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Abstract. The problem of determining object geometry and position from imaghesas an open issue in Computer
Vision. It can be addressed using epipolar geometry, calculatingitiafnental matrix from the correspondence of
image pairs from a moving camera sequence. The fundamental matriresbfeoam a set of point matches between
two images in a motion sequence determines an homography of pointéiiist ieage to lines in the second one, and
provides, besides a scale factor, the projective matrix ttatsforms one image into the other. The process of
calculating the fundamental matrix and the projective transformatiarbjsct to errors due to image quantization,
point matches selection, numerical determination of the correspoaden@mtion system, among others. These errors
and the propagation of their effects must be carefully consideredyistady of methods and algorithms for motion
structure and object position determination that are based in epipolar ejeorof image sequences. This work
presents concepts of epipolar geometry, from camera model, fundhmesiiéx of image matches, to the
determination of the canonical projective matrices, the artalystudy of measure and calculation uncertainties of the
process, and the analysis of results in real cases, with the opjasftideveloping a method for the extraction of
Euclidean geometry information of scenes and motion struoftireage sequences.

Keywords computer vision, epipolar geometry, image correspondence, fundameatitix, @rror quantification.
1. Introduction

Two images in a sequence or from a stereo pair ofghesiitene are related by epipolar geometry, represented by
3 x 3 singular matrix. It contains all geometric inforinatnecessary for establishing correspondences betwedwdah
images, and to infer the three-dimensional structurbeo§tene. In a stereovision system where the cageeraetry is
calibrated, and its intrinsic parameters are kndwis, possible to calculate the fundamental matrix fitbien camera
perspective projection matrices, and the matrix derivech fooint correspondences under epipolar geometry is called
essential matrix. When the intrinsic parameterska@vn but the extrinsic ones (the rotation and traiosidbetween
the two images) are not, the problem is known asamaind structure from motion, and has been extensstetired in
Computer Vision. This work concentrates in techniqguesftimating the fundamental matrix from two uncalibrated
images, where both the intrinsic and extrinsic pararsetf the images are unknown. From this matrix, a® ¢
reconstruct a projective structure of the scene, septed as a ¥ 4 matrix transformation.

The study of uncalibrated images has many important apphlicatiVe cannot obtain any metric information from a
projective structure: measurements of lengths and angéeslistorted by a scale factor, and the solution to the
projective matrices is not unique. However, this strecstill contains information about coplanarity, eudiarity, and
cross ratios (ratio of ratios of distances), whiem de used in robotic systems to perform tasks such as t@avjga
stabilization and object recognition (Armangué, X. aniSa., 2003; Cheong, L. and Peh, C., 2004; Gracias, N. and
Santos-Victor, J., 2000; Zwaan, S., Bernardino, A., amdds-Victor, J., 2002).

In applications such as the reconstruction of the enmemt from a sequence of video images, the paramétitrs o
video lens are submitted to continuous modification, anteca calibration is not possible. We cannot recortsthac
exact Euclidean geometry of the scene, but a projectivetgte can be derived from a pinhole camera model.
Assuming that the camera parameters do not change betweesssive views, the projective invariants can bd ts
calibrate the cameras and calculate its intrinsiarpaters (known as self-calibration).

This work gives an introduction to the epipolar geometrgmf camera model, fundamental matrix of image
matches, to the determination of the canonical ptiegcmatrices, presents two methods for determining the
fundamental matrix from point matches in two images frosgeme, analytical study of the error in these mettthds,
application of the uncertainty calculation in the corgusr of the presented methods and its use in deriving an
improved method. Simulated data and real images are useildca comparison between the methods and to analyze
the results.
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2. Epipolar Geometry

A pinhole camera is modeled by its optical cer@eand its retinal plane (or image plarie) A 3D pointW is
projected into an image pointgiven by the intersection & with the line containingc andW.

Letw = (X; y; 2) be the coordinates #¥ in the world reference frame (fixed arbitrarily) amdhe pixel coordinates
of m. Their equivalents in homogeneous (or projective) cootmarevT/:[x y z 1]T and rﬁ:[u % 1]T. The

perspective projection matriR (or simplycamera matrix gives the transformation fromw to m: sm = Pw, wheres
is an arbitrary scale factoprpjective depth If P is suitably normalizeds becomes the true orthogonal distance of the
point from the focal plane of the camera.

The 3x 4 matrix P can be decomposed &= A[R t] where the 3x 3 matrix A depends on the intrinsic

parameters only, and has the following form:

Q

<
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Wherea, = fk;; a, = -k, are the focal lengths in horizontal and vertical pixedspectivelyf(is the focal length in
millimeters, k, and k, are the effective number of pixels per millimeter althg u- and v-axes)ud;, Vo) are the
coordinates of the principal point, given by the inteieaadf the optical axis with the retinal plane (Fig.dndyis the
skew factor. The camera position and orientation (esitriparameters), are encoded by the3rotation matrixR and
the translation vectar, representing the rigid transformation that alignsahmera reference frame (Fig. 1) and the
world reference frame.

Figure 1. The pinhole camera model (left) and the epigaametry model (right).

A line | in the image passing through poimh = [u v]T is described by equatiorau+bv+c=0. Let
| = [a b c]T , then the equation can be rewrittenlas =0 or m'l =0. Multiplying | by any non-zero scalar will
define the same 2D line. Thus, a homogeneous 3D vegi@sents a 2D line. The distance from poimt = [u0 v, ]T

tolinel = [a b c]T is given byd(m0 ,I) = (au0 + by, +c)/(\/a2 +b2) (signed distance).

The epipolar geometry exists between any two-cameramsgstConsider the case of two cameras as shown.in Fig
1. LetC andC’ be the optical centers of the first and second canegapectively. Given a pointin the first image,
its corresponding point in the second image is congtdéatio lie on a line called the epipolar linengfdenoted by’ .
The linel is the intersection of the plamedefined bym, C andC’ (known as the epipolar plane), with the second
image pland’’. This is because image poimtmay correspond to an arbitrary point on the semidive(M may be at
infinity) and that the projection @M on!’ is the linel . . Furthermore, one observes that all epipolar lineseoptints

in the first image pass through a common peintvhich is called the epipole. Epipaéis the intersection of the line
CC’ with the image plank. This can be easily understood as follows. For each pyiintthe first imagé, its epipolar
line I, inI" is the intersection of the plarié®, defined bym, C andC’, with image pland'’. All epipolar planes’7*

thus form a pencil of planes containing the IB@’". They must intersedt at a common point, which &. Finally, one
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can easily see the symmetry of the epipolar geometeycdiresponding point in the first image of each poihtying

on I, must lie on the epipolar link, , which is the intersection of the same plant with the first image planke All
epipolar lines form a pencil containing the epipalevhich is the intersection of the li@C’ with the image plané
The symmetry leads to the following observationmifa point inl) andm’ (a point inl’) correspond to a single
physical pointM in space, themm, m’, C and C’ must lie in a single plane. This is the well-knownptanarity
constraint in solving motion and structure from motmoblems when the intrinsic parameters of the camaras
known. The computational significance in matching differer@ws is that for a point in the first image, its
correspondence in the second image must lie on the epiipaan the second image, and then the search spaee fo
correspondence is reduced from 2 dimensions to 1 dimeri8imis called the epipolar constraint. Algebraically, in
order formin the first image andh’ in the second image to be matched, the following equatigst be satisfied:

M FM =0, with F = A7 [t], RA"? (1)

Matrix R and vectort are the rigid transformation (rotation and translgtiwhich brings points expressed in the
second camera coordinate system to the first one, [G]nds the anti-symmetric matrix defined lysuch that
[t]x x =txx for all 3D vectorx. Without loss of generality, we assume that the waslitdinate system coincides with
the second camera coordinate system. From the pintatlel, we havest = AR t]JW andsm' = Al 0w,

Eliminating w, s ands’ in the above two equations, we obtain equation (1). @&arally, Fm' defines the
epipolar linel , of pointm’ in the first image. Equation (1) says no more than tihex correspondence in the first
image of pointm’ lies on the corresponding epipolar lihe. Transposing (1) yields the symmetric relation from th

first image to the second image.
The 3x 3 matrixF is called thdundamental matrixSince del([t]x) =0, del(F):O andF is of rank 2. Besides, it

is only defined up to a scalar factor, becauseig multiplied by an arbitrary scalar, equation (1) $tdlds. Therefore,
a fundamental matrix has only seven degrees of freedoereTdre only 7 independent parameters among the 9
elements of the fundamental matrix.

The fundamental matrik can also be expressed in terms of the two camera nsd®iaad P’ (Xu and Zhang,

1996), asF = [e’]x P'P", wheree' is the epipole in the second image, &hds the pseudo-inverse Bf
3. Computation of The Fundamental Matrix from Point Correspondences

As showed in the previous section, for any pais X' of matching points in two images, the fundamental mé&trix
is defined by the equation (1) a8’ [F [k =0. Given a sufficient number of point matches ~ x' (at least 7), this

equation can be used to compute the unknown ma&tri2enoting x :[x,y;L]T and x’ :[X Y ;L]T, each point match

gives rise to one linear equation in the unknown entfds. The coefficients of this equation are easily writien
terms of the coordinates wfandx’:

XXE, + XyE, + X1, +yxE, + Yy, + Y, + xf, +yE, + £, =0 )

We denote by the 9-vector made up of the entried=afi row-major order, then (2) can be expressed inamtier
product[x’x,x'y,x YXY VY ,x,y;L] 0 =0.
From a set ofh point matches we obtain a linear equations system dbthre

XX XY, X VX VY. Y, %oy 1
ACF =| o A [ o) (3)
XI"\ Xn Xn yn Xn yl"\ Xn yl"\ yn yl"\ Xn yn l

This is a homogeneous set of equationsfacah be determined only up to scale. For a solutiowis, anatrix A
must have rank at most 8, and in this case the soludionique and determined by linear methods (determining the
generator of the right null-spaceAy. If the data is not exact, because of noise in thehiray points coordinates, then
the rank ofA may be equal to 9, and we must use a least-squares sdtutipthat is the singular vector corresponding

to the smallest singular value Af or the last column of V in the SVA = UDV". This solution minimize§A ¥
subject to the conditioff | = 1.



An important property of the fundamental matrix is thatsi singular, with rank 2. Furthermore, the vectors
representing the two epipoles in the two images gentratieft and right null-spaces of F. The matrix F atadiby
solving the set of linear equations in (3) will notdeneral have rank 2, and this constraint must be enforced a
posteriori. The most convenient way to do this isdorect the matrix F found by the SVD solution of A. KafF is

replaced by the matrix F’ that minimizes the Frobeniusm|F —F | subject to the conditiodefF')=0. This can be
done using the SVDF = UDV', where D:diag(r,s,t) is a diagonal matrix satisfying = s = t. Then
F'=U [iag(rs0)¥ " minimizes the Frobenius norff —F'| .

3.1. The Normalized 8-points Algorithm

The method of calculating the vector f described aboveeisdre of the named 8-points algorithm for computation
of the fundamental matrix F. It is the simplest metbbdomputing the fundamental matrix, involving no more then t
construction and least-squares solution of a set @htiequations. However, it presents high numericallilgy when
pixel coordinates are directly used. In order to reducesteffscts, a proper careful normalization of the inpte& dan
be done (Hartley, 2000), consisting of translation andagim scaling of the points of both images. This predss
represented by the transformation matri¢eand T', applied respectively on the points and x;, such that the

normalized pointsx, and X are given byx, =Tx, and X' =T'x/, so that the fundamental matrix obtained from the
normalized points, and X' yields x," F [, =0 - X" T' " F Tk, =0 - F =T' " [F (T *.

The normalized 8-points algorithm consists of three stepillows:

1. Normalization: the coordinates of the point matches in each imagearsformed according t& =Tx, and

X =T/, whereT and T’ are normalizing transformations so that the centafidhe selected points is

translated to the origin, and the RMS distance cfahmints to the origin is scaled+@ .
2. A solution F is obtained from the point match&s - X by

a. Linear solution: A solution F is obtained from the vectof corresponding to the smallest singular

value of A, as defined in (3).
b. Constraint enforcement: F is replaced bylf’ such thatdet(le'):o, determined using SVD as
described above.
3. De-normalization: The fundamental matrix corresponding to the origidata X, - x| is given by

F=TTIFIT.
3.2. The Minimum 7-points Algorithm

In the case that the matrfx as defined in (3), has rank 7, it is still possiblsdlve for the fundamental matrix by
using the singularity constraint. The most importanedasvhen only 7 point-correspondences are known (otsss
arise from degeneracies such as points on the same ptants in a ruled quadric, or no translation of thees).
This leads to a ¥ 9 matrixA, which generally have rank 7.

The solution to the equation&[ f =0 in this case is a 2-dimensional space of the faiffy + (1—a')F2, wherea

is scalar. The matricds, andF, correspond to the generators f1 and 2 of the right nullespd@, given by the
singular vector corresponding to the zero singular vabdids or the last two columns &f in the SVDA = UDV'.
Using del(F):del(a'F1 +(1—a)F2):0, we arrive at a cubic polynomial equationdn There will be either one or

three real solutions to this equation, leading to onéreetr = aF, + (1— a')F2 possible solutions to the fundamental
matrix.

3.3. Residual Error

The error is defined as
$ (a0 B, F +d(x, Fx)) (4)

Where d(x,l) is the distance (in pixels) between poiraind linel. The error is the average over Hlmatches of
the squared distance between a point's epipolar line reanatching point in the other image, computed for both
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points of the match. Note that the error is evaluatetsidering allN matches taken from the images, not onlyrthe
points used in computing the fundamental ma#rix

The two algorithms described in the previous subsectiongsot directly minimize this error, but the iteratixe
points and recursive normalized 8-points algorithms preddntthe next subsections use it to find the begnasitie
of the fundamental matrix calculated from a givenoggioint correspondences.

3.4. Iterative 7-points Algorithm

Given a set oN point-correspondenceg, — x' between two imaged\ > 7, the iterative 7-points method of
calculating the fundamental mattfixconsists of dividing it in subsets of 7 point-correspondemach, determining the
solutions F = aF, +(1-a)F, as described in section 3.2, determining the residual @sralescribed in section 3.3,
and comparing it to the current minimum error value. éflew error value is less than the current minimwratue
becomes current and the new calculdtdaecomes the estimative of the fundamental matrix. r@tbe, they are both
discarded and the current values remain the same.

This method gives the best fitting estimative of thedamental matrix for a given set of point matches, but
becomes extremely computationally costly for large v&ahfeN. The number of iterations necessary to exhaastah
of correspondence is the combination of N elementsitélat a time, given bk = N!/(7! (N -7)!). For 8 point« = 8,
for 10 pointsK = 120, for 15 point& = 6435, and for 20 points = 77520. As it is, this method will be applied only to
small sets of point correspondences.

3.5. Recursive Normalized 8-points Algorithm

This method uses the residual error presented in BeBt®as minimization criterion for a recursive formtioé
normalized 8-points algorithm. Lef =FX, =[I! 11 I:]" and |, =F"X'=[l, 1, I,]", then equation (4) can be

rewritten asiwf(xi'Tin)2 , Where w, :\/(1/(I12 +12))+ /(12 +122)) . The task of findingnlir(ivvf(xi'Tin)zJ is

similar to solving the set of equations shown in (3}l @presents weightedsolution. If we can compute the weight

for each point match, the corresponding equation can biphmd by w, and exactly the same normalized 8-points
algorithm can be run to estimate the fundamental mattiich minimizes (4). As the weight$ depend themselves on
the fundamental matrix, we apply a recursive linear oethVe first assume that all = 1 and run the normalized 8-
points algorithm to obtain an initial estimation oé ttundamental matrix. The weights are then computed from this
initial solution. Then we re-run the normalized 8-poaitgrithm on the weighted set of equations. This procedure wi
be repeated several times, until a minimum errorroagimum iteration threshold is achieved.

4. Characterization of the Fundamental Matrix Uncertainty

As experimental data points are always corrupted by noisksametimes there are false matches among the
collected data, it is important to model the uncertawoftythe estimated fundamental matrix in order to correctly
interpret its geometric information. For instance tovariance of the fundamental matrix can be used tpwenthe
uncertainty of the projective reconstruction or thegmtye invariants.

In order to quantify the uncertainty of the estimatiérthe fundamental matrix by the methods described in the
previous sections, we model the fundamental matrixrasdom vectof 0 R’ (vector space of real 7-vectors) whose
mean is the exact solution and the uncertainty is gtsetovariance.

Considering a general random vegtdr R°, wherep is the dimension of the vector space, the covariafigés the

positive symmetric matrix1, = E[(y— E[y])(y— E[y])T], whereE[y] denotes the mean of the random vegtor

4.1. The Statistical Method

The statistical method is based on the suppositionttieanumberN of samplesy; of the random vectoy is
sufficiently large to approximate the mefpy] by the sample mean:

Ely=<2y (5)

And A, is then approximated by, = i(yi -E, [y(y, —E.[y]) /(N -1).
This method works well fol > 30 and it is particularly useful in simulations.



4.2. The Analytical Method

In the present casg,is computed from another random vectaf R™ using aC" functiong: y= ¢(x). Considering
a first order approximation of ¢ centered in E[x, it yields E[y]=¢(E[x]), where

¢( E[x] E[x] [ﬂx E[x] and

4,=(2) )(E[x])j 422l ®

As explained in Section 4 is computed from the minimization of a sum of squares, anchses where the
parameter is obtained through minimization ghénction is implicit, leading to the following resulfl{ang, 1998):
considering a criterion functio@ : R™ - R’ of C*, xo O R™ the measurement vector apd] R° a local minimum of
C(Xo; 2), if the HessianH of C with respect toz is invertible at X; 2 = (Xo; Yo) then we have

(04(x)/ox)(E[x]) = -H *(o/dx), where @ =(0C/dz)" and H =0d/dz. If x, = E[x] andy, = E[y], equation (5)
becomes

A =H %0 92 - )

X

ox [0

For the computation df from point correspondences, the criterion is the nafrthe implicit function and thug is
of the form icf(xi z), where x:[xI--~xiT--~xI]T. Neglecting the second order terms, the results are
i=1

H =2y (0C, /az)" (0C, /9z) anddw/ax = 25.(9C, /z)' (3C, /ox). Assuming that the noise i and that in
X; (j # 1) are independent, then equation (7) becomes

A, —4H’1Z G mlaa—H’T (8)

0z
Where (up to the first order approximatian). = (ac, /ox, )IZMXi tfoc, /ox, )" .
Considering that the mean of the valueCpfat the minimum is zero and that tgs are independent and have

identical  distributed quadratic errors,Ac; can be approximated by its sample variance
=(/(n- p))xC? = S/(n- p), whereS is the value of the criteriof at the minimum, ang is the number of

parameters (the dimension Wf This formula usep to correct the effect of a small sample set. rer p, almost
always can be found an estimatey&fuch thatC; = 0 for alli, and equation (8) becomes

S

H™ 9

Applying this result to the fundamental matx with p = 7, and the criterion functiorC(fn, f,) (where

m= [m1 M ,e-,m, ,m’n]T andf; is the vector of the seven chosen parametdf$ isf given by the minimization of (4)}
is thus computed by (9) using the Hessian obtained as a Bygbraf the minimization oC(Fn, f7). According to (6),

A is then computed from, and we havet, = (aF(f7)/af7)|214f7 ifor (f,)/of,)" . Actually, the fundamental matrix
F(f;) is a 9-vector composed of the 9 coefficients whichfametions of the 7 parametersfef

5. Smulation and Experimental Results

The methods for calculating the fundamental matrix desdrin section 3 were applied to computer-generated data
of two known camera movement cases, the pure translatidnthe planar motion. The results are used for their
comparison and to infer about their behavior apart fiogertainties in the point-correspondences sets, #iece is no
noise in the input data. The same methods are theredpplexperimental point-correspondences sets, obtainedafrom
real image sequence of uncalibrated camera movement arcstaticascene. Again the results were compared and
leaded to conclusions about their behavior when subjéztedisy input data.
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5.1. Simulation Results

Pure Trandation: The computer-generated data consists of an image ioéfame cube with a side of 200 pixels,
positioned at the origin in 3D space. The camera monefserestricted to translation only, i.e. there isrotation
around the 3D axis. Since all the extrinsic parameterskaown, and all intrinsic parameters are also knowa, th
projective matrices relative to each image, and theédnental matrix, are perfectly determined. Input dataridomly
selected from the analytically calculated coordinatgsogits on the cube’s sides to form sets of 7, 8, 10 arqbith
matches between the two images. The sets are usedartthalgorithm where they apply to calculate an estimafiv
the fundamental matrix. Table 1 shows the residual érahese estimative for each set-algorithm combamatio
test the efficiency of the algorithms we generated afs20 points, and the resulting residual error for eatimative
of the fundamental matrix is shown in Tab. 2.

Planar Moation: The computer-generated data consists of an image okf&ame cube with a side of 100 pixels,
positioned at the origin in 3D space. The camera now snowea single plane (only x and y coordinates vary, aamd th
coordinate is fixed), but is free to rotate around arthef3D axis. As all parameters are known, the ptiggmatrices
relative to each image, and the fundamental matrixpeagxactly determined. Input data is randomly selected the
analytically calculated coordinates of points on the ‘sulieles to form sets of 7, 8, 10 and 15 point matcheseeatw
the two images. As in the previous case, the setused with each algorithm where they apply to calculate an
estimative of the fundamental matrix. Table 1 showsrgsidual error for these estimative for each sgirghm
combination. Again, the efficiency of the algorithms wasted against another set of 20 points, and the resulting
residual error for each estimative of the fundamengdfimis shown in Tab. 2.

Table 1. Residual error of the fundamental matrix estiira (quadratic distance in square pixel fractions).

Algorithm Pure Trandation | Planar Motion | 1% Real Pair | 2" Real Pair
Minimal 7-points . solution 0.0000 0.0000 0.0000 0.0000x10*
Minimal 7-points 2% solution 0.0000 0.0000 0.0000 0.0000x10*
Minimal 7-points ¥ solution 0.0000 0.0000 0.0000 0.000x10*
Normalized 8-points on 8 point-matches |0.6362 0.0636 0.0006 0.5906x10*
Recursive normalized 8-points on 8 point-match@$362 0.0636 0.0006 0.5906x10*
Iterative 7-points on 8 point-matches 0.0018 0.0000 0.0000 0.013%10*
Normalized 8-points on 10 point-matches | 0.0000 0.0002 0.0021 0.378410*
Recursive normalized 8-points on 10 point-matgl9e8000 0.0002 0.0019 0.4025%10*
Iterative 7-points on 10 point-matches 0.0000 0.0001 0.0001 0.1500x10*
Normalized 8-points on 15 point-matches |0.0177 0.0006 0.0006 0.611%10*
Recursive normalized 8-points on 15 point-matgl@e8177 0.0006 0.0004 0.994&10*
Iterative 7-points on 15 point-matches 0.0061 0.0006 0.0001 0.222x10*

Table 2. Residual error of a set of 20 randomly selected-ptatches (quadratic distance in square pixel frasfion

Algorithm Pure Trandation | Planar Motion | 1% Real Pair | 2" Real Pair
Minimal 7-points . solution 0.4401 0.0809 0.0144 0.0004
Minimal 7-points 2% solution 32.9524 0.9377 0.4278 0.0011
Minimal 7-points ¥ solution 515.4311 3.8259 1.8355 0.0035
Normalized 8-points on 8 point-matches |14.5389 5.8422 0.0038 0.0002
Recursive normalized 8-points on 8 point-match®4.5389 5.8422 0.0038 0.0002
Iterative 7-points on 8 point-matches 0.0946 0.0231 0.0005 0.0002
Normalized 8-points on 10 point-matches |0.1545 0.0012 0.0060 0.0001
Recursive normalized 8-points on 10 point-matgle$545 0.0012 0.0056 0.0001
Iterative 7-points on 10 point-matches 0.1502 0.0015 0.0005 0.0001
Normalized 8-points on 15 point-matches |0.1984 0.0010 0.0020 0.0001
Recursive normalized 8-points on 15 point-matgle$984 0.0010 0.0011 0.0001
Iterative 7-points on 15 point-matches 0.0450 0.0032 0.0002 0.0000

5.2. Experimental Results

The experimental data was obtained from a digital ctithera adapted to a computer controlled robot arm, so tha
the exact displacement between any two images is knbBach image has resolution of 640 x 480 pixels and was
stored in JPEG format with maximum quality. The compietage sequence has 12 images, from which were taken



two pairs to serve as base for the calculationsignwtiork. Point-correspondences where manually determiitbcaid
of a graphical user interface developed to the purpose of pcegsing the data to be used with the algorithms of
computation of the fundamental matrix.

The first pair of images considered here comprisesiargemovement of the camera, including translation i x,
and z coordinates and rotation around the three axesovEnall displacement on the three coordinates is largagh
to be distinctly noted in the images. The input data eaefully selected from the two images to form a&20 point-
correspondences, which was reduced to subsets of 15, 16,78paint-matches for the performance comparisons. The
residual error was calculated against the original 3ets. (1) and the complete 20 point-matches set (Tab. 2).

The second pair of images comprises a simple translatowement of the camera, displaced along the x, y and z
coordinates. The overall camera movement is very amdlis only slightly noted in the images. Again theuit data is
selected from the two images to form a set of 20 pairmespondences, which is reduced to subsets of 15, 10, 8 and 7
point-matches determine the fundamental matrix estimafisebefore, the residual error was calculated agaiirest
original sets (Tab. 1) and the complete 20 point-matchd3 k. 2).

6. Conclusion

The results show that the recursive normalized 8-paigtsrithm does not improve the results from the nomzedli
8-points algorithm for any of the perfectly matched poimtegpondences of the pure translation and planar motion
simulations. In the case of the experimental image phiesfirst one shows slight improvement on the redutis
normalized 8-points to recursive normalized 8-points algoritfor the 10 and 15 point-matches sets. On the other
hand, the second experimental image pair, the result® afrifinal normalized 8-points algorithm are better than the
recursive version. From the results shown in Tab.d Bab.2 we notice that the residual error will decress¢he
number of point-matches in the input set increasdgpendent of the algorithm used (excluding the minimal 7-points)
Although the minimal 7-points algorithm gives negligible desil error when the original 7 point-matches set is used,
the results for the 20 point-matches set are the i@rany of the test cases, simulated or experimental.it€hative 7-
points algorithm achieves the best results in all studiases. The analysis of the simulated results giwes th
performance of each algorithm when there is no emothe coordinates of the point-matches. Then the resiral
observed is due to numerical error introduced by the underlyimgegs. As all those methods rely on the solution of
under or over-determined equation systems, a particulacechbipoint-correspondences can lead to an ill conditioned
A matrix in equation (3), they can easily become unstébleither simulated and experimental cases, the werdti
points algorithm will perform better because it sear¢thessomplete data set for the combination of pointchres that
gives the smallest residual error, and that will autaratyi exclude the ill conditioned combinations. It coblbpen
that there is no good combination in the complete skettabut that will be less noticed in larger point-matdsts. On
the other hand, computational costs will grow as the numfbeombinations increase. The algorithms that minémiz
the residual error will also be subject to the ungiegl uncertainty of the fundamental matrix demonstratestation 4.
The experimental results show that recursive methodsrthremize the residual error could give better perforogan
than their direct form, and encourage further studies orsubgect of adaptive algorithms derived from the system
determination techniques, such as Least Mean Squares @hiSRecursive Least Squares (LMS), as well as mixed
technigues involving adaptive computation and the metpiaggented in this work.
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