
 

 

A NEW INTEGRATION METHOD FOR DIFFERENTIAL INVERSE 
KINEMATICS OF CLOSED-CHAIN ROBOTS 

 
Raul Guenther, guenther@emc.ufsc.br 

Daniel Fontan Maia da Cruz, danielfontan@yahoo.com.br 
Daniel Martins, daniel@emc.ufsc.br 
Universidade Federal de Santa Catarina 
Departamento de Engenharia Mecânica 
Laboratório de Robótica 
Campus Universitário - Trindade 
88040-900 – Florianópolis, SC. Brasil 

 
Henrique Simas, hsimas@univali.br 
Universidade do Vale do Itajaí - Centro de Ensino São José 
Curso de Engenharia de Computação 
Rodovia SC 407, km 4 - Sertão do Imaruim 
88122 000 - São José, SC. Brasil 

 
Abstract.  Inverse kinematics algorithms based on numerical integration involves drift phenomena of the solution; as a 
consequence, errors are generated when the end-effector location differs from the desired one. This problem is worse 
for robots with closed kinematic chains, where minimal errors open the chain or generate excessive torques at the 
joints. To solve this problem, a novel integration method is presented in this paper, and its exponential stability is 
showed. An simulation example outlines its main properties. 
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1. INTRODUCTION  

 
 A kinematic chain is a system of bodies composed by an assemblage of links connected by joints. When every link 

in a kinematic chain is connected at least to two other links, the kinematic chain forms one or more closed loops and it 
is called a closed-loop chain or, shortly, closed chain. On the other hand, if every link is connected to every other link 
by one and only one path, the kinematic chain is called an open-loop chain or, shortly, an open chain. It is also possible 
for a kinematic chain to be made up of both closed and open chains. We call such a chain a hybrid kinematic chain. 

A robotic system typically consists of a mechanical manipulator, an end-effector, a microprocessor-based controller 
and a computer. A mechanical manipulator is made up of several links connected by joints constituting a kinematic 
chain. Some of the joints in the manipulator are actuated; the others are passive. Typically, the number of actuated 
joints is equal to the degrees of freedom. 

A robot is said to be a serial robot or open-loop manipulator if its kinematic structure takes the form of an open-loop 
chain; a parallel manipulator if it is made up of a closed-loop chain, and a hybrid manipulator if it consists of both open- 
and closed-loop chains. 

In this paper we focus on the kinematics of closed chains present in parallel and hybrid manipulators.  More 
specifically we intend to obtain the positions of the passive joints given the positions of the active joints by integrating 
the differential kinematics of the closed chain using numerical techniques. 

It is well known that in open-loop kinematic chains the numerical integration of the differential kinematics involves 
a drift phenomena of the solution and, as a consequence, the end-effector location corresponding to the computed joint 
variables differs from the desired one (see Sciavicco and Siciliano, 2004, for example). 

In closed-loop kinematic chains, beside the drift phenomena the integration errors in the joint positions reflect in an 
opening of the closed chain, which can be measured by a closure error (Pavlin, 1995). 

The main contribution of this paper is to introduce a new method to integrate numerically the differential kinematics 
of closed chains guaranteeing the exponential convergence of the closure error. 

To present the method we first state the problem conceptually. Next, the differential kinematics based on the screw 
representation the Davies Method are shortly reproduced for completeness. In the sequence, we present the proposed 
algorithm and state its convergence properties. An example outlines the main algorithm features. 
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Let the primary joint variables be denoted by a vector pq  and the secondary joint variables be described by a vector 

sq . Then the kinematic constrains imposed by the limbs can be written in the general form (Tsai (1999)) 
 

( ) 0, =sp qqf  (1)
 
where  f  is an n-dimensional implicit function of  pq  and sq  and 0 is an n-dimensional zero vector. Equation (1) is 
sometimes referred as the closure equation. 

Differentiating Eq. (1) with respect to time, we obtain a relationship between the input joint rates (primary joint 
velocities pq& ) and the output joint rates (secondary joint velocities sq& ) as follows: 
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 From Eq. (2) we have 
 

( ) ( ) pppsss qqNqNq && 1−−=  (3)

 
The secondary joint position can be calculated by integrating Eq. (3) as follows: 
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It should be remarked that this technique for calculating the secondary joint positions is independent of the 

solvability of the kinematic structure. Nonetheless, it is necessary that the secondary matrix ( )ss qN  be square and of 
full rank. In case this matrix has more columns that rows infinite solutions exist to Eq. (3) and a viable solution method 
is to formulate the problem as a constrained linear optimization problem, as is usual in redundant manipulators analysis. 
This approach and a method to deal with singularities can be both found in Sciavicco and Siciliano (2004). 

The integration can be performed in discrete time by resorting to numerical techniques. The simplest technique is 
based on the Euler integration method; given an integration interval tΔ , if the joint positions and velocities at time kt  
are known, the joint positions at time ttt kk Δ+=+1  can be computed as 

 
( ) ( ) ( )( ) ( )( ) ( )kpkppkssksks tqtqNtqNtqtq Δ−= −

+
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where 
 

( ) ( ) ( )kpkpkp tqtqtq −=Δ +1  (6)

 
By calculating the secondary joint positions using Eq. (5), a cumulative error in sq  is introduced. Therefore, Eq. (1) 

is not satisfied and an opening in the closed-loop chain is introduced. To illustrate this, consider the four-bar mechanism 
in Fig. (1). 

 

 
2. PROBLEM STATEMENT 
 

In closed kinematic chains not all the joints can be controlled independently. Thus, some of the joints are driven by 
actuators whereas others are passive. In this paper, the joints driven by actuators are called primary joints, and the 
passive ones are named secondary joints. 



 

 
The cumulative error in sq  generate an opening in the closed-loop chain, as depicted in Fig. (2). To solve this 

problem, we present a new method to integrate Eq. (3) using numerical techniques in which the closure error converges 
exponentially. To describe it first we present the fundamental kinematic tools used in this work. 

 

 
 

Figure 2. Closure error in a four bar close-loop chain. 
 
3. FUNDAMENTAL KINEMATIC TOOLS 
 

Our approach is based on the method of successive screw displacement, on the screw representation of differential 
kinematics, on the Davies method, and on the Assur virtual chain concept, which are shortly presented in this section. 

 
3.1. Method of Successive Screw Displacements 
 

In this subsection we describe a method of representing a location of a rigid body in a kinematic chain with respect 
to a coordinate frame, based on the successive screw displacement concept. First, we present the transformation matrix 
associated with a screw displacement, and then the concept of the resultant screw of two successive screw 
displacements is described. 
 
Homogeneous transformation screw displacement representation 
 

Chasles’s theorem states that the general spatial displacements of a rigid body is a rotation about and a translation 
along some axis. Such a combination of translation and rotation is called a screw displacement (Bottema and Roth, 
1979). In what follows, we derive a homogeneous transformation that represents a screw displacement (Tsai, 1999). 

 

 
Figure 1. Four bar plane closed chain. 



Representing the first position 1P  by the vector [ ]Tzyx pppp 1111 =  and the second position 2P  by the vector 

[ ]Tzyx pppp 2222 = , the general screw displacement for a rigid body can be given by the Rodrigues’s formula as: 
 

( ) ( )tdpRp += 12 θ  (7)
 
where ( )θR  is the rotation matrix corresponding to the rotation θ  about the screw axis and ( )td  is displacement vector 
corresponding to the translation t along the screw axis. 

Considering the augmented vectors [ ]TTpp 1ˆ 11 =  and [ ]TTpp 1ˆ 22 =  the general displacement of a rigid body (Eq. 
(7)) can be represented by a homogeneous transformation given by: 
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and the elements of ( )θR  and of ( )td , according (Tsai (1999)), are given by: 
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Successive screw displacements 
 

We now use the homogeneous transformation screw representation to express the composition of two or more screw 
displacements applied successively to a rigid body. 

Figure 4 shows a rigid body σ  which corresponds to a second moving link and is moved by two successive screw 
displacements: a first one, called the fixed joint axis ( )11$ q , applied to the joint axis situated between the ground (fixed 
base) and the first link (first link screw axis), and a second one, called the moving joint axis ( )22$ q , applied to the joint 
axis between the first and the second link (second link axis). 

 

 

  
  

Figure 3. Vector diagram of a spatial displacement. Figure 3. Vector diagram of a spatial displacement. 
  

Figure 3 shows a point P of a rigid body that is displaced from a first position 1P  to a second position 2P  by a 
rotation θ  about a screw axis followed by a translation of  t along the same axis. The rotation brings P from 1P  to rP2 , 
and the translation brings P from rP2  to 2P . In the figure, [ ]Tzyx ssss =  denotes a unit vector along the direction of 

the screw axis, and [ ]Tzyx ssss 0000 =  denotes the position vector of a point lying on the screw axis. The rotation 
angle θ  and the translation t are called the screw parameters. These screw parameters together with the screw axis 
completely define the general displacement of a point attached to a rigid body and, consequently, of a rigid body. 



 

Consequently the resulting transformation matrix is given by a premultiplication of the two successive screw 
displacements; that is, 

 
( ) ( ) ( )221121 , qAqAqqAr =  (10)

 
3.2. Screw representation of differential kinematics 
 

The Mozzi theorem states that the general spatial differential movement of a rigid body consists of a differential 
rotation about, and a differential rotation along a axis named instantaneous screw axis. In this way the velocities of the 
points of a rigid body with respect to an inertial reference frame O-xyz may be represented by a differential rotation ω  
about the instantaneous screw axis and a simultaneously differential translation τ  about this axis. The complete 
movement of the rigid body, combining rotation and translation, is called screw movement or twist and is here denoted 
by $ . Figure 5 shows a body “twisting” around the instantaneous screw axis. The ratio of the linear velocity and the 
angular velocity is called pitch of the screw ωτ=h .  

 

 
 

Figure 5. Screw movement or twist. 
 

The twist may be expressed by a pair of vectors, i.e. [ ]TT
p

T V;$ ω= , where ω  represents the angular velocity of the 
body with respect to the inertial frame, and pV  represents the linear velocity of a point P attached to the body which is 
instantaneously coincident with the origin O of the reference frame. A twist may be decomposed into its amplitude and 
its corresponding normalized screw. The twist amplitude, denoted as q&  in this work, is either the magnitude of the 
angular velocity of the body, ω , if the kinematic pair is rotative or helical, or the magnitude of the linear velocity, 

pV , if the kinematic pair is prismatic. The normalized screw, $̂ , is a twist in which the magnitude is factored out, i.e. 

 

 
Figure 4. Two-link chain and its associated screw displacements. 

 
As the rigid body is rotated about and/or translated along these two joint axes, the best way to obtain its resultant 

displacement is to displace the rigid body σ  about/along the fixed axis and, in what follows, displace the body 
about/along the moving axis. In this way, the initial location of the moving joint axis can be used to derive the 
transformation matrix ( )22 qA , which represents the ( )22$ q  screw displacement while the fixed joint axis is used for 
derivation of matrix ( )11 qA , which represent the ( )11$ q  screw displacement (see details in Tsai (1999)). 



circuits. The resulting Kirchhoff-Davies circulation law states that “The algebraic sum of relative velocities of 
kinematic pairs along any closed kinematic chain is zero” (Davies, 1981).  

We use this law to obtain the relationship among the velocities of a closed kinematic chain as in Campos et al. 
(2005). So, considering that the velocity of a link with respect to itself is null, the circulation law can be expressed as 
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where 0 is a vector which dimension corresponds to the dimension of the twist i$ . 

According to the above introduced normalized screw definition this equation may be rewritten as 
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where i$̂  and iq&  represent the normalized screw and the magnitude of  twist i$ , respectively. 

Equation (14) is the constraint equation which, in general can be written as 
 

0=qN &  (15)
 
where [ ]nN $̂...$̂$̂ 21=  is the network matrix containing the normalized screws which signs depend on the screw 
definition in the circuit orientation, and [ ]nqqqq &&&& ...21=  is the magnitude vector. 

A closed kinematic chain has actuated joints, here named primary joints, and passive joints, named secondary joints. 
The constraint equation, Eq. (15), allows calculating the secondary joint velocities as functions of the primary joint 
velocities. To this end the constraint equation is rearranged highlighting the primary and secondary joint velocities and 
Eq. (15) is rewritten as follows: 
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where pN  and sN  are the primary and secondary network matrices, respectively, and pq&  and sq&  are the corresponding 
primary and secondary magnitude vectors, respectively. 

Equation (16) can be rewritten as 
 

0=+ sspp qNqN &&  (17)
 
which is the Eq. (2) derived in another way. 
 

 

 
q&$̂$ =  (11)

 
The normalized screw coordinates (Davidson and Hunt, 2004) may be given by, 
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where, as above, the vector [ ]Tzyx ssss =  denotes a unit vector along the direction of the screw axis, and the vector 

[ ]Tzyx ssss 0000 =  denotes the position vector of a point lying on the screw axis. 
So, the twist given in Eq. (11) expresses the general spatial differential movement (velocity) of a rigid body with 

respect to an inertial reference frame O-xyz. The twist can also represent the movement between two adjacent links of a 
kinematic chain. In this case, the twist i$  represents the movement of link i with respect to link ( )1−i . 
 
3.3. Davies’ method 
 

Davies’ method is a systematic way to relate the joint velocities in closed kinematic chains. Davies derives a 
solution to the differential kinematics of closed kinematic chains from the Kirchhoff circulation law for electrical 



 

Let the twist px$ represent the movement of link C1 in relation to link R1, twist py$  represent the movement of link 

C2 in relation to link C1, twist rz$  represent the movement of link R2 in relation to link C2. Therefore, the movement 
of link R2 in relation to real link R1 may be expressed by rzpypx $$$ ++ . 

 

 
Figure 6. PPR Assur virtual chain. 

 
Consider the C-reference system (C-system) attached to the virtual link C2 at the rz joint. Therefore, there is no 

rotation between the C-system and the B-system (attached to the inertial base), and the rz joints are aligned with z axes. 
So, the normalized screws corresponding to the virtual joints represented in the C-system are 
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It may be observed that the orthogonal PPR Assur virtual chain represents the movements in a planar Cartesian 

system. Other Assur virtual chains can be found in Campos (2004) and Campos et al. (2005).  
 
4. INTEGRATION ALGORITHM USING ASSUR VIRTUAL CHAINS 

 
An integration algorithm is necessary to integrate the kinematic differential equation to obtain the joint positions.  

The algorithm proposed in this paper has two steps. The first one is to introduce a virtual chain to represent the 
closeness error resulting from the integration error as depicted in Fig. 1. Introducing the virtual chain to the four-bar 
planar mechanism in Fig. 1, the resulting closed chain is shown in Fig. 7. 

 
3.4. The Assur virtual kinematics chain concept 
  

The Assur virtual kinematic chain concept, virtual chain for short, is essentially a tool to obtain information about 
the movement of a kinematic chain or to impose movements on a kinematic chain (Campos et al. (2005)). 

This concept was first introduced by Campos (2004) which defines the virtual chain as a kinematic chain composed 
of links (virtual links) and joints (virtual joints) satisfying the following three properties: a) the virtual chain is open; b) 
it has joints whose normalized screws are linearly independent; and c) it does not change the mobility of the real 
kinematic chain, in other words, it is an Assur group (Baranov, 1985). 
 
The orthogonal PPR Assur virtual chain 
 

The PPR virtual chain is composed by two virtual links (C1, C2) connected by two prismatic joints, whose 
movements are in the x and y orthogonal directions, and a rotational joint, whose the movement is in the z directions, 
see Fig.6. The prismatic joints are called px and py, and the rotative joint is called rz. 

The first prismatic joint (px) and the rotative joint (rz) are attached to the chain to be analyzed (real chain). Joint px 
connects the link R1 with virtual link C1, joint py connects virtual link C1 with virtual link C2, and joint rz connect the 
virtual link C3 with real link R2 (see Fig.6). 



 
( ) ( ) ( ) eeesspppsss qKNqNqqNqNq 11 −− −−= &&  (20)

 
where the gain matrix eK  is chosen to be positive definite and eq  is the position error vector. 

 
4.1. Stability 
 

The algorithm stability can be verified substituting Eq. (20) in Eq. (19), obtaining: 
 

0=+ eeeee qKNqN &  
 
Multiplying all terms by 1−

eN (which ever exists because the virtual chain joints normalizes screws are ever linearly 
independent), results: 
 

0=+ eee qKq&  (21)
 

As the gain matrix is positive definite, Eq. (21) states that the position error vector 0→eq  as ∞→t  exponentially. 
Theoretically, the gains can be as great as desired, in practice they are limited by the possibility of introducing 

numerical problems, such as numerical oscillations and, in some limit cases, instabilities. This gain limit can result in 
undesirable errors. This difficulty is overcome by using gains that do not introduce numerical problem combined with 
various iterations which allow control the error, as is out depicted in the next subsection. 

 
4.2. Error control 
 

The exponential convergence is guaranteed in the general case when the primary positions and velocities are time 
varying. It has the same property in case the primary positions and velocities are constant, as in a second iteration. If the 
error is greater than a desired value, new iterations can be performed until the error is as short as an admissible 
tolerance. Consequently, the proposed algorithm allows control the error. 
 
4.3. Position error vector 
 

The screw displacement of a link in a kinematic chain can be expressed by a homogeneous matrix, and that the 
resulting screw displacement in a link j can be calculated using the successive screw displacement method (see section 
3.1) by premultiplying the homogeneous matrices corresponding to the preceding joint movements, i.e.: 

 

   
Figure 7. Closure error represented by a virtual chain in a four bar mechanism. Figure 7. Closure error represented by a virtual chain in a four bar mechanism. Figure 7. Closure error represented by a virtual chain in a four bar mechanism. 

  
The constraint equation of this closed-loop chain results:  
 

( ) ( ) 0=++ eesssppp qNqqNqqN &&&  (19)
 
where ( )pp qN  is the primary network matrix as before, ( )ss qN  is the secondary network matrix corresponding to the 
secondary positions obtained by integration ( sq ), pq&  and sq&  are the primary and secondary magnitude vectors, 
respectively, eN  is the error network matrix, and eq&  is the error magnitude vector. 

The second step consists in replacing Eq. (3) by 
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where [ ]Tezeyexe pppp =  is the position error vector and eR  is the rotation matrix error. The matrix eR  corresponds to 
three Euler angles exr , eyr  and ezr , see Sciavicco and Siciliano (2004). 

The “position” error (which is a posture error involving position and orientation) is given by the position error 
vector [ ]Tezeyexezeyexe ppprrrq = . 
 
4.4. Numerical implementation 
 

Applying the Euler integration method in Eq. (20) we obtain: 
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5. EXAMPLE 
 

The presented method is illustrated by solving the position kinematic of a four-bar planar mechanism (Fig. 1) by 
integrating its differential kinematics.  

In this example, joint 1 (Fig. 1) is considered primary while the others are secondary. Joint 1 moves from initial 
position 4/π to the final position 2/π  according to ( ) ⎟

⎠
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44
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πππ  from t = 0 to 4s. 

The kinematic parameters are =1l  0.5 m; =2l  1.0 m; =3l  0.5 m; =4l  1.0 m. The initial position vector is 
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0 πππ  rad. The integration interval is =Δt  0.001 s.  

Considering the reference frame attached to the last link of the error chain, the network matrices result: 
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The secondary position vector is calculated using Eq. (26) and the resulting vector components are compared with 

an analytical solution presented in (Waldron and Kinzel, 1999). 
The solution of the planar four bar mechanism is obtained choosing 3IKKe = , where K is a positive scalar and I3 
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Considering that, in a closed chain, the last and the first links are the same, and that the orientation and the position 

of a link with respect of itself is given by a homogeneous matrix equal to the fourth order identity matrix. In a closed-
loop chain with np primary joints and ns secondary joints Eq. (22) the closed-loop equation results: 
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where [ ]

ipA , i = 1…np, are the homogeneous matrices corresponding to the primary joints, and [ ]isA , i = 1…ns, are the 
homogeneous matrices corresponding to the secondary joints.  

Consider a closed-loop that has an error chain like is depicted in Fig. 7. As in Pavlin (1995), we represent the 
closure error by a homogeneous matrix E, and the closed-loop equation becomes: 

 

[ ] [ ] IEAA
ns

i
is

np

i
ip =

⎭
⎬
⎫

⎩
⎨
⎧ ∏∏

== 11

 (24)

 
the closure error is calculated by 
 



 
 

Figure 9. Numerical solution results. 
 
6. CONCLUSIONS 

 
A new method to integrate numerically the differential kinematics of closed chains guaranteeing the closure error 

exponential convergence is presented and its stability properties are shown theoretically. 
The error control is outlined and the influence of various iterations is analyzed considering an example. These 

results show that there is a compromise between error, number of iterations (or calculating time) and algorithm gains. 
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is an identity matrix. Varying K from 100 to 1000 and the iterations number from 1 to 4, we have the results presented 
on Fig. 9.  

Fig. 9 presents the maximum error between the numerical solution and the analytical solution in function of K. It is 
observed that the error decreases with increasing gains and decreases strongly in the first iterations. So, to obtain the 
admissible errors the gains can be chosen in order to avoid numerical problems if they are combined with iterations. 
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