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Abstract.

Frequently, to determine resistivity distribution on Bhézal Impedance Tomography (EIT), a sequence of direcit&in
Elements problems must be solved. This is what happens aioiN&aphson based algorithms and Kalman Filter based
algorithms for EIT. Only a small fraction of the nodal potiaid are possible to be measured and only this small number
of potentials are taken into account in the error index ttsatd be minimized to estimate the resistivity distributidhis
work investigates the effects of static condensationatitez refinement, and routines for sparse matrices, to stilee
direct problem in EIT from the point of view of computatiotiale and numerical error propagation. Results indicatettha
computational time and numerical error propagation can lmaidished under certain conditions.
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1. Introduction

The knowledge of the electrical properties and its varratiotime, such as the electric conductivity inside the body,
is useful in several medical problems, for example, in thieact@®n of blood clots in the lungs (CHENEY et al., 1999),
detection of fluids in the lungs, detection of collapsedaagiin the lungs, in the noninvasive monitoring of heart fiorc
and blood flow, monitoring of internal bleeding, in the seglto determine the boundary between dead and living tissue
and detection of the breast cancer.

There are several systems that use electrical measurasdgeireconstruction, representations of the conductivity
and the electric permittivity inside the body. These systane called electrical impedance tomographs.

The electrical impedance tomograph applies currents tfirdlie electrodes attached on the surface of the skin and
then the resulting voltages are measured. In that way, @ssiple to estimate the conductivity or the electric petimity
inside the body.

To improve the resolution of the Electrical Impedance Toraphy images, there were developed many studies about
the behavior of the current density distribution near tleetebde (CIULLI et al., 1996), the ideal amount of electde
(CHENEY et al., 1999), the contact impedance (VILHUNEN ef 2002), current patterns (POLYDORIDES and MC-
CANN, 2002) and the development of current sources (ROSE, 2083).

The first commercially available system for electrical imaece tomography was the system developed by David
Barber and Brian Brown (BARBER and BROWN (1984) apud CHENE¥le(1999)). The system uses a single current
source and 16 electrodes to generate low resolution imddhe oonductivity variations inside the body.

The electrical impedance tomography images don’t havdutso comparable to the Computerized Tomography
scans nor to the image of magnetic resonance but the elddtripedance tomography has low cost, high speed of data
acquisition and through EIT it is possible to characterizeues (BROWN, 2001).

1.1 EIT Image Reconstruction

The reconstruction problem consists of an estimation ofctreductivity distribution inside the body, according to
measured voltages and injected currents in its boundarys fioblem is challenging because it is nonlinear and ill
posed. It means that great changes in the resistivity qooresto small changes in the measurements and, consequently
they should be made accurately. Regularization techniguesiecessary to stabilize the inversion, such as SMORR
(" SPECTRAL MODELLING REGULARIZED RECONSTRUCTOR ") (BRANSTATTER ET al., 2003), Gaussian
anisotropic regularization filters (BORSIC et al., 2008§ tveighted regularization (CLAY and FERREE, 2002) and the
regularizations based on a priori knowledge (ADLER, 1926)ong these regularizations, the Tikhonov regularizaon
used frequently (HOFMANN, 1998; KAIPIO et al., 1999; KAIPEDal., 2000; KOLEHMAINEN et al., 2001; BORCEA
et al., 2003).

Among the different reconstruction algorithms stand out:

e the non-iterative linear methods, which assume that thelwctivity does not differ very much from a constant,
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Barber-Brown Backprojection Method (BARBER and BROWN (49&pud CHENEY (1999)), Calderén’s ap-
proach (CALDEROGN (1980), ISAACSON AND CHENEY (1991), ISASDN AND ISAACSON (1989), CH-
ENEY ET al. (1990), AND ISAACSON AND CHENEY (1990) APUD CHENE (1999)), moment methods
(BERNTSEN et al. (PREPRINT), CONNOLLY AND WALL (1988), ALLES and SANTOSA (1991) apud CH-
ENEY, (1999) ) and one-step Newton Method (CHENEY et al. 9BLUE (1997), EGGLESTON et al. (1989),
FUKS et al. (1991), GOBLE (1990) AND SIMSKE (1987) APUD CHENE1999));

o the iterative methods (EGGLESTON et al. (1989), KOHN and MEDKNEY (1990), WEXLER et al. (1985),
YORKEY et al. (1987), JAIN et al. (1997), HOLDER (1993), WO®at. (1990), BRECKON AND PIDCOCK
(1988), JIANG (PREPRINT), DORSON (1992), KLIBANQV (prept), SANTOSA and VOGELIUS (1990) apud
CHENEY (1999));

e the adaptive methods that adjust the applied current patterobtain the best reconstruction (GISSER et al. (1990),
GISSER et al. (1987), NEWELL et al. (1988), SIMSKE (1987), BEKON AND PIDCOCK (1988) AND
ISAACSON AND CHENEY (1996) APUD CHENEY (1999));

e methods based on the "layer-stripping" algorithm (SYLVERT(1994) and SOMERSALO et al. (1991) APUD
CHENEY (1999));

e Fuzzy methods and Genetic algorithms (CHO et al., 1999; O&i\il.);

e Neural Networks has been used in the work of TAKTAK et al. @p&and it increased the speed of image recon-
struction in real-time;

e the Topological Optimization methods (BYUN et al.; LIMA a&dlLVA, 2004; LIMA and LIMA, 2004);
e Simulated Annealing (YANG et al., 1997);

e Statistical Inversion and Monte Carlo Method (KAIPIO et 2000);

e "Generalized Vector Sample Pattern Matching (GVSPM)" (0é&t al., 2003);

e Kalman's Filter: the method is used in reconstruction athars of EIT images to detect variations in the impedance
(VAUHKONEN et al., 1998) or in the resistivity (KIM et al., 20 ; KIM et al., 2002; TRIGO, 2001; TRIGO et al.,
2004).

The main objective of this paper is to investigate the effefistatic condensation in the conductivity matrix, iteset
refinement and routines for sparse matrices. The advantaggsts of working only with small number of potentials,
that is, those potentials measured by the electrodes.dmrthnner, it is possible to obtain a decrease of dimensidmeof t
system to be solved in the EIT direct problem. Most of the Eldtmods benefit from a faster and more accurate direct
problem solver.

2. The Direct Problem Formulation

The solution of an EIT direct problem consists of deterngniihe potentials in the surface of the body, given the
distribution of conductivities in a section of the body ahd turrent injected in its boundary.

A Finite Elements model is developed to represent the dorf@imstance a section of the human thorax. Each node
on the boundary represents an electrode (punctual mod&daf@de) and this is positioned to the same distance among
the adjacent ones. It is possible to assemble the globalboimidy matrix [Y]. The programs FEIt and EasyMesh were
used to generate the 2D-meshes.

It is possible to obtain the following relationship among troltage vectofV'}, the global conductivity matriky’]
and the current vectdiC'} (MOLINA, 2002) from the Finite Element model:

YH{V}={C} (1)
The boundary conditions are used to t{iri} nonsingular and the voltage vectdr} can be written as
{(vi=[]"Hcy )

In the next section, two static condensation methods argepted. The objective of these methods is to reduce the
dimension of the linear system to be solved and so improveracg of the solution.
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3. Algorithms for Static Condensation

In the static condensation method a square matrix whose @dgual to the number of electrodes is obtained by
means of two methods. In the first method, elementary oparmtire applied on the linear system (Equation 1). In the
second method, the system matrix is partitioned in suboesri These methods are explained in the next subsections.
In that way, the dimension of new matrix is smaller than theeatision of[Y]. Besides, it is expected that the static
condensation is capable to reduce the numerical error getigan during the solution of the direct problem.

The results obtained through simulations using static ensdtion, using submatrices or using pivotation, just rep-
resent a stage of the estimation process. In this stageastsismed that the conductivities have been calculated by an
estimation method. The simulations represent the soluatidime direct problem of EIT, in other words, the voltage wect
{V'} is determined given the conductivity distribution insitie body’s section and the injected current in its boundary.

3.1 Static Condensation using Pivoting

This method is based on the partial pivoting (GOLUB et al98;PRESS et al., 1992), the conductivity matii¥ is
modified by linear combination on just the lines. The condéna using pivoting was applied to the global conductivity
matrix [Y].

Renumerating the mesh it is possible to modify the systeroritesd by Equation (1), so that the first element$6f
and{C} represent the electrodes (Figure 1).

the electrodes

Y11 : Y:IZ \/1 C1 Jrelatedto

Figure 1:The linear systenV']{V} = {C}

The vector{V; } represents the vector of electrical potential that aredleioked for.
The linear combination on the lines @f] was performed to obtairt’] such that,

° [}712} is null,
° [}722} is a lower-diagonal matrix,
° [}711} and [}721} are non null matrix.

The resulting matri>{1~f] is presented in the Figure 2.

electrodes

» 0 V1 C1 Jnumberof

% v ¢C
Figure 2:System obtained by static condensation using pivotingérgtbbal conductivity matrix [Y]
The system above can be written in the following way:
[Via| (i} + [Vao] {12} = {C}

®)
[Vor| {(Va} + [Y22] {12} = {C}
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The submatrix{fflg} is null, therefore, the voltage vectf¥; } can be obtained by the first equation only

Wit = [}711] _1{51} (4)

Thus the inversion of wholg’] is unnecessary.

The vector{V5} can be obtained substitutifd; } in the second equation of the system. The ve¢t®} possesses
only one nonzero element that corresponds to the electrbeéeathe current is injected. The vec{ar, } is null except
one element an@iC} is null. Thus the vectofV,} can be calculated by the expression:

=1~
V= —|Vae|  [Yau| (i}, (5)
In the next section the second static condensation algoigrdescribed.

3.2 Static Condensation using Submatrices

The system matrix is partitioned into submatrices (LOGABIBB). Let the system presented in the Figure 1. It can
be written as

{ Y] {Vi} + [Yio] {Vo} = {C1} 6)
Yol {Vi} + [Yao] {V2} = {C2}

where{V; } represents the vector of electrical potential that aredkioked for.

The current vectofC'} is known, static condensation using submatrices beconvesitajeous since when the system
can be rewritten in a compact way.

The current pattern is represented by a ve€t} where just one or two elements are nonzero. In this studyebtv
{C1} has only one nonzero element aftd, } is null.

The vector{V,} can be calculated by the second equation of the linear system

{Va} = [Yao] ' ({C2} — [Yar] {V2}). (7)

Substituting{ V> } in the first equation

([Yi1] — [Ya2] [Yaz] " [Yar){Vi} = {C1} — [Vi2) [Yao] ' {Co}- (8)

Since vecto{ Cs} is null, then the new system is given by:

([Y11] — [Vi2] [Yao] ' [Ya]){VA} = {C1}. )

The calculation of{ V7 } still involves the inversion of the matrii.], however, its dimension is smaller than the
dimension of matri{Y’].

4. Matrix Sparsity

MOLINA (2002) achieved a significant improvement in the mstiion method of electrical conductivity distribution
using the conductivity matrix in the band diagonal form whig a particular representation of sparse matrices.

In an attempt to reduce the numerical error propagatiomtesent work uses sparse matrix algorithms (DUFF et al.,
1986; PRESS et al., 1992).

The sparse matrix is represented by two vectors, one stesesgnzero elements of the matrix and the other one stores
the element index (PRESS et al., 1992). The sparse storage isiaseful to reduce the processing time and to optimize
the memory space for data storage.

5. lterative Refinement

In most of linear system solutions, it is not easy to obta@tmion comparable to the machine precision. The roundoff
error can accumulate, promoting the numerical error prapag, specially when the system matrix is close to singular
(GOLUB et al., 1996; PRESS et al., 1992; WATKINS, 1991) .

Furthermore, it was also obtained an improvement in theigioatof the impeditivity and an increase in the algorithm
convergence rate using iterative refinement in the caliomaif the conductivity matrix inverse which is used in the
Kalman'’s filter (MOLINA, 2002). In this article, the iterag refinement was used to obtain a more accurate voltage
vector.
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6. Sensitivity Analysis of Linear Systems

WATKINS (1991) affirmed that given the linear systéal{x} = {b}, where[A] is a nonsingular matrix angb} is a
non null vector, the inequality follows

16

el —

< K(A)% (10)

Taking into account Equation (1) and Equation (10) follows

1oV 16C
o S YY) T (11)
VI IC
where[A], {«} and{b} were replaced by the conductivity matfiiX], the voltage vectofV'} and the applied current
vector{C'}, respectively.
The Equation (11) relates how much the perturbation in tletord C'} may reach the vectdfV'}. The factors(Y)

represents the condition numbef&1. The producR(Y)% represents an upper boun ‘ ‘” . Itis worth to highlight
that the 2-norm is used in this case, where the condition mumslgiven by the ratio (WAT II\}S, 1991; POOLE, 2004)
Ra(V) = 72 (12)
Om

whereo,, ando,; are the smallest and the largest singular value, respéctive
7. Simulation

In this study, a circular domain was discretized in 189 gidar elements, with a total of 111 nodes which 32 of them
are located on the boundary, representing the electrodestml electrode model). It was considered that a current o
85 mA was injected in one of the electrodes and the diametricgposite electrode was considered a ground. It was
supposed a homogeneous conductivity distributiof@f Q2m) 1.

The simulations followed the items:

e the conductivity matrix was calculated;

e the mesh generated by EasyMesh program was re-numerated tioeppositions relative to the 32 electrodes at
beginning of the voltage vector and the applied currentorect

e rows and columns of the conductivity matrix were interchethdue to the mesh renumeration;

e the conductivity matrix without static condensation isared to determine the voltage vector, with and without
iterative refinement ;

¢ the two static condensation methods were applied to theumtivity matrix, with and without iterative refinement;
e the same procedure of the previous items was adopted, hgwewsidering the sparsity of the conductivity matrix.
The results are presented in the next section.

8. Results

First, to better present the results the log-scale is usgehixis for all graphics.
The condition number for the conductivity matrix obtaingddach method is presented in Figure 3.
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Figure 3:Condition Number

It is possible to verify on Figure 3 that the condition numfmgrthe matrix with static condensation was smaller than
for the system without condensation. However, the conditiomber for the matrices using the condensation methods
were approximately the same. The reduction of the conditionber represents a better behavior of the linear system to
perturbations.

Figure 4 shows the 2-norm of the residual vect’].{V} — {C}||2, where{V'} represents the voltage vector
calculated by the three methods &r@} the applied current vector.

le-14
without refinement and sparse storage mode KN
with refinement, without sparse storage mode... I .
without refinement, with sparse storage mode 1111111
1e-15 with refinement and sparse storage mode il

le-16

2-Norm of the residual vector

le-17

Method without Static Condensation
Static Condensation using Pivoting
Static Condensation using Submatrices

Figure 4:2-Norm of residual vector

It is possible to notice that there was a significant redmdtiche 2-norm of residual vector when the iterative refine-
ment was applied to the linear system solution.

The methods using static condensation presented ten timedes upper bounds fo‘i%”; than the method without
condensation, as shown in Figure 5. The results reflect thection of the condition number (Figure 3) and have as
consequence a reduction of the 2-norm of the residual véeigure 4).
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Figure 5:A bound for||5z|2/|z]|2

The processing time of each method is shown in Figure 6. Thegssing time of the methods with iterative refinement
was calculated by the sum of the time spent to solve the lisysiem and to apply the iterative refinement in its solution.
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Figure 6:Processing Time

The static condensation method using submatrices withmause storage mode had the smallest processing time,
following the method without static condensation but wiplarse storage mode.

The sparse storage mode provided a processing time deass@sethe static condensation wasn't applied. The
conclusions are presented in the next section.

9. Conclusions

The application of static condensation in the system magteibds the reduction of:

e the condition number,
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e the 2-norm of the residual vector,

e the bound forl®zlz

[P

e the processing time in the static condensation using sulmest

In this study, the results for sparse storage mode were tigfrtiban those obtained without it. Besides, there was an
increase in the processing time.

The application of iterative refinement improves the accyd the solution.

Based on the presented results and considering the propad®tques to be used in EIT problems, it is possible
to conclude that the best performance was reached by statiteasation method using submatrices without the sparse
storage mode.

It is worthwhile to point out that the presented techniquesanapplied to a small order matrix. The same methodology
will be applied to matrices of larger order, different patteof sparsity and condition number, to test the prelinyinar
conclusion of the present work.
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