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Abstract. The necessity of obtaining geometric models in three-dimension that represent with precision a real world
object is becoming common each day. For this, one has to recur to methods of 3D Modeling. Three-dimension models
have application in several areas, amongst which one can cite photogrammetry, archaeology, reverse engineering,
robotic guidance, virtual reality, medicine, cinema, game programming, and others. A current challenge is the
congtruction of 3D models digitized with precision enough to be used in manufacturing systems or numerical
simulation of the performance of machines and components in operation, such as turbines and flows in non-circular
ducts when the geometric model is not available. The reconstruction of 3D shapes of objects or scenes from range
images, also known as depth maps, is preferable than using intensity images or stereoscopy. These maps represent
information of distances measured from an observer (optical sensor or camera) to the scene in a rectangular grid.
Therefore, the 3D information is explicit and will not need to be recovered as in the case of intensity images. The
reconstruction process presents three stages. The first one is sampling of the real world in depth maps. The second
stage is the alignment of several views within the same coordinate system, known as image registration. The third stage
is the integration of the views for the generation of surface meshes, named merging. The current challenges converge
to searching methods that meet with the highest number of desirable properties, such as robustness to outliers,
efficiency of time and space complexity and precision of results. This work consists in the discussion of different
methods dealing with 3D shape reconstruction from range images found in the literature and in the implementation of
the second phase of 3D reconstruction: range image registration.
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1. Introduction

Commonly, in manufacture processes a 3D modeleptioduct prototype is first constructed in CAD (Guuter
Aided Design) software. Next the computer modéingorted to CAM (Computer Aided Manufacturing) sedre such
that the product is manufactured using some maturfag process as for example machining or rapitgiyping.
Reverse Engineering works in the opposite way. fElag physical product, already exists and it isessary to build up
its computer model (Eggert et al., 1998, Cerradal.e1990). Three-dimension reconstruction can be usaay times
in this task, since a prototype can pass througaraktimes between the real and virtual world, wiceé versa, until the
desired result is attained. The priority of 3D Restouction in Reverse Engineering is the precisibithe obtained
models.

The reconstruction process presents the followiages that are described shortly in this articlerél Weng and
Anil, 1997, Pulli, 1997, Chen and Medioni, 1993)data acquisition from multiple viewpoints (forsh these images
are called views); ii) registration of range imagesd iii) integration of views. This research Has focus the
implementation of the second stage: registratiormofje images.

The method used to align the images in this werkhe ICP (lterative Closest Point) algorithm ahd models
obtained are mainly used for applications towaedgrse engineering to CAD 3D models.

2. Modeling Based on 3D Reconstruction
Three-dimension models are an essential resourcgeferal areas. As examples one can cite:

a) Modern industry: the availability of digital meld used for design and improvement of prototyes diready
become a decisive factor for productivity in companand quality of products. Manufacture is onetha most
benefited areas (Fig. 1).

b) Autonomous navigation: modeling by reconstruttias been studied intensively in recent times method to
get three-dimensional environment maps for auton@meavigation. It is not uncommon that mobile rebate
equipped with long distance range sensors (Ladarshe specific task of environment 3D mapping;
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c) Entertainment Industry: the entertainment indus$tas been stimulating the development of 3D mindel
techniques. Since it has virtual reality as prigritreatures and objects to be used in films and)&mes are commonly
generated by digitalization of a real model.

Figure 1: Reverse engineering for building a CADdeloof a turbine rotor - GRACO/UnB. In the left, a
vertical section of a Kaplan turbine. To the cengesingle-blade turbine mockup. To the right, cbenputer
model of the turbine rotor obtained from a confacfile digitizer.

d) Art and archaeology: the reconstruction of hisad sculptures for study, preservation or creatmf virtual
museums;

e) Medicine: virtual models are largely used in foe@ for surgical planning (e. g., plastic surgs)i prosthesis
construction, etc.

The area of 3D Modeling is relatively young anchasdware and software technology advances and bestsne
lower new applications are thought.

Three-dimension models are traditionally constrdichy using two methods: the first is related to @ater
Graphics and consists of synthesizing the realdvdrhis literally means to picture the three-dinienssubject as an
object or a real world scene. This approach is@odmmended to all applications, since it is vatyokious and it does
not produce realistic results when the object loasesshape complexity. The second method is nanoeshseuction. It
consists in reconstructing the real world from iesgaken by sensors and matching them in ordeuitd the model.
This approach is traditionally the aim of reseastlComputer Vision.

The latter process consists of digitizing the objom several viewpoints using preferentially 3yitizers
(rangefinders) based on the principle of activessgn These digitizers acquire samples of the elbgadace in the
form of 2D matrices representing distances fromgahesor to the object. These samples are commatigdcdepth
maps or range images.

Following the image acquisition process it is neaegto align the images. Each image is acquireteced in the
sensor coordinate system. The relative motion batwide sensor and the object is a rigid body toarmsdtion
recovering direction and magnitude of these motipraslations and rotations). These transformatican be applied
successively to the image views to bring them togiein a common coordinate system. Finally, whenrfaps are
aligned it is possible to assemble them in ordddtausingle model.

General solutions for the whole process do notterisr for each stage of reconstruction. The tegpms to be
employed in each stage depend on several factatgdhges from the cost of the sensoring systeobject surface
characteristics. All the stages are important aewlsively affect the reconstructed model. Howetts®, most important
factor for choosing a technique is the type of naglication.

3. Data Acquisition

One of the attractions for modeling using recomgion is the large amount of 3D digitizers avai@bi the market
today (Petrowet al. , 1998) in comparison with some decades ago.

Three-dimension shape digitizers, also known agefamders, capture surfaces or even object volu@aeosing
the correct digitizer depends on some factors: tfpapplication, object size and finally the cdstrrently, complete
commercial packages already exist, including hardvead software to construct 3D models of free shilpwever, in
many of the cases it is necessary to construatgefender from scratch, as in the acquisition sastupwed in Fig. 2.



(a)
Figure 2: Setup for range images acquisition - GRAMB: Photograph of the experimental setup, shgwin
camera, diodes and laser light planes on a (a) plgject and a (b) reduced turbine model.

Digitizers use different sensing techniques toraxtewith the scene and measure its distance fhensé¢nsor, such
as contact devices, optical or acoustic probes,adinelrs. Curless (1997) conceived a taxonomy tiaid forward to
organizing all these techniques (Fig. 3).

The techniques for 3D-shape data acquisition ndyragk passive and active optic sensors.

Passive techniques acquire surfaces from intemsiages, while active techniques acquire a surfpmemetry
projecting energy to the object surface. Due ts thteraction with the object surface, active téghes are highly
affected by the object surface properties (Curl&€d9y).

A very used passive optical technique is stereopbis technique involves two calibrated intensigmeras. The
depth information is extracted by means of triaatjah. The largest problem with this techniquehis generation of
sparse depth maps.

Amongst active optical techniques, the most popatar Light Structure, also known as active lasangulation,
and Laser Imaging (Ladar).

A system of structured light is composed by catddacameras and a laser projector, i. e., theitotaelative to
each other is known. Thus, it is possible to obtepth information by triangulation.

For long distances such as in applications likeormaous navigation or photogrammetry the use oérkads
recommended. The great advantage of this typengfefander is its versatility to work embedded omabile vehicle.
Ladars are expensive systems and use the TOF @fiflgght) principle to recover depth.

Amongst active digitizers the most attractive onse coherent illumination such as the low intenkiser. They
produce depth maps with a rapid and high samplrgrt contrast to contact digitizers that are gediut also slow,
disjointed and produce maps with a low sampling tax

In applications such as mobile robotics ladarstiaeemost sophisticated solution for environmentr8@deling. In
the industry, rangefinders of active optical trialagion are the most used.

In practice, the cost of hardware of active methisdbigher than passive methods. However, passiethods
demand more complex software for reconstructionghvhesults also in expensive systems.

3. Image Registration

For the construction of 3-D models from range insageis highly desirable that the entire objectface is
digitized. As each digitizer scan occurs in onlg atirection it is impossible that the entire objsatface is digitized in
only one pass. Therefore, more than one imagedhbs taken, coming up the need to align the satqgfired images.
In the Computer Vision community this problem agament is known as Image Registration.

3.1 Previous Work

Image registration is a problem of crucial impodarnn computer vision and much research involvesstibject.
Up to date many methods had been developed andne¢vods are constantly being proposed, most oftiaiening at
a solution for a specific application.

Image registration is commonly assorted as an damion problem (Blais and Levine, 1993), sincaiiins at
searching the parameters of an optimal rigid modarongst a class of possible ones between two snaljlat in
general distinguishes a registration method frootteer is the form they search for this optimal motiransformation.
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Figure 3. Curless Taxonomy for the 3D shape adipisinethods (Curless,1997).

Although it is difficult to sort out all the rang# existing methods in the literature, many resears divide the
methods into two main categories (Blais & Levin@93, Dorai, Weng and Anil, 1997): a) the ones thmdcquisition
process is controlled in some way, either by meainha robotic manipulator or a revolving platforrmdause the
calibration parameters for the registration, andhie)ones that obtain the transformations streigim data. However,
better results can be possibly obtained combiriegwo methods.

The first registration technique was based on niadgcbf discrete features. This type of approachsits in the
extraction of local image features invariant toidignotion such as conical or polygons, for examglee motion
estimation is obtained from the correspondence dxmtwieatures overlapping image areas. The problém this
approach is related to the extraction and sortfripese features.

Iterative approaches are more recent than the qurevbnes and usually search for the optimal tramsftion
through iterative refining of an initial transfortimn. An example of those approaches is the IC&dlive Closest
Point) algorithm, one of the most popular regigbratmethods, which will be described in more dstahead.
Approaches of this type are fast, easy to implenamat are based on the minimization of a cost fanctHowever,
some assumptions need to be fulfilled for attaindogne guarantee of convergence, such as havinga igdial
estimate.

Optimization approaches that search for the optitredsformation in the space of transformation® adsgist.
Stochastic optimization are used with these methalsh as Simulated Annealing (Blais & Levine, 1998)
techniques of robust computer vision such as RAN$8I&=n et al., 1999).



3.2 Pairwise and Simultaneous Registration

There are two distinct strategies to register irsag@ Local or Pairwise Registration and b) Glolshultaneous
or Parallel Registration.

The idea of pairwise registration is to divide #mire process into stages. The direct strategy fscus on two
images each time, and to register one relativéae¢oother. Next to an image pair is registered,\a jp&ir, including a
range image of the formed pair previously, is reged in the resulted coordinate system. Thispeaeed until all the
images are used (Nishino and Ikeuchi, 2002).

The advantages of the pairwise registration ardativecomputational cost in relation to the globagjistration. The
disadvantage is a lower accuracy in the final te3iile errors of each stage are added to the esfdhe previous one
such that in the last stages there will be a cemalile accumulation of registration errors.

The global registration of multiple range imagelva® the problem of error accumulation by regisigrall views
at the same time. When registering all imageseas#ime time the registration errors are spread guinem.

The number of data sets on which the local andajletrategies operate and how the correspondemisdepn is
dealt with consist the main differences betweentti®eapproaches. Approaches in pairs operate orsétgof points,
with correspondences one-to-one defined betweesetbets. Global registration, on the other handlwes multiple
sets of points with multiple sets of corresponddmesveen them (Williams and Bennamoun, 2001).

The disadvantage of the global registration ishigl computational cost, mainly the requiremeniaofe spent of
memory.

3.3 The ICP Algorithm

Introduced by Besl and McKay (1992), the algoritisnan iterative and fast approach and of easy imgteation
of the 3D data alignment problem.

The ICP presents several steps to which heuristesbe adjusted for turning it to be faster or maceurate,
giving rise to a family of algorithms. Heuristicseaapproximation methods to solve problems in patyial time
complexity, and meta-heuristics are general purposthods that give good solutions, but the optiszdilition is not
assured (Viana,1998).

Rusinkiewicz and Levoy (2001) proposed a clasdificasystem and compared different ICP variantetham the
six stages of training identified in the algorithi8election, Matching, Weighting, Rejecting, erroretkic and
Minimizing.

The ICP algorithm carries out a 3D regression expiothe redundant points in the images to caleulaé motion
parameters and to approach the views (Arun, HuadgBdostein, 1987, Umeyama, 1991). That means, dssumed
that the images overlap. Another requirement isugply an initial register estimation such that dfgorithm refines it
iteratively (Besl and McKay, 1992). The algorithtoss when a certain level of precision in the cvgping between
images reaches a threshold.

The first stage of the algorithm is the selectibrrantrol points within an image. Next these poiats matched to
their nearest pair within the next image. This mdipoints is to be associated to the same poirtherobject surface.
This stage is the most challenging and needs a Ergn of time due to the corresponding problempdexity.

The errors associated to the cost function to b@nmeed are dependent on the precision by whicln gedr of
points was corresponded. The minimization of tleistdunction is a nonlinear optimization problened@nding on the
precision of the initial register, this cost fumetican stick in a local minimum and results in a-peecise alignment.

Next to the minimization stage, the ICP recovees3B motion parameters between images and reusesithone
of the images to move them towards each other. €Btienation of these parameters can be carried sing either
guaternions (Horn, 1987) to represent rotatiotherSVD (Singular Value Decomposition) (Arun, Huamgl Blostein,
1987).

3.4 Mathematical Formulation of Registration
Consider two sets of pointX, e Y;, where i=1,..,.N .
Eqg. (1) models the rigid motion between the twae sétpoints
X =Ry, +T (1)

where Ris a rotation matrix and is a translation vector.

In the least-square sense, the cost function fo{Bds:



S =Sl + T ®

Eq.(2) is a cost function based on the ordinargtisguare. The optimal rotation and translatiorapeters are
those that transform this cost function in a minimult is convenient to uncouple the rotation ananstation
components.

If the data points are aligned, thén e Yy, have the same centroid, that mealss ¥, e T~ =X — R’y where

T and R* are the optimal transformatians
To recover rotation, the errog; e(; forms the cost function of Eq.(6).

P =X —X “)

g=y -y ()

2 N 2
2. =2 -Raf
i=1 (6)

After some manipulation Eq.(6) yields Eq.(7) frorhigh the rotation matrix can be uncoupled into twtihonormal
basisV and U (Arun, Huang and Blostein, 1987) from the SVD (Silag Value Decomposition) of the covariance
matrix H :

N
H :ZQi piT
= )
H :UDVT (8)
So,
R:VUT (8)

Eq.(8) returns a rotation if R is orthonorm&lﬂ = R'l) , and de||R| =1. If det|R| =-1, R returns a reflection.
In the ICP algorithm this process is run iteratvahtil a threshold for the rotation matrix, Ryé&ached.

4. Integration of Views

After the range images are aligned they need totiegrated to shape the 3D model. The Integratiagesconsists
of the generation of surface representations frieenaligned data and the edition of the model. Tbegration is the
process to create a representation of a uniquacauffom sampled points of two or more images (Tan# Levoy,
1994). This process can be considered a post-fringestage. Free-shape objects can have compléacsar Many
parts may not be reached by the scanner such iamsegith steep curvatures or regions that caneatelached by the
sensor. That may result in flaws in the final moithelt need to be mended, and sometimes some materakntion is
necessary to correct these problems.

5. Metodology and Experimental Results

Several test runs were carried out with the ICPritlgm with data from a cube (without noise), Figand a range
image pair of a sculpture (Buddha), Fig. 5.

In the tests with the cube, a regular object wittlll wontrasted edge lines, the ICP algorithm reddhe final
alignment with few iterations. The estimated ratatangles showed a decreasing order as the itesgtimceeded in
the cases where there were no false pairs of nmatgigints. In the presence of false pairs the cgaree could not be
guaranteed.

The Buddha range images used are available in ageirdatabase from OSU 3D Database, (Campbell gnd,Fl
1998). These images were acquired with 200x200 saning.



Several tests were planned with diverse initiattistg positions. The results showed a clear refatiip between
the speed of convergence and the number of itesatioth the proximity the range images were to eattier, either
results from the tests with the cube or with theléha.

Figure. 4. Registration of two range images of laecinom two different viewpoints using the ICP aigam. The
images were initially rotated 45° around #eis. The iterations stopped when the thresholtP afas reached.

Figure 5. Rendering of a 3D model (Buddha) fromaa pf range images acquired by laser
scanning.

The experimental results had demonstrated thatahgergence of the ICP algorithm is highly influeddy the
presence of false pairs of correspondence. Theeinfle of these false pairs decisively affects trevergence due to
the error metric used to be based on ordinary-lEgsares (not robust). Another fact to point outhit, even in the
cases without noise, the matching heuristic (inctwge, the next point) can fail.

6. Conclusions

The biggest challenge of the ICP algorithm is thevergence. Convergence depends on several fastmts as the
quality of the initial register, methods for chamsipoints and matching, methods for cost functionimization and
methods to estimate the 3D transformations.

Speckles and occluded regions are natural in rengges acquired by laser scanning. These problambe
tackled introducing some heuristics in the ICP esamirning it to be more robust.

This article presents a descriptive sequence ofnh@é methods used for 3D reconstruction aimingeaerse
engineering to produce precise 3D CAD models. T®R algorithm was implemented and tests were cagigdn
several different conditions to show up the mastdes that influence the final precision of the rabd

Experimental results showed that convergence isyapkoblem with the ICP algorithm, which dependssewneral
factors: initial starting registration point, theethod used to choose the initial control pointsthmé to minimize the
cost function and method to obtain the 3D moti@amsformations.



To improve the algorithm accuracy, in future workse can adjust heuristics to avoid false correspoces or,
alternatively, a more robust estimator to the emetric can be implemented.

7. References

Arun, K. S., Huang, T. S. and Blostein, S. D., 1982ast-Squares Fitting of Two 3-D Point Sets”"EE Transactions
on Pattern Analysis and Machine Intelligence, \@oINo. 5, pp. 698-700.

Besl, P. J. and McKay, N.D., 1992, “A Method fordigration of 3-D Shapes”, IEEE Transactions ortdPatAnalysis
and Machine Intelligence, Vol. 14, No. 2, pp. 2352

Blais, G. and Levine, M. D., 1993, “Registering kiiew Range Data to Create 3D Computer Object&€¢hhical
Report TR-CIM-93-96, Centre for Intelligent Machsn&cGill University.

Campbell, R., Flynn, P., “A WWW-Accessible 3D Imaged Model Database for Computer Vision Research”,
Empirical Evaluation Methods in Computer Visionvde@r K.W. and Phillips P.J. (eds.), IEEE ComputeciSty
Press, pp. 148-154, 1998.

Cerrada, C., lkeuchi, K., Weiss, L., and Reddy, 90, “A 3D-Object Reconstruction System InteiggatRange-
Image Processing and Rapid Prototyping”, TechnRaport CMU-RI-TR-90-32, Robotics Institute, Carreegi
Mellon University.

Chen, C. S., Hung, Y. P. and Cheng, J. B., 199®NBAC-based DARCES: A New Approach to Fast Automati
Registration of Partially Overlapping Range ImageHZEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 21, No. 11, pp. 1229-1234.

Chen, Y. and Medioni, G., 1992, “Object modeling tmgistration of multiple range images”, Image avid.
Computing, Vol. 10, No. 3, pp. 145-155.

Curless, B. L., 1997, “New Methods for Surface Restauction from Range Images”, PhD Thesis, Stanfdmiersity.

Dorai, C., Weng, J. and Anil, K. J., 1997, “OptinRegistration of Object views using range dataEH=Transactions
on Pattern Analysis and Machine Intelligence, \1&l, No. 10, pp. 1131-1138.

Eggert, D.W., Fitzgibbon, AW. and Fisher, R.B998, “Simultaneous Registration of Multiple Rangews for Use
in Reverse Engineering of Cad Models”, Computeidfi@nd Image Understanding, Vol. 69, No.3, pp-252.
Horn, B. K. P., 1987, “Closed-Form Solution of Ahge Orientation Using Unit Quaternions”, Journétiee Optical

Society of America A, Vol. 4, No. 4, pp. 629-642.

Lorusso, A., Eggert, D. W. and Fisher, R. B., 1995,Comparison of Four Algorithms for EstimatingB-Rigid
Transformations”, In British Machine Vision Confare, Birmingham, England, pp. 237-246.

Nishino, K. and Ikeuchi, K., 2002, “Robust Simuk®us registration of Multiple Range Images”, limeTsth Asian
Conference on Computer Vision (ACCV2002), pp. 23-25

Petrov, M. A. Talapov, T. Robertson, A, LebedevZhilyaev, L. Polonskiy, 1998 “Optical 3D DigitizerBringing
Life to the Virtual World”, IEEE Computer Graphiesd Applications, Vol. 18, No. 3, pp. 28-37.

Pulli, K., 1997, “Surface Reconstruction and Digpfaom Range and Color Data”, PhD Thesis, Univgrsf
Washington.

Rusinkiewicz, S. and Levoy, M., 2001, “Efficient Nants of the ICP Algorithm”, In Proc. Third Intexth Conf. 3D
Digital Imaging and Modeling, pp. 145-152.

Turk, G. and Levoy, M., 1994, “ Zippered Polygon $¥fies from Range Images”, In Proceedings of SIGGRARH
311-318.

Umeyama, S., 1991, “Least-Squares Estimation oh&fcamation Parameters Between Two Point PattediZE
Transactions on Pattern Analysis and Machine igtaice, Vol. 13, No. 4, pp. 376-380.

Viana, G. V. R, 1998, “Meta-Heuristicas e Progra@wa®aralela em Otimizacdo Combinatéria”, Fortalé&dFC,
Ceara, Brasil, 250 p.

Williams, J. and Bennamoun., M., 2001, “Simultare®&egistration of Multiple Corresponding Point Se@omputer
Vision and Image Understanding, Vol. 81, No. 1, pp7-142.





