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Abstract. Off-line programming provides an essential link for CAD/CAM. The implementation of off-line programming encounters 
problems in: a) generalized programming systems that are independent of both robots and robot applications, b) incompatibility 
between robots and programming systems, c) accounting for errors and inaccuracies that exist in the real world. Errors can be 
reduced substantially by using proper robot calibration. Robot Calibration is a term applied to the procedures used in determining 
actual values that describe the geometric dimensions and mechanical characteristics of a robot or multi-body structure. A robot 
calibration system must consist of appropriate robot modeling techniques, accurate measurement equipment, and reliable model 
parameter determination methods. For practical improvement of a robot’s absolute accuracy, error compensation methods are 
required that use calibration results. The objective of this article is to discuss a method to construct kinematic models for robot 
calibration assuring model continuity and to present a computer program to carry out this task automatically before the identification 
step as part of an off-line programming system. It is also discussed the inclusion of robot calibration results in the off-programming 
system aiming at improving the robot global accuracy through re-calculation of spatial world coordinates. 
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1. Introduction 
 

The complete control of a manufacturing cell involves perfect task synchronization among all of its robots and 
equipment. Each task set may be tested in software which performs graphic simulation before execution, enabling all of 
the synchronization signals between the equipment, the program for each robot and the optimal sequence of task 
execution and cell layout to be determined in advance. After testing, the programs are downloaded from the host 
computer to the manufacturing cell and tested. Programs already executed may also be uploaded, to be simulated and 
edited (Carvalho et al., 1998).  

A distinction has to be made between simple systems, and costly off-line programming and simulation systems. The 
former allows existing robot programs to be edited or archived and are used to develop the program frame, usually 
without the determination of the individual positions and orientations (poses) of the robot motion. The latter costly off-
line programming and simulation systems are interactively operated and allow a description to be made of the nominal 
path in the base coordinate system of the robot. 

The ideal case would be to load an off-line generated robot program down into the robot control and to execute it 
without any adaptation. However, there are inevitably differences between the computer model used to perform the 
graphic simulation and the real world. This is because the effective use of off-line programming in industrial robots 
requires, additionally, a knowledge of tolerances of the manufacturing components in order to enable realistic planning, 
i.e. to reduce the gap between simulation and reality.  

In an actual robot system programming this is still a relatively difficult task and the generated programs still require 
manual on-line modification at the shop floor. A typical welding line with 30 robots and 40 welding spots per robot 
takes about 400 hours for robot teaching (Bernhardt, 1997). The difficulties are not only in the determination of how the 
robot can perform correctly its function, but also for it to be able to achieve accurately a desired location in the 
workspace. Robot pose errors are attributed to several sources, including the constant (or configuration-independent) 
errors in parameters (link lengths and joint offsets), deviations which vary predictably with position (e.g., compliance, 
gear transmission errors) and random errors (e.g., due to the finite resolution of joint encoders). Constant errors are 
referred to as geometric errors and variable errors are referred to as non-geometric errors (Roth et al., 1987). According 
to Bernhardt (1997) and Schröer (1993), constant errors represent approximately 90% of the overall robot pose errors. 
Industrial robots usually show pose errors from about 5 to 15mm, even when they are new, and after proper calibration 
these error can be reduced to less than 0.5mm (Bernhardt, 1997, Motta et al., 2001). 

Robot calibration is an integrated process of modeling, measurement, numeric identification of actual physical 
characteristics of a robot, and implementation of a new model. The calibration procedure first involves the development 
of a kinematic model whose parameters represent accurately the actual robot. Next, specifically selected robot 
characteristics are measured using measurement instruments with known accuracy. Then a parameter identification 
procedure is used to compute the set of parameter values which, when introduced in the robot nominal model, 
accurately represents the measured robot behavior. Finally, the model in the position control software is corrected. 
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Important to robot calibration methods is an accurate kinematic model that is complete, minimal and continuous, 
and has identifiable parameters. Researchers have used specific kinematic models that depend on a particular robot 
geometry and/or calibration method. Although the identifiability of model parameters has been addressed (e.g., Everett, 
1988, Zhuang, 1992), methods to determine precisely which model can be used for a given relative joint configuration 
have to date not been available. Because of the model function complexity, parameter dependencies leading to matrix 
rank deficiencies in the linearized model cannot always be predefined from inspection of the robot model. Rank 
deficiencies produce no unique solution of the numerical problem (Motta and McMaster, 1999).  

This article shows an off-line robot programming system especially developed for the ABB IRB-2000 robot in 
JAVA and API JAVA3D languages, allowing full world modeling. Techniques to optimize the kinematic model are 
presented and implemented in the software. The optimized model can be used further to compensate the model errors in 
an off-line programming system, enhancing significantly the robot kinematic model accuracy. The optimized model can 
be constructed in an easy and straight operation, through automatic assignment of joint coordinate systems and 
geometric parameter to the robot links. World coordinate systems are directly converted to the robot controller 
coordinate system in an easy and friendly operation. It is also discussed the inclusion of robot calibration results in the 
off-programming system aiming at improving the robot global accuracy through re-calculation of spatial world 
coordinates. 
 
2. OFF-LINE PROGRAMMING 
 

Off-line programming is, by definition, the technique of generating a robot program without using a real machine. It 
presents several advantages over the on-line method, some of which are cited (Bien, 1998; Chan, 1991; Carvalho, 
1998): a) programs are prepared without interruptions of robot operation, resulting in reduction of robot down time, 
which means flexibility and an increase in productivity; b) removal of the programmer from the potentially dangerous 
environment, as most of the program development is executed away from the robot. Thus, the time during which the 
programmer is at risk from aberrant robot behavior is reduced; c) there is a greater possibility for optimization of the 
workspace layout and the planning of robot tasks; d) new programs can include previously developed routines; e) 
program changes can be incorporated quickly by substituting only the necessary part of the program; f) signals from 
sensors can be incorporated into programs; g) information from the environment (i.e. computer-integrated-
manufacturing systems, CAD/CAM systems) can be incorporated into programs; h) it permits verification of the robot 
behavior through graphical simulation and allows for the correction of any error in the program. 

 
2.1. Off-line Programming Software 
 

Off-line Programming Software were built using the JAVA language which is an object-oriented computer 
language which has become popular for the following reasons: a) easiness to use; b) integration to UML (Unified 
Modeling Language); c) support to C/C++ languages; d) architecture independence; e) advanced support to networks; f) 
documentation availability. 

This language encompasses three important needs of off-line programming software: support to computer graphics, 
serial communication and TCP/IP communication. Computer Graphics have an elegant approach by using API 
(Application Programming Interface) JAVA3D. 

The simulator was implemented including the following characteristics: a) workspace visualization; b) trajectory 
planning/design; c) communication to the robot control; d) system navigation. 
 
The connection between these characteristics can be seen in Fig. 1. 
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Figure 1. Simulator modules 
 
The Workspace Module has the following attributes: a) stores screens and data collected from the screen; b) 

performs data format; c) allows the robot tool construction; d) allows table construction and object control in the 
workspace; e) support robot model construction. 



 
Figure 2 shows a class diagram of the Workspace Module. 
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Figure 2. Class Diagram of the Workspace Module 
 
The Navigation Module assures the interaction between the user and other subsystems. It is responsible for 

providing an interface to workspace visualization, communication to the robot and assigning trajectories through the 
screen. 

The Communication Module is built up as a series of classes that implement the Pattern Command. This command 
provides a generic interface to auxiliary components to which the controller sends information. The Pattern Command 
in the Communication Module is shown in a diagram in Fig. 3. 
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Figure 3. Pattern Command in the Communication Module 

 



3.  A Singularity-free Approach for Kinematic Models 
 

Single minimal modeling convention that can be applied uniformly to all possible robot geometries cannot exist 
owing to fundamental topological reasons concerning mappings from Euclidean vectors to spheres (Gottlib, 1986, 
Baker, 1990).  However, after investigating many topological problems in robots, concerning inverse kinematics and 
singularities, Baker (1990) suggested that the availability of a repertoire of methods for determining whether or not 
inverse kinematic functions can be defined on various subsets of the operational spaces would be useful, but even more 
important, a collection of methods by which inverse functions can actually be constructed in specific situations. Another 
insightful paper about robot topologies was published by Gottlieb (1986), who noted that inverse functions can never be 
entirely successful in circumventing the problems of singularities when pointing or orienting. 

Motivated by the above arguments Schröer (1993) and Schröer et al. (1997) presented a concept to find complete, 
minimal and model-continuous kinematic models for all combinations and configurations of revolute and prismatic 
joints. Mathematically, model-continuity is equivalent to continuity of the inverse function T-1, where T is the product 
of elementary transformations (rotation and translation) between joints. From this, the definition of parameterization's 
singularity can be stated as a transformation Ts ∈ E (parameterization's space of the Euclidean Group - 3 rotations and 3 
translations), where the parameter vector p ∈ R6 (p represents distance or angle) exists such that the rank of the 
Jacobian Js = dTs/dp is smaller than 6. In other way, each parameterization T can be investigated concerning their 
singularities detecting the zeroes of determinant det(JT.J) considered as a function of parameter p. 

Thus, investigating the main kinematic modeling conventions one can represent the transformation between links in 
the Euclidean Group as 

 
T = Tx(px).Ty(py).Tz(pz).Rz(γ).Ry(β).Rx(α)                     (1) 
 
where px, py, pz are translation coordinates and α, β, γ  are rotation coordinates for the axes x, y and z respectively. Then, 
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where Cγ=cos(γ ) and Sβ=sin(β) and so fourth. 

The Jacobian J(q) of the function T(q(t)), where q is the joint variable and t is the time, can be determined 
expressing the equality (Spong & Vidyasagar, 1989) 
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where v and ω are the linear and angular absolute velocity of each joint respectively. One can decompose singular 
positions simply making det(J(q)) = 0, resulting in the manifold of singularities in Eq. (4a) 
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         (a)                           (b) 
 
This manifold represents γ =  ± π/2 and  β = ±  π /2 (Eq. 2), which means there is a singularity when y and z axes 

are parallel. 
The Denavit-Hartemberg convention (parameterization) (Paul, 1981) leads to an elementary transformation 

represented by 
 
T(θ,pz,px,α) = Rz(θ).Tz(pz).Tx(px).Rx(α)                      (5) 
 
Following the same procedure as before the manifold of singularities is shown in Eq. (4b). This result consists of all 

elements represented as parallel rotary joints. This can be verified by observing the third column showing the 
representation of one joint axis (z) into the previous one. 

The Hayati-convention (Hayati & Mirmirani, 1985) can be represented by 



 
T(θ,px,α,β) = Rz(θ).Tx(px).Rx(α).Ry(β)                     (6) 
 
There are two manifolds of singularities, 
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These representations show that if the distal z axis is in the same x-y plane of the proximal coordinate system (so 

perpendicular) or points to its origin, then there is a singularity. 
The Veitschegger convention (Veitschegger & Wu, 1986) is a 5-dimensional parameterization as 
 
T = Rz(θ).Tz(pz).Tx(px).Rx(α).Ry(β)                     (8) 
 
The manifolds of singularities are 
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These representations show that if the origin of the distal joint coordinate system is on the z-axis of the proximal 

one, or the z axes are perpendicular and intercept each other, then there is a singularity. However this convention is not 
minimal. 

Using the same technique presented so far for prismatic joints sets of parameterizations can be used so fourth. The 
results can be outlined in a list together with their application ranges. The set is a complete, minimal and model-
continuous kinematic model [Schröer et al., 1997]. The transformations are modeled from a current frame C to a 
revolute joint, JR, or to a prismatic joint, JP, or a fixed and arbitrarily located target frame, TCP-frame. Some of them are 
not unique since other solutions can fulfill the requirements. Additional elementary transformations are possible, but 
any added elementary transformation is redundant and thus, cannot be identified. A non-expanded model can always be 
found, which describes the same kinematic structure as the expanded model.  

Elementary transformations which are part of the complete, minimal and model-continuous sub-model being 
identified are marked bold (Schröer, 1997) in Tab. (1): 
 
Table 1. Elementary transformations between joints for complete, minimal and continuous kinematic models. 
 

  
⊥ JR 

 
JR 

 
⊥  JP 

 
JP 

Transformation from robot base frame to first joint 
B PX = (TY,TZ,RZ,RX )(1)    

PY = (TX,TZ,RZ,RX )(2) 
PZ=(TX,TY,RX,RY ) P=(TX,TY,TZ, RZ,RX) P=(TX,TY,TZ,RX,RY) 

Transformations between consecutive joint frames 
JR 
 

P= (RZ,TZ,TX,RX,TZ) 
D-H convention 

P=(RZ,TX,RX,RY,TZ)(3)  
Hayati  convention 

P=(RZ,TX,TY,TZ,RX) P=(RZ,TX,TY,TZ,RX,RY) 

JP P=(TZ,RZ,TX,RX,TZ) P=(TZ,TX,TY,RX,RY, 
TZ) 

P=(TZ,TX,TY,RZ,RX ) P=(TZ,TX,TY,RX, RY ) 

Transformation from last joint to TCP 
 ⊥ TCP  TCP 

JR 
 

P=(RZ,TX,TY,TZ,[RZ,RY, RZ ] ) P=(RZ,TX,TY,TZ,[RZ, RY, RX]) 

JP ( RZ, TX, TY, TZ, [RZ, RY, RZ ] ) P = ( TZ, TY, TX, [RZ, RY, RX] ) 

(1) -  If joint axis is near x-axis of frame B.                               ⊥ - means perpendicular to 
(2) -  If joint axis is near y-axis of frame B.                              - means parallel to  
(3) -  assumption: joint axes are not identical 

 



 
4.  K inematic Modeling – Assignment of Coordinate Frames 
 

The first step to  kinematic modeling is the proper assignment of coordinate frames to each link. Each coordinate 
system here is orthogonal, and the axes obey the right-hand rule. 

For the assignment of coordinate frames to each link one may move the manipulator to its zero position. The zero 
position of the manipulator is the position where all joint variables are zero. This procedure may be useful to check if 
the zero positions of the model constructed are the same as those used by the controller, avoiding the need of 
introducing constant deviations to the joint variables (joint positions). 

The first step to assign coordinate frames to joints is to make the z-axis coincident with the joint axis. This 
convention is used by many authors and in many robot controllers (McKerrow, 1995, Paul, 1981). For a prismatic joint, 
the direction of the z-axis is in the direction of motion, and its sense is away from the joint. For a revolute joint, the 
sense of the z-axis is towards the positive direction of rotation around the z-axis.  The positive direction of rotation of 
each joint can be easily found by moving the robot and reading the joint positions on the robot controller display. 

According to McKerrow (1995) and Paul (1981), the base coordinate frame (robot reference) may be assigned with 
axes parallel to the world coordinate frame. The origin of the base frame is coincident with the origin of joint 1 (first 
joint). This assumes that the axis of the first joint is normal to the x-y plane. This location for the base frame coincides 
with the PUMA manufacturer’s defined base frame. 

Afterwards coordinate frames are attached to the link at its distal joint (joint farthest from the base). A frame is 
internal to the link it is attached to (there is no movements relative to it), and the succeeding link moves relative to it. 
Thus, coordinate frame i is at joint i+1, that is, the joint that connects link i to link i+1. 

The origin of the frame is placed as following: if the joint axes of a link intersect, then the origin of the frame 
attached to the link is placed at the joint axes intersection; if the joint axes are parallel or do not intersect, then the frame 
origin is placed at the distal joint; subsequently, if a frame origin is described relative to another coordinate frame by 
using more than one direction, then it must be moved to make use of only one direction if possible. Thus, the frame 
origins will be described using the minimum number of link parameters. 

The x-axis or the y-axis have their direction according to the convention used to parameterize the transformations 
between links (Tab. 1). At this point the homogeneous transformations between joints must have been already 
determined. The other axis (x or y) can be determined using the right-hand rule. 

A coordinate frame can be attached to the end of the final link, within the end-effector or tool, or it may be 
necessary to locate this coordinate frame at the tool plate and have a separate hand transformation. The z-axis of the 
frame is in the same direction as the z-axis of the frame assigned to the last joint (n-1). 

The end-effector or tool frame location and orientation is defined according to the controller conventions. 
Geometric parameters of length are defined to have an index of joint and direction. The length pni  is the distance 
between coordinate frames i - 1 and i , and n is the parallel axis in the coordinate system i - 1. Figure 4 shows the above 
rules applied to the PUMA-560 robot with all the coordinate frames and geometric features.  

 

 
Figure 4. Skeleton of the PUMA 560 Robot with coordinate frames in the zero position and geometric variables for 
kinematic modeling. (Out of scale) 



 
 
 
5. Parameter  Identification 

 
The most important part of parameter identification procedures is concerned with numerical methods. Procedures in 

which model parameters are identified from several measured robot end-effector poses require numerical optimization 
methods (Motta & McMaster, 1999). These methods utilize local linearization of the non-linear robot model and then an 
iterative solution of the non-linear least-squares problem. 

 
5.1. Parameter  Identification K inematic Model 

 
The kinematic equation of the robot manipulator is obtained by consecutive homogeneous transformations from the 

base frame to the last frame. Thus, 
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where N is the number of joints (or coordinate frames), k = [p1

T   p2
T  . . . pn

T ]T is the parameter vector for the 
manipulator, and pi is the link parameter vector for the joint i, including the joint errors. The exact link transformation 
A i-1

i is (Driels and Pathre, 1990): 
 
A i-1

i = Ti-1
i + dTi    ,  dTi=dTi(δpi)          (11) 

 
where δpi is the link parameter error vector for the joint i.  

The exact manipulator transformation Â0
N-1 is 
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Thus, 
 
� � �A T dTN N

0 0= +     ,     dT dT q k� � ( , )= δ           (13) 

 
where δk = [ δp1

T δp2
T … δpn

T]T is the manipulator parameter error vector and q is the vector of joint variables [θ1
T, θ2

T, 

θN
T]T. It must be stated here that dT�  is a non-linear function of the manipulator parameter error δk. 

Considering m the number of measurement positions it can be stated that 
 
� � � ( , )A A A q kN= =0              (14) 

 
where  Â: ℜn x ℜN is function of two vectors with n and N dimensions, n is the number of parameters and N is the 
number of joints (including the tool). It follows that 

 
Â = Â0

N = Â(q,k) = (Â(q1,k),…, Â(qm,k))T : ℜn x ℜ                    (15) 
 

and 
 

dT dT q� � ( , ) ( � ( , ),..., � ( , )= =δ δ δk dT q k dT q km
T

1  : ℜn x ℜmN                  (16) 
     

All matrices or vectors in bold are functions of m. The identification itself is the computation of those model 
parameter values k*=k+δk which result in an optimal fit between the actual measured positions and those computed by 
the model, i.e., the solution of the non-linear equation system 

 
B(q,k*) = M (q)             (17) 
 

where B is a vector formed with position and orientation components of Â and 
 
M (q) = (M(q1),…, M(qm))T      ∈ ℜφm           (18) 
 



are all measured components and φ is the number of measurement equations provided by each measured pose. If 
orientation measurement can be provided  by the measurement system then 6 measurement equations can be formulated 
per each pose. If the measurement system can only measure position, each pose measurement can supply data for 3 
measurement equations per pose and then B includes only the position components of Â.  

The solution of Eq. (17) is presented in detail by Motta & McMaster (1999) and is not repeated here for short. The 
determination of k* allows a much more accurate kinematic model by correcting the parameter vector. 

World coordinates can be compensated correcting the robot base coordinates as shown in Fig. 5. Xtarget are the 
desired coordinates that can be used as input to the inverse nominal kinematic model, 1/fN (in the computer), obtaining 
nominal joint positions, qN. These joint position values feed the corrected kinematic model (calibrated), fcorr, obtaining 
end-effector positions which can be compared to Xtarget to calculate the compensated coordinates, Xcomp. These 
compensated coordinates are the input to the inverse nominal model to calculate the real joint position values, qreal, 
which can be sent to the robot controller model, fcont. Thus, the end-effector position will reach the real target 
coordinates, Xreal. 
 
 
 
Xtarg             1/fN       qN            fcorr      Xcomp                        1/fN            qreal   fcont           Xreal 
 
 
Figure 5. Robot Base Coordinate compensation block diagram. 
 
6. Results 

 
The computer program for off-line programming ROBOPRO was developed as a graphic tree in JAVA3D. Each 

tree node is a TransforGroup representing one robot link. A screen visualization for the IRB 2000 Robot class can be 
seen in Fig. 6. The graphic model was created on AutoCad software, but could be modeled with any software with 
image outputs in the formats DXF, 3DS, VRLM, or other formats supported by APIs of NCSA. 

 

 
Figure 6. Graphic environment for robot model visualization. 

 
The computer program for construction of kinematic models for robot calibration was developed in API-JAVA3D 

language. Figure 7 illustrates the input window for entering model parameter data. As shown in the figure, the system 
needs 3 types of information about the robot joints. The first is concerned to the type of joint: prismatic or revolute. The 
second refers to the position of the joint coordinate system origin relative to the previous joint system, measured 
according to the Base Coordinate System (BCS). The last input information is the joint axis orientation ( z axis ), 
measured relative to the BCS. 

Model joint data are entered one by one up to the TCP (Tool Center Position), which is the last point in the model 
geometric sequence. 

Figure 8 shows the final model obtained by the computer program, showing the complete robot model for the 
PUMA-560 on the screen. All kinematic parameters and homogeneous transformations are already determined at this 
stage. The model is then ready for the parameter identification step. 

 



 
 
Figure 7. Input data window for entering robot model joint positions. 

 
Comparing Fig. 4 to Fig. 8 it is evident that both are the same. 
The software was tested with many different robot systems as IRB-2000, IRB-2400 and specially designed ones. 

Up to date all tests were well succeeded. 
 
7. Conclusions 

 
It is discussed the main topics of off-line robot programming and practical aspects that bring about difficult 

solutions in a day-by-day industrial robot application in welding tasks. The  mismatch between nominal robot models 
and the actual robot model can be reduced drastically by using a robot calibration system to correct robot pose errors 
(low accuracy). This can be easily carried out through re-calculation of world coordinates and robot base coordinates. 
Software were developed to implement an off-line programming system including robot pose error corrections. This 
system was conceived specifically for the IRB-2000 robot but it can be easily extended to any other robot. The system 
is ready to be used for planning and simulation of welding tasks, with robot pose errors reduced by implementing robot 
calibration results. 
 

 
 
Figure 8. PUMA 560 Robot model obtained by the software. 



 
It was also presented a computer system to construct optimized kinematic models for robot calibration. The rules 

adopted to select proper joint coordinate systems in the kinematic model are based on a singularity-free approach that 
avoids ill-conditioned mathematical models in the identification process. The system has been tested in many robot 
topologies and results show coincidence between the computer program outputs and predicted models. So the way is 
paved for a complete robot calibration system encompassing modeling, data acquisition from measurements, parameter 
identification and model compensation, bringing about a system that can be linked to robot off-line programming 
systems, allowing considerable improvements to the accuracy of this type of robot programming. 
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