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Abstract. Integration among sub-systems, easy interconnection grdewices, reliability, and reduction of operational
cost are some of the requirements demanded by modern ceyst@#ms. Thus, the automation and control industry
has used off-the-shelf components such as the Ethernetltmaecosts and increase interoperability. However, the
non-determinism nature of such networks brings difficsilf@ time-critical control applications, especially whéault-
tolerant mechanisms (such as failure detectors) are engpléy guarantee continuous operation. Following this ceite
and considering a distributed control system built over dhdenet network, this paper presents an implementation of
an adaptive failure detector based on Atrtificial Neural Netks. By means of simulation it is shown that the presented
approach performs well compared with conventional exgssinlutions. Additionally, this paper gives evidences that
overhead caused for the use of such detectors does noergevith the performance of conventional control algorithm
such as PID, in a dedicated network.
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1. Introduction

The advance of computer networks has led the automatiorstndto adopt standards such as the shared Ethernet
in the implementation of distributed control solutions. cBwan approach aims at facilitating the integration between
systems, easiness of interconnection between devicesiligy, and reduction of the operational costs. Howedespite
all benefits, the network time delays can influence the copoformance and can lead to a more complex system
design[Lian et al., 2002]. The communication time delayeiated not only with the networkandwidth but also with
the size of the messages, number of collisions, messagpriasability, etc. [Tanenbaum, 2003].

Further, some distributed control applications requindtfeolerant mechanisms that allow for the continuous op-
eration, taking into account the temporal constraints aftrad applications. For example, failure detection is aibas
service for fault-tolerant mechanisms, either to activat®very procedures or to allow the reconfiguration of theteym
[Jalote, 1994]. However, the algorithms related to thetftalerant mechanisms in distributed systems impose addi-
tional message exchange to guarantee the reglimetkessandsafetyproperties [Lynch, 1996]. This message exchange
makes the system project still more difficult, since the ragedraffic increases can result in non-deterministic deilay
the Ethernet Thus, it is important to consider the non-deterministicsoth networks when designing failure detection
mechanisms, so that the detector can be adaptive to thenxtne®vork load.

Following this context, this paper presents an implemeénatf an adaptive failure detector based on Artificial Néura
Networks for distributed control systems oveslaared-bus-EthernflEEE 802.3 CSMA/CD) network. By means of
simulation, it is shown that the presented approach pedamell compared with conventional existing solutions. Ad-
ditionally, this paper gives evidences that the overheaged for the use of such detectors does not interfere with the
performance of conventional control algorithms, such & il a dedicateghared-bus-Ethernet

The rest of this paper is organized as follows. In sectiandiscussed related work. In section 3.t is discussed
failure detection approaches for conventional distriduggstems. The failure detection approach based on Artificia
Neural Networks is introduced in section 4. In sectioniSipresented the performance data collected from a series of
simulations. Finally, in section 6it is presented our dosions.

2. Related Work

In [Lian et al., 2001] it is discussed the performance of st&thernet ControlNetand DeviceNet regarding the
implementation of distributed control systems. In theirkyahey studied the temporal aspects in the communication
between devices of the control systems and verified how tt@sponents are affected by network characteristics, such
as propagation time on the network medium, maximum and mimndata sizes, medium access protocols, expected
time delays etc. In [Lian et al., 2002] it is discussed the IQuaf Performance (QoP) of distributed control systems
on the network protocols evaluated in [Lian et al., 2001].eyrlanalyzed aspects such as end-to-end transmission time
delays, and in [Lian et al., 2002] they demonstrated thetshband longest sampling times that can be used by distdbut
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control systems in order to guarantee acceptable QoP. Twags, however, do not consider fault-tolerance mechagsism
necessary for some distributed control applications.

[Hermant and Lann, 2002] discusses how to maximize the auyef safety, liveness, and timely properties of critical
real-time systems using conventional algorithms for akymtous distributed systems models. The authors demémstra
the feasibility of their proposal for fault-tolerant meciems in a real-time distributed system using failure detscand
EthernetCSMA-DCR a determinist variant of the originethernetCSMA-CDprotocol.

Adaptive failure detection mechanisms with QoS have besoudsed in some works, such in [Chen et al., 2002],
[Bertier et al., 2002], [Macédo and Lima, 2004], and [Nuned dansch-porto, 2004]. These approaches, however, deal
with failure detection for conventional distributed syste not discussing the feasibility of the use of such apgream
distributed control applications.

3. Conventional Adaptive Failure Detection Approaches

In order to analyze the efficiency of failure detection, we inghis paper the QoS metrics proposed in [Chen et al., 2002]
These metrics evaluate the speed in fault detection andothiy f the detector in avoiding mistakes. The main metric
are summarized in the following:

e Detection TimgTp) is the time interval between the instant when the compofaéistand the instant when such a
component is suspected by the detector;

e Mistake Duration(7),) measures the time it takes for the failure detector to coaenistake;
e Mistake Recurrence Tim@&),r) is the time between two consecutive mistakes;

All approaches discussed here use lieartbeatmonitoring model, like in [Felber, 1998, Chen et al., 200Rj.this
model, it is considered the existence of two componentmdq. The componeng has an associated failure detector
module and monitors the-ash of componenp. Every A time period,p sends ta; a message, sequentially timestamped
and denoted byieartbeat notifying that it is functioning correctly. For eadteartbeat(denoted form!*) received,q
computes the time interval\(®) necessary for the arrival of the nengtartbeat(m/% ,). If m", does not arrive within
A'°, g putsp in its suspected list. In cagereceives deartbeatwith timestamp equal or larger than the timestamp of the
expectecheartbeatq removes from its suspected list.

The componenp sendsn”* messages in instants denotedshus:m/? is sent inoy, m}% | is sentinoy1, m}%.,
is sent ino, . » etc. For any two consecutive instaatsandoy 1, ox1 — o = A'. The message arrival time of? is
denoted byA. In other words:m]!” arrives inAy, m} | arrives inA, 1, m}% , arrives in4;,, and so on. Ifelay; is
the travel time ofn]'?, so:

Ay, = oy, + delayy, 0}

Hence, eaclheartbeatis obsolete at leastelay time units. In an environment where there is no variationirimet
delays nor there are message losses in the communicatieyssein, the time interval in whicjpcan start to suspect of
p crash with safety cannot be less than:

TR = delay + A’ 2

Tmin is the minimum detection time. If variations in time delays eonsidered, we have:

Apy1 — A = A" + (delayy1 — delayy,) 3

When the arrival times of messages are unknown and there aynicbronized clocks, the failure detector does not
carry out accurate estimation of detection time. For thamedion £ A;, carried out by the detector for tHeeartbeat
arrival timemzb, the more closé’ A, will be of A, the smaller will be the detention time. The relatibril; > A; must
be satisfied for that detector to avoid false suspicions.sTthe relation betweeR A and A is a performance indication
of the detector in terms of detection time. When extra vanmeiof delays can provoke sub-estimates, a safety maxgjin (
is used to compensate possible extra network delays [Jacpb888, Chen et al., 2002]. Then, the new time estimation
F'P (Freshness PoirfiChen et al., 2002]) for nextteartbeatarrival is defined by:

FPey1 = EApi1 + agyqr 4)

The adaptability of failure detector consists of adjustiiig and, possibly, the safety margin Thus, whenn!? is
received inAy, the more accurate the estimaiel;, ; anday1, the more closé” Py 1 will be of Ay, 1.
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3.1 The Jacobson’s Algorithm

The Jacobson Algorithm [Jacobson, 1988] is used in TCP nksato predict the instant in which a message must
be retransmitted, preventing, thus, unnecessary retiasiems. Such an algorithm is briefly described in the folfayv
Beingrtt)! andrttkc, respectively, the measured delay and estimated delagtaritk, the algorithm computeﬁtkcle
usingrtt{ and the importance associated to the errarr(ror;) between-tt{ andrtt}. Thus:

errory, = rtti —rttd 5)

and

TS = it + peerrory, (6)

Considering the existence of extra variations in netwotkyehe new estimate for dela}{AQﬁrl) in message arrival is:

Ay = BarttS ) — dvari @

Where¢ andj are the confidence in the delay variation and in the estindeéa, respectivelyvar;, represents the
variation in the measured network delay at instarand can be calculated by:

vargs, = varg — p. (lerrory| — vary) (8)

Finally, it is presumed that the next message will arrive in:

FPii1 = Ap + A2, 9)
3.2 The Bertier, Marin and Sens’ Algorithm

In [Bertier et al., 2002] it is proposed audaptive Failure Detecto(AFD), implemented in two layers in such a way
that the detection layer (lower layer) can provide failuetedtors based on the quality of service metrics presented b
[Chen et al., 2002], while the adaptation layer (upper lpgdjusts the detection QoS of the lower layer to conform with
the requirements of applications. The message arrivaligited realized in the lower layer is based on an estimation
proposed in [Chen et al., 2002], where:

1
EAp1 = EA, + -~ (Ap — Ap—n—1) (10)

During the detection initialization phase, that is, for théitial messages, the detector is parameterized as follows
[Bertier et al., 2002]:

Ay k* Uy
= 11
Uit = 137 * 1 (11)

and

Uy = Ao (12)

Thus, it is computed by:

kE+1 ,

EAH4:UH4+—%—*A1 (13)

The safety margimv estimation uses the Jacobson'’s algorithm. Thus, the autadculate, respectively, the error and
safety margin by:

errory = A — EA, — delayy, (14)
and

ap+1 = B.delayyi1 — pvargsa (15)
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3.3 The Méacedo and Ramon’s Detector

In [Macédo and Lima, 2004] is presented a failure detectesetaon Artificial Neural Networks, named ANNFD.
This detector uses as input parameters variables collégtéde Simple Network Management Protocol (SMNP) that
characterize the network traffic at each time instant.

After training the neural network, it must compute the mgssarrival time estimatio’ A1, which is utilized to
define the freshness point of}% ; :

FP 1 =FEAp +a (16)

whereq is estimated by experimental analyses.
The authors demonstrate that the ANNFD presents a bettiarpemce in comparison with the AFD in load variation
conditions of the communication system. In moderated ¢mmdi, however, the AFD presents better performance.

4. The Failure Detection Approach for Distributed Control Systems, Based on Neural Networks

In this section, we present the failure detection approasieth on an Artificial Neural Network proposed to a real-time
distributed control system. We first present the system indgdized and then the failure detection approach develope

4.1 The System Model

The system model considers the existence of a simple caysteém with three main devices: a sensor, an actuator,
and a controller. Each device has a real-time operatin@syand is connected to a shared-bus-Ethernet. This scenario
composes a simple real-time distributed control system figere 1).

Actuator Plant Sensor

(node™?) G(s)=1000/(s*+s) (node®™)

10Mbps Shared-Bus-Ethernet (CSMA/CD) )

Controller
(nodescll‘l)

Controller

(nodepcﬂ'l)

Figure 1. Distributed control system with failure detector

There is a periodic task{"*) for data acquisition associated to the sensor device.yfb@lected sample by*"* is
sent to the controller device. In the controller, a contaskt(<*"!) is activated at each received message from the sensor.
retrl executes a simple Proportional, Integral and Derivativ®)Rontrol algorithm (see [Ogata, 1990]) and sends the
control information to the actuator device. The tagk? is activated upon the reception of a control message. Kjria#
actuator task acts over the plant. The scheduling polichetasks is based on fix priorities.

The controlled object is a single DC-Servo, like in [Hensitm and Cervin, 2003], described by the continuous-time
transfer function:

1000

Gls) = s(s+1)

17
We assume that the controller device may crash, thus, thisalis replicated to tolerate a single failure. One coifgrol

is said the primary controller and the other one, the seagratroller. The primary controller receives messagesir

the sensor, executes the algorithm for state consistehtsgitondary controller device, and sends a control actitimeto
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actuator device. There is a failure detector associatdu i secondary controller, whose aim is to detect the crash o

the primary controller. If the primary controller crashiéég secondary controller takes over to guarantee the aotytiof
the plant operation.

4.2 The Atrtificial Neural Network Implementation

The artificial neural network implemented is a Feed ForwardtM.ayer Perceptron (FF-MLP) [Haykin, 1994] with
four layers: three neurons in the input layer, one neuromifpwut layer, and two hidden layers with thirty and ten nesron
respectively. In each neuron it is utilized the hyperbdiegent sigmoid transfer function [Haykin, 1994]:

1—e "

- l1+e*

tcmh(g) (18)

The training of neural network uses the resilient propagaélgorithm proposed by [Riedmiller and Braun, 1993].
This algorithm realizes the update of synaptic weightsgiaimadaptive learning rate, as in equation 19, given below.

+ k—1 .. 9EF-Y  9E*
Nt A , if o ¥ ou >0
k _ — k—1 s 9ERTY OB
Afy=4 n * Aij , if Do ¥ o) <0 (19)
k—1 -0 QEFTY  OEF
AZ] ’ Z'f ale * Ow“ - O

where:

w; IS the synaptic weight of the neuréno neurony;

OF
Ow; j

is the partial derivative error;

A;; is the synaptic weights correction factoy;;

7 is correction factor ofA;;, being that;* is utilized when the partial derivative,; is positive, while that;~ is
used when partial derivative is negativg, andn~— must satisfy the following relatiod < = < 1 < n™;

The rationale behind the equation 19 is the following. Whenphrtial derivative ofv;; changes between negative
and positive, it means that the weight updating was too Jatgen the value of\;; is decreased by ™. If the partial
derivative keeps its sigr),; must be lightly increased by". This procedure guarantees a fast convergence.

In the training phase, the Artificial Neural Network (ANN) svatilized with the following initial configurations:

e synaptic weights correction factdy;; = 0.1,

e = =05andny™ =1.2;

training epochs 3 * 10%;

minimal error =0.0;

minimal gradient =10~12

The input variables for the neural network are:

e delay between arrivals.e., the last delay observed between two consechiegtbeatgdelay, = A — Arp_1);
e variation of delays between arrivalddlay, — delayi_1);

e heartbeat ratéA?);

Using these variables, the ANN computes the estimated Vatute interval (2) between consecutivédgeartbeats
Thus, the estimated arrival time for", , is (see figure 2):

EApi1 = EAg + Qpia (20)
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delay,-delay,.
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Figure 2. Artificial Neural Network Predictor

Table 1. Especification of system tasks

Task Device Activation type | Event D T
Control (re+) Controller | Sporadic Reception of message senthy,; | 6ms -
Aquisition (r4,,) | Sensor Periodic - 10ms | 10ms
Actuation ¢;q) | Actuator | Sporadic Reception of message senthy,; | 4ms -

5. Simulations

We evaluated our adaptive failure detector using the TrmeTversion 1.13 [Henriksson and Cervin, 2003[palbox
for real-time distributed control system simulation aghle in the Simulink/Matlab Tool [The Mathworks, 2004]. hig
simulation tool, it is possible to model and simulate rémlet environments with different operating system scheduli
policies, varied computer network protocols, and distimcdels of task activation. For our experiments, we setup in
TrueTime a 10Mbps shared bus Ethernet/CSMA-CD with datadsawith 64 bytes. During the simulations, the tasks
were configured as presented in table 1. In this tdble the deadline and is the task period.

From the experiments we analyzed the failure detectoropednce using the QoS metrics{, Ths, andThg).
Every metric was evaluated in terms of the mean valtg<¢”, T andT574") and standard deviatior g, T54
andT;!%). Besides the QoS metrics, we also analyzed the number tdkeis (V/¢) made by the detector. The analyses
were realized in environments where the network is utilizely to transfer data between the control system devices. We
analyzed the [Jacobson, 1988] and [Bertier et al., 20023jrdkgns, and these algorithms were compared with the neural
network approach suggested in this paper.

In the experiments, we sé&t’ = {50ms, 100ms, 150ms, 200ms, 250ms, 500ms}, ap = Oms and the number of mes-
sagesV = 520 for each fixedA!(where52 messages were used in initialization of the algorithms[Bantier et al., 2002]
and [Jacobson, 1988] algorithms, it was utilizéd- 1, ¢ = 2 andu = 0, 1, as in their original proposals.

The table 2 shows that t&NN algorithm possesses a better performance in all evaluagddcs The algorithm of
Jacobsorpresented a bad precision, realizing much more false saspicHowever, The Jacobson aertier algorithms
corrected their suspicions very quickly (0.00). The algorithm oBertier presented the worst detention times, however,
had a better performance when compared with the algorithdaasbsorin terms of 777%™ and N/, The large values
of T7y¢*™ presented by the algorithm &ertier in the experiments was due the estimates produced durindetieetor
initialization.

Although, the Neural Network predictor obtained bettefganance, its computation time is significantly larger than
the others7.40ms). However, such a computational time does not compromigiedy/control applications as we show
below.

We measured the impact in the control by calculating theaetitne delayd®‘? incurred to control actuation with
the usage of the failure detector. Thus, gi\t@randtid, the message arrival times in the actuator without and ki¢h t
detector, respectively, we calculated :

atd 1 = fd
d :N.Z(’tk —tk‘) (21)
N
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Table 2. Results in milliseconds for QoS metrics obtainealized experiments

A m‘i’;j;_fgi Detector | Tpean | Tgid | Typsen Tyt | Tgeen | Ty | N7
Jacobson| 50.06 | 0.25 | 370.00 | 415.33 | 0.00 | 0.00 | 26
50.00 | 50.00 | 0.00 | Bertier | 80.06 | 107.11 - - - - 1
ANN | 50.01 | 0.00 - - - - 0
Jacobson 100.11| 0.50 | 857.14 | 1075.44 | 0.00 [ 0.00 | 22
100.00 | 100.00| 0.00 | Bertier | 160.51| 215.67 | 1040.00 | 2101.90 | - - 6
ANN [ 100.00] 0.00 - - - - 0

Jacobson 150.17| 0.75 1810.00 | 2064.81 | 0.00 | 0.00 | 16
150.00| 150.00| 0.00 | Bertier | 240.97| 324.25 | 150.00 0.00 0.00 | 000 | 7
ANN 150.00| 0.00 - - - - 0

Jacobson| 200.23 1.00 1575.00 | 2304.86 | 0.00 | 0.00| 25
200.00| 200.00| 0.00| Bertier | 321.42| 432.82 - - - - 1
ANN 200.00| 0.00 - - - - 0
Jacobson 250.28 1.25 - - - - 1
250.00| 250.00| 0.00| Bertier | 401.88| 541.39 - - - - 1
ANN 250.00| 0.00 - - - - 0
Jacobson| 500.56| 2.50 51500.00| 66468.00| 0.00 | 0.00 3
500.00| 500.00| 0.00| Bertier | 804.15| 1084.26 - - - - 1
ANN 500.01| 0.00 - - - - 0

By analyzingd®*? (table 3), we observe that the detection mechanism in thisament does not impact on the
performance of the control actuation, as the additionagtitelay in the actuation is insignificant and grows lightlyhwi
the decrement o\’

Table 3. Results in milliseconds of control actuation

A? 50.00 100.00 150.00 200.00 250.00 500.00
delay™® | 5.68 x 10~ | 2.87+ 10715 [ 1.82x 10~ | 1.50% 10713 [ 1.22% 10~ | 6.79 x 10~ 14

6. Conclusions and Future Works

This paper presented a proposal for failure detectors basetkural networks for a real-time distributed control
system. Through the experiments, we have shown the adwmntdighis proposal in relation to conventional approaches
for distributed systems. The results demonstrated thahieraironment of moderate traffic, the implementation of
the detector does not influence in control system performadd! algorithms ANN traffic analyzerPID, and failure
detectors) have been implemented usingMlagLab scriptlanguage. As future work, it is intended to evaluate the ichpa
of the detector presented (and related fault recovery nmesima) in control systems with multiples sensors, corgrsl|
and actuators.
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