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Abstract. The main objective of this work is to contribute to the development of a new two-phase flow tomographic reconstruction 
method suited for processing signals obtained from electrical or other soft field sensing probes. Electrical impedance tomography 
(EIT) is an inexpensive and sufficiently robust sensing technique, perfectly applicable to industrial process. Generally, the approach 
consists in devising an error functional that confront two different models of the same problem with the same excitation profile: one 
implemented on a digital computer through a numerical discretization of the governing equation and the other analogically 
implemented on the experimental setup. The error surface is constructed numerically by establishing the actual phase distribution 
and changing the approximated one and, generally, it presents characteristics on its topology, which we call pathologies. Some 
pathologies detected until now reveal the existence of saddle points, boundary minima and nearly flat region surrounding the 
solution well, which may seriously compromise the effectiveness of numerical minimization method. Nevertheless, both the form of 
the error functional and the excitation profile influence the topology of the error surface and, consequently, the success of the 
minimization method. An extensive preliminary study about different errors functional and improved excitation profiles is madatory 
to guarantee a good convergence for the optimization method. Numerical simulations have been performed aiming to demonstrate 
the feasibility of our approach. The sensing volume was a 1:1:3 non-dimensional parallelepiped with different voltage profiles 
imposed on its longitudinal boundaries (excitation) and no-flux condition imposed on the transversal boundaries. The flowing two-
phase mixture corresponds to distillated water (σ = 80) with a small three-dimensional air inclusion (σ = 1). 
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1. Introduction  
     

 Electrical impedance measurements (resistive, capacitive and inductivity) constitute one of the most 
appropriated sensing techinique for industrial processes, mainly due to their low cost of instalation, simple utilization 
and maintenance, robustness and applicability in non-controlled environments. Electrical impedance tomography (EIT) 
is an inverse problem which consists on determining the electric contrast distribution in the interior of a sensing volume 
by applying an excitation profile on the external surface and measuring the corresponding response on the same surface. 
The data obtained this way is supplied to a computer with a specific software that reconstruc the original image. The 
approach used in this paper to perform the tomographic reconstruction of phase distribution in two-phase flows consists 
on minimizing an error functional that expresses the difference between actual measurements, experimentally obtained, 
and the approximated measurements obtained numerically from an approximated contrast distribution. The global 
minimum of the error functional corresponds to the sought image, provided that some technical conditions are satisfied 
to assure existence and uniqueness of the solution of the EIT problem. Despite the simplicity of this stimulus-and-
response approach, the problem is intrinsically ill-posed and, consequently, questions about the stability of the solution 
in the presence of experimental errors are complex and, in fact, are still being studied. Existence and uniqueness are 
proved by Nachman (1988), although his reconstruction algorithm is unstable in practice due to exponential 
amplification of noise and is not applicable in high contrast flows.      
 The main consequence of instability (or ill-conditioning) is the extreme sensitivity of the solution in the presence of 
errors, including experimental errors in the data and truncation errors in the computational procedure. In addition, it is a 
well known fact that current reconstruction techniques are inadequate, that is, have poor resolution, low 
distinguishability and, often, produce spurious artifacts (void fractions lower than 0 or higher than 1 for example –  
Lanvy, 1998) which need to be corrected a posteriori. These reasons probably explain why tomographic techniques are 
not intensively applied in industrial processes, despite the great insight and optimization possibilities that it may bring. 

Geometric features such as extremely pronounced global minimum (the solution well), multiple minima, saddle 
points, boundary minima and flat regions constitute a set of common characteristics, called pathology of the 
optimization surface (Rolnik and Seleghim, 2001, Campos et al., 2002), and can be interpreted as the manifestatin of 
the ill-conditioned nature of the inverse problem according to the adopted formulation. The pathologies may seriously 
compromise the effectiveness of numerical minimization methods. Regularizations schemes must be used to assure 
stability of the reconstruction procedure. Basically all the know regularization methods make use of some a priori 
information about the unknown property. However, few researchers are worried about the difficulties associated with 
practical implementation of the method, particularly in industrial two-phase flows tomography in which measurements 
tend to be more complex due to harsh environmental conditions. The formulation of the problem is so that the inclusion 
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of additional information that contributes to the reconstruction process can be done in a very straightforward manner. In 
addition to the external excitation and response measurements, the error functional can take into account addition 
physical measurements such as, for instance, the phase fraction.  

This paper presents preliminary studies of regularization strategies that consist basically in introducing a priori 
information based on mathematical, computational and physic knowledge of the problem. With this purpose, an 
extensive study about the pathologies of the error function is performed considering different excitation profiles and 
different error functional formulas in order to show that different error functionals can present completely diferent 
properties and behaviour. These studies are crucial for the development of feasible reconstruction strategies, based on 
iteratively refining an initial guess image, which would be capable of reconstructing the correct electrical contrast 
distribution of the flowing two-phase mixture, from signals delivered by a direct imaging probe or any other soft field 
sensing device.  
   
2. Statement of the problem 

   
The governing non-dimensional equations of an electrical impedance tomography problem can be derived from 

Maxwell equations according to the following:  
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where φ represents the electric field, σ the medium’s contrast (conductivity, permittivity or permeability), φexc( ξ , η ) 
the excitation profile and Qmeas ξ , η ) the measured profile (resulting electric currents or charge or profiles). The 
variables φexc and Qmeas represent the relation between stimulus and response and shall be used to reconstruct the 
internal contrast σ within the sensing volume Ω . Formally speaking, the response Qmeas is canonically conjugated to φexc  
and σ through the formal operator (direct problem) 
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and the reconstruction problem can be interpreted as inverting ℑ with respect to σ, that is (inverse problem) 
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There are many questions involving theoretical and practical issues associated to this problem. In particular, 

questions about existence, uniqueness and stability of solutions must be considered. For instance, the intensity and the 
way that small perturbations in the input or measured data influence the numerical reconstruction of the solution are still 
open questions. A good example of this can be found in the work developed by Seleghim and Milioli (2001) which 
quantify the sensitivity by studying the problem of reconstruction bubble size histograms from pierced length 
histograms in bubbly flow. Adopting a similar approach as the one adopted here they observed that relative errors of 
less than 0.001% in the input data could completely corrupt the calculations, producing astonishing deviations of more 
than 1000% in the reconstructed distributions. A theoretical framework for this problem was originally proposed by 
Hadamard (1902) who stated that the solution of a well-posed problem needs to satisfy simultaneously the three 
following conditions: a) existence, b) uniqueness and c) continuum and smooth dependence on the input data. In this 
sense, both Dirichlet boundary problem (Eqs. (1) and (2)) and Neumann boundary problem  (Eqs. (1) and (3)) are well-
posed (note that in the case of Neumann condition, all possible solutions are different by a constant). In other words, the 
direct problem consists thus in solving the differential equation (1) with one boundary condition (2) or (3) for a known 
medium’s contrast σ  and the internal electric field excφ  in the boundary.  

In opposition to this, σ  and φ  being unknown, equation (1) needs to be solved with both boundary conditions, that 
is, equations (2) and (3) simultaneously. In this case, the measured data Qmeas delivered by the probe is related to the 
medium’s contrast σ  through strongly ill-conditioned differential and/or integral operators, which explain the 
instability of the EIT problem. Nachman, 1998 proved the uniqueness to solution of the inverse problem for a C1,1 
boundary and the contrast distribution σ  in C1,1. However, Hadamard’s condition (c), also known as stability condition 
(or ill-conditioning), is intrinsic to inverse problems. It means that the EIT problem, which violates this condition, 
becomes extremely sensitive to the presence of errors, including experimental errors in the data and the numeric 
truncation errors in the computational procedure. The effect of well-conditioning direct problem (4) and ill-conditioning 
inverse problem (5) are sketched in the following figure. About this specific topic, some researchers have worked to 
develop regularization strategies for the EIT problem, aiming to reduce such extreme sensitivity.  
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Figure 1 – schematic illustration of the influence of experimental errors and noise in the direct (Eq. (4) ) and inverse 

(Eq. (5) ) problems. 
 

3. Solution of the inverse problem  
 
Generally, the inverse problem represented by equation (5) is solved by devis ing an error functional that assesses 

the difference between the actual and the model electrical contrast distribution (conductance or permittivity) by 
comparing boundary measurements (electrical current or charge distribution) with the corresponding predictions from 
the model. The solution is constructed by refining the model contrast through an optimization heuristics, which is 
iterated until a good match is achieved between the actual measurements and the corresponding predicted values. 

Let σactual be the actual electrical contrast, associated with the phase distribution of the flow inside the sensing 
volume, and let σapprox be an approximated version of the actual contrast, which can be initially defined from the 
qualitative images delivered by a direct imaging probe (Seleghim and Hervieu, 1998). Considering a common excitation 
profile φexc , the actual (measured) and the approximated (prospective) response profiles can be formally calculated with 
the help of definition (4) as the following: 
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[ ]approxexcapprox ,Q σφℑ=  (7) 

 
in which Qactual is measured directly from the experiment and Qapprox is determined numerically by solving equation (1) 
with adapted boundary condition from (2) such as  
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It should be clear that, in principle, what Qapprox and Qactual have in common is only the excitation profile.  
The difference between σactual and σapprox (as seen according to a particular perspective defined by φexc ) can be 

quantified by the functional (Euclidian norm)  
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A solution for the EIT problem can be constructed by minimizing the functional (9), i.e. by imposing that δe = 0, or 

through a parametrization of σapprox , which transforms (9) into a function of such parameters, and subsequent search for 
the minimum through an adequate algorithm. The first alternative corresponds to a variational approach of the EIT 
problem and would lead to intricate nonlinear Euler-Lagrange type differential equations (Borcea, 2002). The second 
alternative corresponds to a functional approach of the EIT problem which inversion requires the solution of an 
optimization problem that also has complexities to be overcome. Independently of the approach adopted to reconstruct 
the electrical contrast distribution of the flowing multiphase mixture, such difficulties are intrinsic for the problem that 
is ill-posed and, probably, unsolvable in practice without regularization strategies. 
 
4. Regularization strategies 

 
The stability of a given EIT problem is influenced by its formulation. In other words, equivalent formulations of the 

same problem may result in completely different numerical properties and behavior; some may be regularizable while 
others may be totally unstable. In broad terms, a regularization method consists in determining an approximate smooth 
solution, compatible with the measured data and noise or error levels. Aligned with these ideas, a modified 
regularizable version of equation (9) is proposed: 
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in which α is the regularization parameter and g[ σ ] is the regularization operator. Minimizing (10) instead of (9) 
method corresponds to enforce simultaneously a good match between measured and modeled data, and that the solution 
must be smooth. The role of the regularization parameter is  of balancing such requirements in the sense of giving more 
or less emphasis in smoothness as α varies respectively from high values to zero.  

Tikhonov’s regularization (Tikhonov and Arsenin, 1977) is known as one of the most widely applied method for 
solving ill-posed problems. According with his original proposition, the regularization operator is defined as  
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where σ(k) denotes the k-th derivative of the contrast σ and µk is a constant greater than zero, usually set as the 
Kronecker’s delta: 
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in which case the operator (11) simplifies to  
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and the whole technique is called Tikhonov’s j-order regularization. The most used regularization order is Tikhonov-0, 
which effect is to attenuate oscillations and, thus, producing a smoother reconstructed contrast. Despite the number of 
successful applications, Tikhonov’s regularization technique suffers from the problem of identifying an adequate value 
for the regularization parameter (α in (10)). In the case of multiphase flows, one can be interested in large structures 
(slug flow for instance), in which case high α values should be used to improve the smoothing effect. Or, on the 
contrary, if one is interested in detailed structures (like small bubbles in bubbly flow), then small α values should be 
used to increase the importance of the matching between the actual and the model measurements.  
 
4. Case study – Construction of error surfaces 

 
Let us consider the EIT problem the flow of water in a square section tube with a small cubic air inclusion placed as 

indicated in the following figure:  
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Figure 2 – Schematic representation of the sensing volume (the parallelepiped) with a small cubic bubble placed as 
indicated, which is simulated with the help of equations (1), (2) and (3) 

 
A discrete version of the governing differential equation can be derived from a central difference scheme, noting 

that is not necessary to apply (1) at the boundaries because these values are known from the imposition of the excitation 
profile φexc. In particular, boundary conditions were adopted aiming to simulate three different excitation profiles: 
classical Dirac, pyramidal and ridge-Dirac. Previous experimental and numerical results have shown that the form of 
the excitation profile has a profound effect on the topology of the error surface (Rolnik and Seleghim, 2001). In the case 
of classical Dirac excitation, widely applied but with an intrinsic lack of sensitivity (Figueroa and Seleghim, 2001), 
consists in exciting through a point electrode and grounding of the remaining of the boundary. An alternative to this is 
the pyramidal excitation strategy, which can be generated by varying the potential from its maximum value, at the 
center of the upper boundary surface, to a minimum value occurring on the median segment of the opposed side. This 
excitation profile has the advantage of inducing the electrical sensing field to cross the measurement volume. Since the 



 
pyramidal distribution presents some practical difficulties to be put into practice, the ridge-Dirac represents an 
interesting trade-off between these two, following approximately the idea mentioned above, and easily generated by a 
segment excitation placed long the upper median segment. In mathematical terms these excitation profiles represent 
new Dirichlet-type boundary conditions according with (2), and will be introduced in the simulations directly into the 
discretized version of the governing equation (1). The following figure shows the four longitudinal faces on which such 
boundary conditions were applied. Neumann-type boundary conditions were imposed on the transversal sides (ABCD 
and A’B’C’D’ in figure 2) in order to prevent the sensing volume becoming infinite.  
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Figure 3 – Different excitation profiles / boundary conditions for the governing equation (1): (top) Dirac, (down left) 
pyramidal and (down right) ridge-Dirac. 

 
The computational domain is composed of 21×21×61 nodal points regularly spaced (∆ = 0.05) respectively in x, y 

and z directions. The electrical contrast σ was defined in order to represent the continuous phase with a small three-
dimensional cubic inclusion with sides equal to one mesh step, as indicated in figure 2. Nu merical values were 
attributed to σ to reproduce the flow of water ( σ actual = 80) in air ( σ actual = 1). 

The visualization of the error surfaces can be obtained through different contrast model distributions, generated 
from some convenient systematic changes in the contrast σ. For instance, a prospective σ was generated by translating 
the inclusion along a horizontal and a vertical planes passing through its original position and the corresponding two-
dimensional error surfaces were computed. This study (Rolnik and Seleghim, 2001) revealed some important 
characteristics, called pathologies, such as extremely pronunced minimum (the solution well), saddle points, boundary 
minima and flat regions. Another similar study revealed an even more problematic situation in which the solution 
minimum is surrounded by ring maxima, which may seriously compromise the effectiveness of numerical minimization 
methods (Campos et al, 2002). In this paper error surfaces are constructed by varying the contrast values between fixed 
known limits and assuming that format, dimensions and location of the inclusion are known. It will be shown that 
important pathological features of the corresponding error surfaces are revealed. 

Let then σint and σext denote the contrast value in the interior and exterior region of the cubic inclusion respectively. 
Also, let 

int extapprox ,Q |σ σ indicate the corresponding response profile obtained with the help of the excitation profiles as 

defined above, that is  
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It is then possible to calculate the error between 
int extapprox ,Q |σ σ  and the correct measured profile Qactual for a number 

of combinations of σint and σext in limited intervals, through an adaptation of definition (9) according with the 
following: 
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The following figure shows the error surfaces obtained by plotting (15) with respect to σint within [ 0.2 , 2.2 ] and 

σext varying within [ 50 , 100 ], and for the Dirac, pyramidal and ridge-Dirac excitation profiles. The adopted 
segmentation of these intervals implies in calculating 121 times the error function, which took 30 minutes in a 1.5 GHz 
PC. The global minimum attraction domain (solution well) can be identified in all three plots, embedded in its 
characteristic pathological geometric feature corresponding to the long and narrow valley. Convergence of a numerical 
minimization procedure can be extremely complicated in this condition. For instance, an algorithm based on the local 
inclination, after falling inside the valley will progress only if very small correction steps are taken because of the 
intrinsic imprecision in determining the steepest inclination. In other words, any iteration step in a slightly incorrect 
direction will toss the minimization sequence out of the valley, resulting in huge and possibly unstable oscillations, or in 



  

a premature convergence. Convergence is equally problematic for minimization methods based on evolutionary 
heuristics. Once the minimization sequence is inside the valley all strong mutations will produce descendants outside 
the valley and consequently tending to be discarded. The only way that convergence is assured is by allowing delicate 
mutation to be preformed, which results in small correction steps and significant increase in the total number of 
generations needed to reach the solution.  

 
 

 
 
Figure 4 – Error surfaces (equation (15) ) for σint within [ 0.2 , 2.2 ] and σext  within [ 50 , 100 ], and for the Dirac (left), 

pyramidal (center) and ridge-Dirac (right)  excitation profiles 
 
Although the pathology of all the error surfaces in figure 4 is the same, its severity is affected by the exc itation 

profile. The worst case corresponds to the classical Dirac excitation (the associated valley is the most sharp and deep), 
which confirms that this technique has an intrinsic lack of sensitivity (Figueroa and Seleghim, 2001). Pyramidal and 
ridge-Dirac excitation produces slightly better optimization surfaces, although the valley is still present suggesting that 
a regularization procedure is needed to palliate the problem. In this work we adopted the following regularization 
operator for equation (10): 
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in which VF stands for the measured void fraction of the flow and ∆ is a positive constant conveniently defined. The 
influence of this particular regularization operator can be inferred from the following figure in which (16) is plotted for 
σint and σext varying in the proper intervals (same as in figure 4). It is possible to observe in figure 5 that the region of 
the solution well is preserved while the valley is transformed into a crest. Consequently, the introduction of (16) into 
(10) with the proper regularization parameter α will cancel out most of the negative topological features of the error 
surface.  

 
 
Figure 5 – Plot of the regularization operator (equation (16) ) for σint within [ 0.2 , 2.2 ] and σext within [ 50 , 100 ] 
 

Determining the best α is still an open proble m, mainly because there is no comprehensive theoretical framework 
assessing the relation among the severity of the ill-posedness of the problem, the specific formulation of the 
regularizing operator and the associated regularizing parameter. In simpler terms, determining the best α is usually done 
through a trial-and-error procedure. In this work the best α was defined to be the one for which the pathology of the 
error surface is less severe, that is, for which the valley containing the solution well becomes broader and less deep. The 
following figure shows the best cases for each excitation profile considered. It is possible to assume that the possibilities 
of attaining convergence has been greatly enhanced, despite some negative topological feature still remains as, for 
instance, the negative inclination at the bottom of the valley. In this regard, an optimization method based on the local 



 
inclination will suffer because of this remaining negative feature while it is probably almost indifferent for an 
evolutionary based method. 
 

 
 
Figure 6 – Plot of the regularized optimization surfaces for Dirac (left) pyramidal (center) and ridge-Dirac (left) 

excitation strategies (σint within [ 0.2 , 2.2 ] and σext within [ 50 , 100 ]). 
 
4.  Conclusions and perspectives 
 

Inverse EIT problems are intrinsically ill-posed. According to the formulation of the problem adopted in this work 
(minimization of an error functional), this mathematical fact is associated with the number of negative topological 
features of the optimization surface (pathology), which prevents most of the minimization sequences from converging 
to the global minimum. Regularizations schemes are commonly used to stabilize the numerical procedure, especially in 
the presence of experimental measurement noise and computational truncation errors. The most widely used 
regularization method falls into the so-called Tikhonov’s strategy, although we adopted a somewhat different approach 
in this work. More specifically, preliminary tests of a different regularization operator were performed, aiming to 
contribute in the development of a new reconstruction algorithm for the EIT problem. The proposed regularization 
operator (16) consists in comparing the model and the measured void fraction of the flowing multiphase mixture, which 
can be obtained respectively by a weighted integration of the model contrast distribution and by a proper processing of 
the response signals delivered by the imaging probe. Numerical experiments were performed considering the flow of 
water in a square section tube with a small cubic air inclusion, and comparing different excitation strategies (Dirac, 
pyramidal and ridge-Dirac). In order to define a two-dimensional optimization surface to facilitate visual analysis, we 
considered the position and form of the inclusion as already known and varied the electrical contrast of the continuous 
and dispersed phase within representative limits. Results show that, although the excitation strategy has a strong 
influence on the original problem, the proposed operator was capable of minimizing the pathology of the problem in all 
cases, after proper adjustment of the regularization parameter (α in (10) ).  
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