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Abstract. The problem of determining object geometry and position from image matches is an open issue in Computer 
Vision. It can be addressed using epipolar geometry, calculating the fundamental matrix from the correspondence of 
image pairs from a moving camera sequence. The fundamental matrix obtained from a set of point matches between 
two images in a motion sequence determines an homography of points in the first image to lines in the second one, and 
provides, besides a scale factor, the projective matrix that transforms one image into the other. The process of 
calculating the fundamental matrix and the projective transformation is object to errors due to image quantization, 
point matches selection, numerical determination of the correspondence equation system, among others. These errors 
and the propagation of their effects must be carefully considered in any study of methods and algorithms for motion 
structure and object position determination that are based in epipolar geometry of image sequences. This work 
presents concepts of epipolar geometry, from camera model, fundamental matrix of image matches, to the 
determination of the canonical projective matrices, the analytical study of measure and calculation uncertainties of the 
process, and the analysis of results in real cases, with the objective of developing a method for the extraction of 
Euclidean geometry information of scenes and motion structure of image sequences. 
 
Keywords: computer vision, epipolar geometry, image correspondence, fundamental matrix, error quantification.   

 
1. Introduction  
 

Two images in a sequence or from a stereo pair of a single scene are related by epipolar geometry, represented by a 
3 × 3 singular matrix. It contains all geometric information necessary for establishing correspondences between the two 
images, and to infer the three-dimensional structure of the scene. In a stereovision system where the camera geometry is 
calibrated, and its intrinsic parameters are known, it is possible to calculate the fundamental matrix from the camera 
perspective projection matrices, and the matrix derived from point correspondences under epipolar geometry is called 
essential matrix. When the intrinsic parameters are known but the extrinsic ones (the rotation and translation between 
the two images) are not, the problem is known as motion and structure from motion, and has been extensively studied in 
Computer Vision. This work concentrates in techniques for estimating the fundamental matrix from two uncalibrated 
images, where both the intrinsic and extrinsic parameters of the images are unknown. From this matrix, we can 
reconstruct a projective structure of the scene, represented as a 4 × 4 matrix transformation. 

The study of uncalibrated images has many important applications. We cannot obtain any metric information from a 
projective structure: measurements of lengths and angles are distorted by a scale factor, and the solution to the 
projective matrices is not unique. However, this structure still contains information about coplanarity, collinearity, and 
cross ratios (ratio of ratios of distances), which can be used in robotic systems to perform tasks such as navigation, 
stabilization and object recognition (Armangué, X. and Salvi, J., 2003; Cheong, L. and Peh, C., 2004; Gracias, N. and 
Santos-Victor, J., 2000; Zwaan, S., Bernardino, A., and Santos-Victor, J., 2002). 

In applications such as the reconstruction of the environment from a sequence of video images, the parameters of the 
video lens are submitted to continuous modification, and camera calibration is not possible. We cannot reconstruct the 
exact Euclidean geometry of the scene, but a projective structure can be derived from a pinhole camera model. 
Assuming that the camera parameters do not change between successive views, the projective invariants can be used to 
calibrate the cameras and calculate its intrinsic parameters (known as self-calibration). 

This work gives an introduction to the epipolar geometry, from camera model, fundamental matrix of image 
matches, to the determination of the canonical projective matrices, presents two methods for determining the 
fundamental matrix from point matches in two images from a scene, analytical study of the error in these methods, the 
application of the uncertainty calculation in the comparison of the presented methods and its use in deriving an 
improved method. Simulated data and real images are used to build a comparison between the methods and to analyze 
the results. 
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2. Epipolar Geometry 
 

A pinhole camera is modeled by its optical center C and its retinal plane (or image plane) R. A 3D point W is 
projected into an image point m given by the intersection of R with the line containing C and W. 

Let w = (x; y; z) be the coordinates of W in the world reference frame (fixed arbitrarily) and m the pixel coordinates 

of m. Their equivalents in homogeneous (or projective) coordinates are [ ]T1zyx~ =w and [ ]T1vu~ =m . The 

perspective projection matrix P (or simply camera matrix) gives the transformation from w~  to m~ : wPm ~~s = , where s 
is an arbitrary scale factor (projective depth). If P is suitably normalized, s becomes the true orthogonal distance of the 
point from the focal plane of the camera. 

The 3 × 4 matrix P can be decomposed as [ ]tRAP =  where the 3 × 3 matrix A depends on the intrinsic 
parameters only, and has the following form: 
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Where αu = -fku; αv = -fkv are the focal lengths in horizontal and vertical pixels, respectively (f is the focal length in 

millimeters, ku and kv are the effective number of pixels per millimeter along the u- and v-axes), (u0; v0) are the 
coordinates of the principal point, given by the intersection of the optical axis with the retinal plane (Fig. 1), and γ is the 
skew factor. The camera position and orientation (extrinsic parameters), are encoded by the 3 × 3 rotation matrix R and 
the translation vector t, representing the rigid transformation that aligns the camera reference frame (Fig. 1) and the 
world reference frame. 
 

   
 

Figure 1. The pinhole camera model (left) and the epipolar geometry model (right). 
 

A line l in the image passing through point [ ]Tvu=m  is described by equation 0cbvau =++ . Let 

[ ]Tcba=l , then the equation can be rewritten as 0~ =ml T  or 0~ T =lm . Multiplying l by any non-zero scalar will 

define the same 2D line. Thus, a homogeneous 3D vector represents a 2D line. The distance from point [ ]T

000 vu=m  

to line [ ]Tcba=l  is given by ( ) ( ) ( )22

000 bacbvau,d +++=lm  (signed distance). 
The epipolar geometry exists between any two-camera systems. Consider the case of two cameras as shown in Fig. 

1. Let C and C’ be the optical centers of the first and second cameras, respectively. Given a point m in the first image, 
its corresponding point in the second image is constrained to lie on a line called the epipolar line of m, denoted by ml ′ . 

The line ml ′  is the intersection of the plane I, defined by m, C and C’ (known as the epipolar plane), with the second 
image plane I’ ’. This is because image point m may correspond to an arbitrary point on the semi-line CM (M may be at 
infinity) and that the projection of CM on I’  is the line ml ′ . Furthermore, one observes that all epipolar lines of the points 
in the first image pass through a common point e’, which is called the epipole. Epipole e’ is the intersection of the line 
CC’ with the image plane I’ . This can be easily understood as follows. For each point mk in the first image I, its epipolar 
line 

kml ′  in I’  is the intersection of the plane Π k, defined by mk, C and C’, with image plane I’ ’. All epipolar planes Π k  

thus form a pencil of planes containing the line CC’. They must intersect I’  at a common point, which is e’. Finally, one 
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can easily see the symmetry of the epipolar geometry. The corresponding point in the first image of each point km′  lying 

on 
kml ′  must lie on the epipolar line 

kml ′ , which is the intersection of the same plane Π k  with the first image plane I. All 

epipolar lines form a pencil containing the epipole e, which is the intersection of the line CC’ with the image plane I. 
The symmetry leads to the following observation. If m (a point in I) and m’ (a point in I’ ) correspond to a single 
physical point M in space, then m, m’, C and C’ must lie in a single plane. This is the well-known co-planarity 
constraint in solving motion and structure from motion problems when the intrinsic parameters of the cameras are 
known. The computational significance in matching different views is that for a point in the first image, its 
correspondence in the second image must lie on the epipolar line in the second image, and then the search space for a 
correspondence is reduced from 2 dimensions to 1 dimension. This is called the epipolar constraint. Algebraically, in 
order for m in the first image and m’ in the second image to be matched, the following equation must be satisfied: 
 

0~~ =′mFmT , with [ ] 1−
×

− ′= ARtAF T  (1) 
 

Matrix R and vector t are the rigid transformation (rotation and translation) which brings points expressed in the 
second camera coordinate system to the first one, and [ ]×t  is the anti-symmetric matrix defined by t such that 

[ ] xtxt ×=×  for all 3D vector x. Without loss of generality, we assume that the world coordinate system coincides with 

the second camera coordinate system. From the pinhole model, we have [ ]wtRAm ~~s =  and [ ]w0IAm ~~s ′=′′ . 

Eliminating w~ , s and s’ in the above two equations, we obtain equation (1). Geometrically, mF ′  defines the 
epipolar line m′l  of point m’  in the first image. Equation (1) says no more than that the correspondence in the first 

image of point m’  lies on the corresponding epipolar line m′l . Transposing (1) yields the symmetric relation from the 
first image to the second image. 

The 3 × 3 matrix F is called the fundamental matrix. Since [ ]( ) 0det =×t , ( ) 0det =F  and F is of rank 2. Besides, it 
is only defined up to a scalar factor, because if F is multiplied by an arbitrary scalar, equation (1) still holds. Therefore, 
a fundamental matrix has only seven degrees of freedom. There are only 7 independent parameters among the 9 
elements of the fundamental matrix. 

The fundamental matrix F can also be expressed in terms of the two camera matrices P and P’  (Xu and Zhang, 
1996), as [ ] +

× ′′= PPeF , where e’  is the epipole in the second image, and P+ is the pseudo-inverse of P. 
 
3. Computation of The Fundamental Matrix from Point Correspondences 
 

As showed in the previous section, for any pair xx ′↔  of matching points in two images, the fundamental matrix F 
is defined by the equation (1) as 0=⋅⋅′ xFx T . Given a sufficient number of point matches ii xx ′↔  (at least 7), this 

equation can be used to compute the unknown matrix F. Denoting [ ]T1,y,x=x  and [ ]T1,y,x ′′=′x , each point match 
gives rise to one linear equation in the unknown entries of F. The coefficients of this equation are easily written in 
terms of the coordinates of x and x’ : 
 

0fyfxffyyfyxfyfxyfxxfx 333231232221131211 =+++′+′+′+′+′+′  (2) 
 

We denote by f the 9-vector made up of the entries of F in row-major order, then (2) can be expressed in as the inner 
product [ ] 01,y,x,y,yy,xy,x,yx,xx =⋅′′′′′′ f . 

From a set of n point matches we obtain a linear equations system of the form 
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This is a homogeneous set of equations and f can be determined only up to scale. For a solution to exist, matrix A 

must have rank at most 8, and in this case the solution is unique and determined by linear methods (determining the 
generator of the right null-space of A). If the data is not exact, because of noise in the matching points coordinates, then 
the rank of A may be equal to 9, and we must use a least-squares solution for f, that is the singular vector corresponding 
to the smallest singular value of A, or the last column of V in the SVD A = UDVT. This solution minimizes fA ⋅  

subject to the condition 1=f . 



An important property of the fundamental matrix is that it is singular, with rank 2. Furthermore, the vectors 
representing the two epipoles in the two images generate the left and right null-spaces of F. The matrix F obtained by 
solving the set of linear equations in (3) will not in general have rank 2, and this constraint must be enforced a 
posteriori. The most convenient way to do this is to correct the matrix F found by the SVD solution of A. Matrix F is 
replaced by the matrix F’ that minimizes the Frobenius norm FF ′−  subject to the condition ( ) 0det =′F . This can be 

done using the SVD F = UDVT, where ( )t,s,rdiag=D  is a diagonal matrix satisfying r ≥ s ≥ t. Then 

( ) TVUF ⋅⋅=′ 0,s,rdiag  minimizes the Frobenius norm FF ′− . 

 
3.1. The Normalized 8-points Algorithm 
 

The method of calculating the vector f described above is the core of the named 8-points algorithm for computation 
of the fundamental matrix F. It is the simplest method of computing the fundamental matrix, involving no more than the 
construction and least-squares solution of a set of linear equations. However, it presents high numerical instability when 
pixel coordinates are directly used. In order to reduce these effects, a proper careful normalization of the input data can 
be done (Hartley, 2000), consisting of translation and isotropic scaling of the points of both images. This process is 
represented by the transformation matrices T and T’ , applied respectively on the points ix  and ix′ , such that the 

normalized points ix̂ and ix̂′  are given by ii Txx =ˆ  and ii xTx ′′=′ˆ , so that the fundamental matrix F̂ obtained from the 

normalized points ix̂ and ix̂′  yields 1T

i

1T

iii TFTFxTFTxxFx −−−− ⋅⋅′=→=⋅⋅⋅′⋅′→=⋅⋅ ˆ0ˆˆ0 TT . 
The normalized 8-points algorithm consists of three steps, as follows: 
1. Normalization: the coordinates of the point matches in each image are transformed according to ii Txx =ˆ  and 

ii xTx ′′=′ˆ , where T and T’  are normalizing transformations so that the centroid of the selected points is 

translated to the origin, and the RMS distance of these points to the origin is scaled to 2 . 

2. A solution F̂  is obtained from the point matches ii xx ˆˆ ′↔  by 

a. Linear solution: A solution F̂  is obtained from the vector f̂  corresponding to the smallest singular 

value of Â , as defined in (3). 

b. Constraint enforcement: F̂ is replaced by F ′ˆ  such that ( ) 0ˆdet =′F , determined using SVD as 

described above. 
3. De-normalization: The fundamental matrix corresponding to the original data ii xx ′↔  is given by 

TFTF T ⋅⋅′= ˆ . 
 
3.2. The Minimum 7-points Algorithm 
 

In the case that the matrix A, as defined in (3), has rank 7, it is still possible to solve for the fundamental matrix by 
using the singularity constraint. The most important case is when only 7 point-correspondences are known (other cases 
arise from degeneracies such as points on the same plane, points in a ruled quadric, or no translation of the camera). 
This leads to a 7 × 9 matrix A, which generally have rank 7. 

The solution to the equations 0=⋅ fA  in this case is a 2-dimensional space of the form ( ) 21 1 FF αα −+ , where α 
is scalar. The matrices F1 and F2 correspond to the generators f1 and f2 of the right null-space of A, given by the 
singular vector corresponding to the zero singular values of A, or the last two columns of V in the SVD A = UDVT. 
Using ( ) ( )( ) 01detdet 21 =−+= FFF αα , we arrive at a cubic polynomial equation in α. There will be either one or 

three real solutions to this equation, leading to one or three ( ) 21 1 FFF αα −+=  possible solutions to the fundamental 
matrix. 
 
3.3. Residual Error 
 

The error is defined as 
 

( ) ( )( )∑ ′+′
=

N

1i

22 dd iiii xF,xFx,x  (4) 

 
Where ( )lx,d  is the distance (in pixels) between point x and line l. The error is the average over all N matches of 

the squared distance between a point’s epipolar line and the matching point in the other image, computed for both 



Proceedings of COBEM 2005 18th International Congress of Mechanical Engineering 
Copyright © 2005 by ABCM November 6-11, 2005, Ouro Preto, MG 

 

points of the match. Note that the error is evaluated considering all N matches taken from the images, not only the n 
points used in computing the fundamental matrix F. 

The two algorithms described in the previous subsections do not directly minimize this error, but the iterative 7-
points and recursive normalized 8-points algorithms presented in the next subsections use it to find the best estimative 
of the fundamental matrix calculated from a given set of point correspondences. 
 
3.4. Iterative 7-points Algorithm 
 

Given a set of N point-correspondences ii xx ′↔  between two images, N > 7, the iterative 7-points method of 
calculating the fundamental matrix F consists of dividing it in subsets of 7 point-correspondences each, determining the 
solutions ( ) 21 1 FFF αα −+=  as described in section 3.2, determining the residual error as described in section 3.3, 
and comparing it to the current minimum error value. If the new error value is less than the current minimum, its value 
becomes current and the new calculated F becomes the estimative of the fundamental matrix. Otherwise, they are both 
discarded and the current values remain the same. 

This method gives the best fitting estimative of the fundamental matrix for a given set of point matches, but 
becomes extremely computationally costly for large values of N. The number of iterations necessary to exhaust the set 
of correspondence is the combination of N elements taken 7 at a time, given by ( )( )!7N!7!NK −= . For 8 points K = 8, 
for 10 points K = 120, for 15 points K = 6435, and for 20 points K = 77520. As it is, this method will be applied only to 
small sets of point correspondences. 
 
3.5. Recursive Normalized 8-points Algorithm 
 

This method uses the residual error presented in section 3.3 as minimization criterion for a recursive form of the 

normalized 8-points algorithm. Let [ ]T

321ii lll~ ′′′≡=′ xFl  and [ ]T

321i

T

i lll~ ≡′= xFl , then equation (4) can be 

rewritten as ( )∑ ′
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similar to solving the set of equations shown in (3), and represents a weighted solution. If we can compute the weight wi 
for each point match, the corresponding equation can be multiplied by wi, and exactly the same normalized 8-points 
algorithm can be run to estimate the fundamental matrix, which minimizes (4). As the weights wi depend themselves on 
the fundamental matrix, we apply a recursive linear method. We first assume that all wi = 1 and run the normalized 8-
points algorithm to obtain an initial estimation of the fundamental matrix. The weights wi are then computed from this 
initial solution. Then we re-run the normalized 8-points algorithm on the weighted set of equations. This procedure will 
be repeated several times, until a minimum error or a maximum iteration threshold is achieved. 
 
4. Characterization of the Fundamental Matrix Uncertainty 
 

As experimental data points are always corrupted by noise, and sometimes there are false matches among the 
collected data, it is important to model the uncertainty of the estimated fundamental matrix in order to correctly 
interpret its geometric information. For instance, the covariance of the fundamental matrix can be used to compute the 
uncertainty of the projective reconstruction or the projective invariants. 

In order to quantify the uncertainty of the estimation of the fundamental matrix by the methods described in the 
previous sections, we model the fundamental matrix as a random vector f ∈ R7 (vector space of real 7-vectors) whose 
mean is the exact solution and the uncertainty is given its covariance. 

Considering a general random vector y ∈ Rp, where p is the dimension of the vector space, the covariance of y is the 

positive symmetric matrix [ ]( ) [ ]( )[ ]T

y EyEE yyy
Λ

−−= , where E[y] denotes the mean of the random vector y. 

 
4.1. The Statistical Method 
 

The statistical method is based on the supposition that the number N of samples yi of the random vector y is 
sufficiently large to approximate the mean E[y] by the sample mean: 
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This method works well for N > 30 and it is particularly useful in simulations. 
 



4.2. The Analytical Method 
 

In the present case, y is computed from another random vector x of Rm using a Cn function ϕ: ( )xy ϕ= . Considering 

a first order approximation of ϕϕϕϕ centered in E[x], it yields [ ] [ ]( )xy EE ϕ≈ , where 

( ) [ ]( ) ( ) [ ]( ) [ ]( )xxx
x
x
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∂
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As explained in Section 4, F is computed from the minimization of a sum of squares, and in cases where the 

parameter is obtained through minimization the ϕϕϕϕ function is implicit, leading to the following result (Zhang, 1998): 
considering a criterion function C : Rm → Rp of C∞, x0 ∈ Rm the measurement vector and y0 ∈ Rp a local minimum of 
C(x0; z), if the Hessian H of C with respect to z is invertible at (x; z) = (x0; y0) then we have 

( )( ) [ ]( ) ( )x
Φ

Hxxx ∂∂−=∂∂ −1Eϕ , where ( )TzC
Φ

∂∂=  and z
Φ

H ∂∂= . If x0 = E[x] and y0 = E[y], equation (5) 
becomes 
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For the computation of F from point correspondences, the criterion is the norm of the implicit function and thus C is 

of the form ( )∑
=

N

1i
z,xC i

2
i , where [ ]TT

n

T

i

T

1 xxxx LL= . Neglecting the second order terms, the results are 

( ) ( )∑ ∂∂∂∂≈
i

ii zCzC2H T
 and ( ) ( )∑ ∂∂∂∂≈∂∂

i
ii xCzC2x

Φ T . Assuming that the noise in xi and that in 

xj (j ≠ i) are independent, then equation (7) becomes 
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Where (up to the first order approximation) ( ) ( )T

iiixiiiC xC
Λ

xC
Λ

∂∂⋅⋅∂∂= . 

Considering that the mean of the value of Ci at the minimum is zero and that the Ci's are independent and have 
identical distributed quadratic errors, ΛΛΛΛCi can be approximated by its sample variance 

( )( ) ( )pnSCpn1
Λ

i

2
iiC −=∑−= , where S is the value of the criterion C at the minimum, and p is the number of 

parameters (the dimension of y). This formula uses p to correct the effect of a small sample set. For n = p, almost 
always can be found an estimate of y such that Ci = 0 for all i, and equation (8) becomes 
 

T
y H
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S

2
Λ −

−
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Applying this result to the fundamental matrix F, with p = 7, and the criterion function ( )7f,m̂C  (where 

[ ]T

nn11 m,m,,m,mm̂ ′′= L  and f7 is the vector of the seven chosen parameters of F) is given by the minimization of (4). ΛΛΛΛf7 

is thus computed by (9) using the Hessian obtained as a by-product of the minimization of ( )7f,m̂C . According to (6), 

ΛΛΛΛF is then computed from ΛΛΛΛf7, and we have ( )( ) ( )( )T

777f77F ffF
Λ

ffF
Λ

∂∂⋅⋅∂∂= . Actually, the fundamental matrix 

F(f7) is a 9-vector composed of the 9 coefficients which are functions of the 7 parameters of f7. 
 
5. Simulation and Experimental Results 
 

The methods for calculating the fundamental matrix described in section 3 were applied to computer-generated data 
of two known camera movement cases, the pure translation and the planar motion. The results are used for their 
comparison and to infer about their behavior apart from uncertainties in the point-correspondences sets, since there is no 
noise in the input data. The same methods are then applied to experimental point-correspondences sets, obtained from a 
real image sequence of uncalibrated camera movement around a static scene. Again the results were compared and 
leaded to conclusions about their behavior when subjected to noisy input data. 
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5.1. Simulation Results 
 

Pure Translation: The computer-generated data consists of an image of a wireframe cube with a side of 200 pixels, 
positioned at the origin in 3D space. The camera movement is restricted to translation only, i.e. there is no rotation 
around the 3D axis. Since all the extrinsic parameters are known, and all intrinsic parameters are also known, the 
projective matrices relative to each image, and the fundamental matrix, are perfectly determined. Input data is randomly 
selected from the analytically calculated coordinates of points on the cube’s sides to form sets of 7, 8, 10 and 15 point 
matches between the two images. The sets are used with each algorithm where they apply to calculate an estimative of 
the fundamental matrix. Table 1 shows the residual error for these estimative for each set-algorithm combination. To 
test the efficiency of the algorithms we generated a set of 20 points, and the resulting residual error for each estimative 
of the fundamental matrix is shown in Tab. 2. 

Planar Motion: The computer-generated data consists of an image of a wireframe cube with a side of 100 pixels, 
positioned at the origin in 3D space. The camera now moves on a single plane (only x and y coordinates vary, and the z 
coordinate is fixed), but is free to rotate around any of the 3D axis. As all parameters are known, the projective matrices 
relative to each image, and the fundamental matrix, can be exactly determined. Input data is randomly selected from the 
analytically calculated coordinates of points on the cube’s sides to form sets of 7, 8, 10 and 15 point matches between 
the two images. As in the previous case, the sets are used with each algorithm where they apply to calculate an 
estimative of the fundamental matrix. Table 1 shows the residual error for these estimative for each set-algorithm 
combination. Again, the efficiency of the algorithms was tested against another set of 20 points, and the resulting 
residual error for each estimative of the fundamental matrix is shown in Tab. 2. 
 

Table 1. Residual error of the fundamental matrix estimative (quadratic distance in square pixel fractions). 
 

Algorithm Pure Translation Planar Motion 1st Real Pair 2nd Real Pair 
Minimal 7-points 1st. solution 0.0000 0.0000 0.0000 0.0000×10-4 
Minimal 7-points 2nd solution 0.0000 0.0000 0.0000 0.0000×10-4 
Minimal 7-points 3rd solution 0.0000 0.0000 0.0000 0.0000×10-4 

Normalized 8-points on 8 point-matches 0.6362 0.0636 0.0006 0.5906×10-4 
Recursive normalized 8-points on 8 point-matches 0.6362 0.0636 0.0006 0.5906×10-4 

Iterative 7-points on 8 point-matches 0.0018 0.0000 0.0000 0.0135×10-4 
Normalized 8-points on 10 point-matches 0.0000 0.0002 0.0021 0.3784×10-4 

Recursive normalized 8-points on 10 point-matches 0.0000 0.0002 0.0019 0.4025×10-4 
Iterative 7-points on 10 point-matches 0.0000 0.0001 0.0001 0.1500×10-4 

Normalized 8-points on 15 point-matches 0.0177 0.0006 0.0006 0.6115×10-4 
Recursive normalized 8-points on 15 point-matches 0.0177 0.0006 0.0004 0.9948×10-4 

Iterative 7-points on 15 point-matches 0.0061 0.0006 0.0001 0.2220×10-4 
 

Table 2. Residual error of a set of 20 randomly selected point-matches (quadratic distance in square pixel fractions). 
 

Algorithm Pure Translation Planar Motion 1st Real Pair 2nd Real Pair 
Minimal 7-points 1st. solution 0.4401     0.0809 0.0144 0.0004 
Minimal 7-points 2nd solution 32.9524    0.9377 0.4278 0.0011 
Minimal 7-points 3rd solution 515.4311   3.8259 1.8355 0.0035 

Normalized 8-points on 8 point-matches 14.5389    5.8422 0.0038 0.0002 
Recursive normalized 8-points on 8 point-matches 14.5389    5.8422 0.0038 0.0002 

Iterative 7-points on 8 point-matches 0.0946     0.0231 0.0005 0.0002 
Normalized 8-points on 10 point-matches 0.1545     0.0012 0.0060 0.0001 

Recursive normalized 8-points on 10 point-matches 0.1545     0.0012 0.0056 0.0001 
Iterative 7-points on 10 point-matches 0.1502     0.0015 0.0005 0.0001 

Normalized 8-points on 15 point-matches 0.1984     0.0010 0.0020 0.0001 
Recursive normalized 8-points on 15 point-matches 0.1984     0.0010 0.0011 0.0001 

Iterative 7-points on 15 point-matches 0.0450     0.0032 0.0002 0.0000 
 
5.2. Experimental Results 
 

The experimental data was obtained from a digital still camera adapted to a computer controlled robot arm, so that 
the exact displacement between any two images is known. Each image has resolution of 640 × 480 pixels and was 
stored in JPEG format with maximum quality. The complete image sequence has 12 images, from which were taken 



two pairs to serve as base for the calculations in this work. Point-correspondences where manually determined with aid 
of a graphical user interface developed to the purpose of pre-processing the data to be used with the algorithms of 
computation of the fundamental matrix. 

The first pair of images considered here comprises a general movement of the camera, including translation in x, y 
and z coordinates and rotation around the three axes. The overall displacement on the three coordinates is large enough 
to be distinctly noted in the images. The input data was carefully selected from the two images to form a set of 20 point-
correspondences, which was reduced to subsets of 15, 10, 8 and 7 point-matches for the performance comparisons. The 
residual error was calculated against the original sets (Tab. 1) and the complete 20 point-matches set (Tab. 2). 

The second pair of images comprises a simple translation movement of the camera, displaced along the x, y and z 
coordinates. The overall camera movement is very small and is only slightly noted in the images. Again the input data is 
selected from the two images to form a set of 20 point-correspondences, which is reduced to subsets of 15, 10, 8 and 7 
point-matches determine the fundamental matrix estimative. As before, the residual error was calculated against the 
original sets (Tab. 1) and the complete 20 point-matches set (Tab. 2). 
 
6. Conclusion 
 

The results show that the recursive normalized 8-points algorithm does not improve the results from the normalized 
8-points algorithm for any of the perfectly matched point-correspondences of the pure translation and planar motion 
simulations. In the case of the experimental image pairs, the first one shows slight improvement on the results from 
normalized 8-points to recursive normalized 8-points algorithm, for the 10 and 15 point-matches sets. On the other 
hand, the second experimental image pair, the results of the original normalized 8-points algorithm are better than the 
recursive version. From the results shown in Tab. 1 and Tab.2 we notice that the residual error will decrease as the 
number of point-matches in the input set increases, independent of the algorithm used (excluding the minimal 7-points). 
Although the minimal 7-points algorithm gives negligible residual error when the original 7 point-matches set is used, 
the results for the 20 point-matches set are the worst for any of the test cases, simulated or experimental. The iterative 7-
points algorithm achieves the best results in all studied cases. The analysis of the simulated results gives the 
performance of each algorithm when there is no error on the coordinates of the point-matches. Then the residual error 
observed is due to numerical error introduced by the underlying process. As all those methods rely on the solution of 
under or over-determined equation systems, a particular choice of point-correspondences can lead to an ill conditioned 
A matrix in equation (3), they can easily become unstable. In either simulated and experimental cases, the iterative 7-
points algorithm will perform better because it searches the complete data set for the combination of point-matches that 
gives the smallest residual error, and that will automatically exclude the ill conditioned combinations. It could happen 
that there is no good combination in the complete data set, but that will be less noticed in larger point-matches sets. On 
the other hand, computational costs will grow as the number of combinations increase. The algorithms that minimize 
the residual error will also be subject to the underlying uncertainty of the fundamental matrix demonstrated in section 4. 
The experimental results show that recursive methods that minimize the residual error could give better performance 
than their direct form, and encourage further studies on the subject of adaptive algorithms derived from the system 
determination techniques, such as Least Mean Squares (LMS) and Recursive Least Squares (LMS), as well as mixed 
techniques involving adaptive computation and the methods presented in this work. 
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