE

The authors are the only responsible for the printemiahincluded in this paper.

