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Abstract. We  study the  problem  of  end-effector  position  control  of  a  mobile  manipulator  with  only  arm joint  inputs  being
manipulated, as it is assumed that the wheeled platform actuation may be out of direct control. Even though such problem may be
found in situations such as pointing of a robotic camera on a human-driven vehicle or platform disturbance rejection, much of the
research reported in the literature  assumed either fully coupled or fully decoupled control for arm and platform. We develop a
fully coupled dynamic model of the mobile manipulator system, properly dealing with non-holonomic constraints, and, based on a
time dependent feedback linearization scheme, we obtain a nonlinear optimal control law with arm joint inputs only. Results are
illustrated by a simulated pointing control of a two degrees-of-freedom manipulator sitting on a differential drive platform.
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1. Introduction

In this work, we are interested in the control problem associated with positioning the end-effector of a mobile
manipulator while its platform moves out of direct control.

The fact that a manipulator is mounted on a mobile platform greatly increases its workspace, allowing for a variety
of applications such as robots for bomb squadron, search and rescue and undersea work, as well as unmanned vehicles
and robotic cameras. 

However, along with mobility we get some additional problems due to kinematic and dynamic coupling with the
platform; namely geometric singularities, non-holonomic constraints and inertial effects. 

Geometric singularities are due to redundancy between manipulator and platform motion. Dong et al (2000) studied
this problem. However, this situation does not happen in our study, as the platform motion is assumed to be prescribed.

In order to deal with non-holonomic constraints in wheeled robots; some have chosen to augment the dynamic
equations with the constraints (e.g., Colbaugh, 1998), while others have tried some sort of coordinate reduction after
constraint augmentation (Papadopoulos et al 2000; Dong et al 2000; Yamamoto, 1996). We choose to start out with a
reduced set of independent path coordinates. 

Regarding to control, some of the older work was based on quasi-static assumptions for the platform (Dubowsky,
1989),  and Hootsmans et  al  (1991)  introduced  suspension  models  into  the problem.  Yamamoto  (1996)  reported a
comprehensive work, in which steps our work follows very much. Chen et al (1997) proposed an optimal trajectory
generation with minimum torque and maximum manipulability as criteria. Chung et al (1999) applied robust control to a
mobile manipulator with parameter uncertainties and wheel slipping. Colbaugh (1998) applied an adaptative control
scheme, and Dong (2002) used the same technique for manipulator trajectory and force tracking. Papadopoulos et al
(2000) reported work on simultaneous trajectory tracking for manipulator and platform, using dynamic inversion, an
approach similar to the one that we present.

In  this  investigation  we  look  at  a  particular  mobile  manipulator  configuration:  a  two  degrees-of-freedom
manipulator, which works as a pointing device and sits on a differential-drive platform, as illustrated in Fig. (1). For this
robot,  we proceed a  kinematics  analysis  to  determine reference manipulator  trajectories.  Also,  we develop  a fully
coupled dynamic model of the mobile manipulator system, properly dealing with non-holonomic constraints, and, based
on a time dependent feedback linearization scheme, we obtain a nonlinear optimal control law with arm joint inputs
only. Results are illustrated by simulations.

The paper is organized as follows. In Section 2, using the Denavit-Hartenberg convention, we develop a kinematic
model  of  the  manipulator  and  determine  reference  trajectories  for  the  manipulator.  In  Section  3,  we  derive  the
manipulator dynamic model. In Section 4 we show the design of a nonlinear optimal tracking control. Section 5 shows
the simulation results and comments. Finally, Section 6 presents the conclusion. 
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Figure 1. A 5-dof mobile manipulator.

2. Mobile Robot Kinematics

In  order  to  determine the  reference trajectories  for  the  manipulator’s joint  coordinates,  we look at  the robot’s
kinematics, which we model according to the Denavit-Hartenberg convention (e.g., Spong & Vidyasagar, 1989).

In the early stage we ignore nonholonomic constraints, which are latter taken into account by properly specifying
platform velocities.

Considering the robot configuration detailed in Section 1 and depicted in Fig. (1), we have the frame assignment
shown in Fig. (2), to which correspond the D-H parameters of Tab. (1), where l is the arm length.

Figure 2. Mobile manipulator D-H frames.

Table 1. Mobile manipulator D-H parameters

Reference Frame ai i dI i

1 0 /2 XPlat /2
2 0 /2 YPlat /2
3 0 0 0 

4 0 /2 0 2

5 l 0 0 3

Having this, we can find each homogeneous transformation from frame i to frame i-1,
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and the full transformation from the end-effector frame to the base frame, 
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Such transformation relates a target point, expressed in the end-effector frame, with its global representation:
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 We are particularly interested in properly pointing the end-effector towards the target point, when we have that
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Therefore, by solving the inverse kinematics problem implied by Eq. (3), we can find the proper desired values for
the manipulator joint coordinates to be:
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From such expressions, we can easily find its time derivatives, provided that we know the platform trajectory, which
must be in accordance to its non-holonomic nature. 

Having  found  reference  trajectories  for  the  manipulator  joint  coordinates,  in  the  next  section  we look  at  its
dynamics.

3. Manipulator Dynamics

We are concerned with the control of the manipulator, as we assume that the platform is out of direct control. 
Nonetheless,  we develop  a  full  model  of  the  manipulator  dynamics,  taking into  account  its  coupling with the

platform,  in  order  to  apply  a  feedback  linearization  scheme and  derive  an  optimal  nonlinear  control  law for  the
manipulator.

In order to deal with non-holonomic constraints in the dynamics, avoiding constraint augmentation or coordinate
reduction by coordinate transformation, we choose to use path coordinates for the platform, what implicitly takes the
constraints  into  account.  Therefore,  the  platform coordinates  are  s,  the  length of  the  arc  described  by the  robot’s
reference point, and 1, the centerline orientation angle. Hence, the velocity s  is aligned with the centerline as required. 

For the entire robot we have the coordinate vector given by
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With the velocities of the robot links given by
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we have the kinetic energy terms
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where M1,  M2,  I1 e  I2 are, respectively, masses and moments of inertia of the manipulator links 1 and 2, and  C is the
location of the center of mass of link 2 . Here, we also consider that link two has a symmetric cross section.

With the potential energy given by
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where  g is the gravity acceleration. Hence, we have the full robot Lagrangean and Lagrange equations
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Considering only the manipulator dynamics, we have that the manipulator equations of motion are given by 
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We notice  that  the  manipulator  dynamics  shows the  effects  of  the  coupling with the  platform motion.  In  the
foregoing simulations, these equations of the manipulator’s dynamics were numerically integrated by Dormand-Prince
pair, an one-step method based on Runge-Kutta’s 4th and 5th order formula.

Once the manipulator dynamics has been properly characterized, we look at the control problem in the next section.

4. Manipulator Control 

In this section, based on a time dependent feedback linearization scheme, we obtain a nonlinear optimal control law
for the manipulator joint inputs. 

As we see, we are allowed to feedback linearize the manipulator dynamics due to its invertible structure, giving rise
to a nonlinear feedback.

Having a linear representation of the dynamics,  we manage to stabilize  the error  dynamics with gains that are
optimal to a certain criteria.

As the standard techniques associated with Riccati equations showed undesirable performance for our application,
an alternative method was devised for designing the linear control gains. 
 
4.1. Feedback Linearization

In this instance,  feedback linearization reduces to  its particular case of dynamic inversion (Spong, Vidyasagar,
1989), also called computed torque. If we define a nonlinear feedback law
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the nonlinear dynamics of Eq. (14) becomes linear as follows:

vq M .   (19)

On choosing 

des
Mp

des
Mv

des
MMvMp KKKK qqqqqv  ,   (20)

where Kp and Kv are positive definite diagonal matrices, and defining the tracking error
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the error dynamics is given by
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Therefore, the tracking control problem now consists of finding gain matrices Kp and Kv  that stabilize the error
dynamics of Eq. (22).

4.2. Optimal Gains

We look for optimal gains according to quadratic criteria 
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The gains may be found by solving an associated Riccati  equation, a well-known standard procedure in linear
control (Bryson & Ho, 1969; Brogan, 1991).  For a  finite final time, the Riccati equation is a differential one and the
optimal gains are dependent on the initial conditions and on time. In the other hand, for an infinite final time, the Riccati
equation is algebraic and the gains are constant and independent both of time and initial conditions. 

However, due to application demands, we would like to have very fast stabilization and low inputs at every time;
and  we found that  this  standard  procedure  would  not  give  such  performance.  The  time  dependent  gains  are  not
convenient, and the constant gains resulting from the infinite final time solution are too high, causing excessively high
torque for larger errors.

Therefore, an alternative procedure was sought. Taking a critically damped error dynamics as desirable, we have
that 
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On substituting Eq. (26) in Eq. (23), the cost, after integration, becomes a quadratic function of the gains, and the
optimal values may be found by setting equal to zero the partial derivatives of the cost with respect to them:
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5. Simulation Results

The physical properties values used in the simulation are shown in Table (2). They are similar to the ones used by
Papadopoulos et al (2000), and correspond to a small size robot. Also shown are the parameters of the pointing target
and maximum admissible tracking errors.

Table 2. Mobile manipulator properties and performance parameters

Mobile Manipulator Target
MPlat(kg) 50.0 X  (m) 100

IPlat (kg m2) 1.417 Y (m) 100
M1 (kg) 3.5 Z (m) 10

I1 (kg m2) 0.0175 Maximum admissible errors 
M2 (kg) 4.0 E2,max (rad) 0.005

I2 (kg m2) 0.030 E3,max (rad) 0.005
b (m) 0.30 Terminal time
C (m) 0.15 tf(s) 1.0
Rw (m) 0.10

The  chosen platform path is  depicted  in  Fig.  (4),  and  corresponds to  a  dynamically feasible  trajectory of  the
platform assuming that  the  manipulator  remains  in  its  home position.  Based  on  such trajectory,  the  desired  state
trajectories can be found as described in Section 2, so that the manipulator joint coordinates are totally prescribed.



Figure 4. Mobile manipulator XY path.

As discussed in Section 4.2, we select the matrices Q and R to put more emphasis on terminal accuracy and low
transient inputs, resulting on the following choice:
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Considering a worst case for the initial tracking error, when the manipulator is stationary and pointing in opposition
to the target, and using the procedure described in Section 4.2, we found the optimal gains shown in Table (3). Also
shown are the Riccati optimal gains for infinite final time.

Table 3. Optimal gains

Link 1 Link 2 Link 1 (Riccati) Link2 (Riccati)
Kp 58.93047120 39.36845645 346.4101615 282.8427125
Kv 15.35323695 12.54885755 103.4060942 102.7895200

Simulation results are shown in Fig. (5), where we show control behavior for the gains found by our procedure and
the standard Riccati solution for an infinite final time. As expected, the controller attenuates the initial error, and at the
specified final time (1s) both coordinate errors are within the tolerance. Also, good control action continues after 1s,
despite of the platform’s continuing motion. 

Corresponding control torques are shown in Fig. (6). We notice a greater demand in link 1, due to its greater initial
error.  Also,  as  discussed  in  Section 4,  the  initial  torques  prescribed  by the  Riccati  solution  are  too  high,  beyond
acceptable limits for this application. Even though such high torques exist for a short time, failure in applying them
would cause a poor control performance afterwards. Steady state values in both cases agree in following gravity and
platform motion demands.  

Finally, a sensitive analysis for this case showed very little variation of the optimal gains with the initial conditions.

Figure 5. Comparison between desired and real states of links 1 and 2.



Figure 6. Input control torques for links 1 and 2.

6. Conclusion

This work focus on the problem of end-effector position control of a mobile manipulator with only arm joint inputs
being  manipulated,  using a  mobile  manipulator  constituted  by a  differential-drive  platform and  a  two degrees-of-
freedom manipulator sitting on it. A D-H kinematic formulation showed to be convenient for the problem. The proposed
Lagrange formulation of the dynamics was also helpful to avoid complications coming from non-holonomic constraints,
while fully accounting for it as well as for the dynamic coupling between manipulator and platform. The control problem
focused on properly pointing the manipulator end-effector regardless of the platform motion, using a nonlinear optimal
control based on feedback linearization. Optimal gains were found by an adaptation of standard linear control methods,
resulting in good control performance according to several criteria, as evidenced out by simulated results. As a nonlinear
control law, and accounting for kinematic and dynamic effects, this strategy is valid over the entire range of motions.
Finally, we should point out that, despite of the relative simplicity of the robot analyzed, the approach is general and
applies to other circumstances as well.
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