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Abstract. This work proposes and evaluates the feasibility of thefest extended Kalman filter, incorporating an adap-
tive noise technique, to solve the inverse problem of Btedttmpedance Tomography. The study aims at the improve-
ment of the method, in order to provide faster and more adeweatimates of the dielectric characteristics of a medium,
mandatory requisites in medical applications. A cylindtiphantom filled with saline solution, in which a glass-attje

is immersed, provides experimental data used to validagertbdel. The immersion of the glass-object simulates a step-
function perturbation on the medium. Current patterns ajeéted and potentials are measured through brass eleetrod
placed around the border of the phantom. A two-phase ideatifin schema is employed. The approach is shown to
be effective in determining the position of the glass-dlgec the contact impedances of the electrodes. Convergence
criteria are used to assure correctness of the obtainednedés.
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1. Introduction

Electrical Impedance Tomography (EIT) attempts to geereirabiges of a medium from estimates of its dielectric
properties. In order to accomplish this task, a low ampétadrrent pattern is applied to a body surface and the patenti
at determined points of that surface is measured througttreties. Measured potential is a function of the conduc-
tivity/resistivity distribution and overall geometricdtures of the object under analysis. Since potentials aogvikn
and dielectric parameters not, the problem of estimatimgdhproperties of the medium is inverse. The conductivi-
ties/resistivities are, thus, the parameters of a modéh@fobject; they result from the solution of the Laplace péarti
derivatives equation with proper boundary conditions,chitgoverns the phenomenon.

The potential applications of EIT in Medicine range from ritoring cyclic changes in lung condition of patients in
intensive care units to fast imaging of cerebrovasculadact (brain stroke); recent researches seek to use thoeges
from EIT to infer blood flow through the lungs. Nowadays, Iingction monitoring is the main research area among
the EIT scientific community. The pursuit for methods capatfl providing reliable and fast estimates of the conduc-
tivity/resistivity distribution in the medium has led to@paches that describe the inverse problem in dynamical for
using a state-space approach (Vauhkonen, Karjalainen aipmd 1998), in which the state-vector contains dielectri
parameters to be estimated through the linearized Kalmian fifurther on, the same state-space model was used with
the extended Kalman filter (Kirat al,, 2001; Kimet al,, 2002; Trigo, 2001; Triget al., 2004).

In this work, we propose a two-phase method to solve the Ebblpm based on a state-space approach to estimate
time-varying absolute conductivity/resistivity in a pbam and electrode contact impedances, using the exteratatkitl
Kalman filter as the estimator. The two-phase method chatiaes by isolating estimation of medium parameters from
electrode contact parameters. This approach helps mimignmmerical errors that arise from the ill-posed featurhe
inverse problem.

2. Theoretical basis
2.1 Domain and Electrode Model

When a plane closed domaihwith stationary charge and conductivity distributiefi, ), and purely conductive
medium is submitted to crossing steady current (Barber aotviB 1984), the inner electrical potentidlis given by
Laplace equation

V.(oV¥) =0. (1)
At the boundary, currents are injected through electrodies;

)
0 " elsewhere at the bounda

o2 _ 7, onthel-th electrode Jy B
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whereJ, denotes the current density through the surface of-theclectrode (Triget al., 2004).

In order to solve the Laplace equation, Eq. (1), with boupdanditions, Eq. (2), the closed domain is discretized
through the Finite Element Method (FEM), using triangulangents with constant conductivityand linear interpolation
functions (Murai and Kagawa, 1985). The minimization of #agiational principle associated with the Laplace equmatio
provides the local element matrices.

The electrodes are modeled as four-node elements withamdresinductance, equally positioned around the border of
the discretized domain. The simplified complete model (WMag, Webster and Tompkins) is used to take into account
the high metal conductivity and the skin contact impedance.

When the local element matrices are stated in terms of tHeagtmordinates of the mesh, the global resistivity matrix
(Trigo, 2001; Trigoet al., 2004) which includes electrode contact impedance efféztsbtained; then, the following
relation holds:

YV =C ®3)

whereY (o) € R*** is the conductivity matrix calculated at any particulartdigition o, V(o) = [v1...v;...v,],
v, € R* is a matrix containing nodal potentials corresponding theapplied current pattern, aiddl = [¢;...cj...c;),
c; € R? is a matrix of linearly independent bipolar diametricalremt patterns (Triget al). The superscripts, m, and
¢ stand respectively for the number of nodes, elements antredtes of the FE mesh, in whighcurrent patterns are
applied.

2.2 lterated Extended Kalman filter for EIT

A detailed discussion on Kalman filtering theory is out of ourrent scope. Extensive studies can be found in cited
references, such as Gelb (1979), and Jazwinsky (1970). tMeever, state the main conditions necessary for applying
the filter equations.

Kalman filters demand the description of the dynamical probin a state-space form, which includesyatem model
and anobservation modelSeveral mathematical models in the literature try to deedhe phenomena that take place in
the cardiovascular system; so far, though, none of them ihese able to account for all the effects (gas exchange,xhora
movement, cardiac pulsatile characteristic, varying Bland tissue dielectric properties). The same problem sdour
the field of Atmosphere, Ocean and Earch sciences, whoselstdiepoorly represent reality (Burgers, van Leeuwen
ans Evensen, 1998). One alternative to circumvent thatdiffi is to admit aandom walkmodel.

The random walk model compensates for the lack of informatio the system itself with the inclusion of a random-
noise term. In the case of EIT, the random walk model for tseréite-time evolution of the conductividyin the medium
is (Vauhkonen, Karjalainen and Kaipio, 1998),

0p=Pp10,-1 + wy, 4)

known as thestate equationin which®,,_; € R™ * ™ s the discrete-time transition matrix aagl € R is a zero mean
Gaussian white state noise vector whose covariance is thesyrical positive semi-definite matr@@;, € R™ * ™. The
indexk indicates the time-stegs= kAt.

The observation model results from the FEM model, as follollee domain discretization allows the measurement
of potential through the electrodes. The measured potentjaesult from the mag,; : o — v;, i. e, the statement of
the inverse problem since, from Eq. (3),

vj(0) =hi(o) =[Y(0) le;, j=1,...,p. (5)

The discrete-timaonlinear observation modé obtained from Eq. (5) by incorporating a noise vector nehéto any
measurement process. Thus,

vi(ok) = hi(ok) + vi, (6)

inwhichv, € R is a zero mean Gaussian white measurement noise vector winemgance is the symmetrical positive
definite matrixR, € R** ¢, The vectorw, € R’ andhy (o) € R represent electrode positions on the FE mesh, the
only place in which measurements can be made, for gaeh ... p current pattern.

Linearizing Eq. (6) around the last estimatg _; € R™, and keeping terms up to the first order, results in

vip(ok) = vi(op—1) + Hi(ok—1) [0k — Ok—1] + Vi, (7)

whereH = %—fgﬂ(akil € RY*™ is the sensitivity matrixthat corresponds to thé potential measurements. The
sensitivity matrix is obtained directly from the FE modeb¢key, Webster and Tompkins, 1987).
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Defining anominal measuremefilazwinski, 1970) as
zp 2 vp(or) — vi(or-1) + Hi(ok—1) [or-1], (8)
and using Eq. (7), one obtains tleearized observation modak
z = Hy(or-1)or + vi 9)

Equations (4) and (9) define the state-space representdtibe system, and the iterated extended Kalman filter can
be readily implemented. We point out that, throughout thaskyit is assumed that the process noise and the measurement
noise are not correlated, i.&fw;v}| = 0 for all k, and that both process and measurement noise covariandegsate
diagonal with equal and constant elementser= p2 I,, and R, = p21I,, with p2 andp? representing respectively pro-
cess and measurement noise covariances. Those hypothessed for the sole purpose of simplifying the calculations
involved in the iterative procedure.

The iterated extended Kalman filter differs from the extehdersion in the sense that the linearized observation
model of Eq. (9) is obtained thru repeatedly linearizing E). around the last estimated state; thus, new estimates are
re-calculated using the same measurement vegtamtil there is no significative discrepancy between two egngve
estimated states. There are several forms to present thedduations; the one below is based in Gelb (1979) and
Jazwinski (1970), as follows:

6\ =160 (10)
P = & P OT + Qi (11)

Equations (10) and (11) represent the so cafiexpagation stage When new measured data are available upeate
stagecalculates the Kalman gaiH,. and corrects the propagated staﬂéT), and error covariance matriP,,S_), through
equations

&0 =617+ Gr {oe — (e () + (6D [617 — 67|} (12)
-1

Gy = POHL(6) [Fe(o () PO (61) + Ri (13)

P = 1= Bl e P, (14)

that re-calculate the state and the error covariance mattik

A(H) A+

l65) = &4 alls <6, (15)
where|| - || is ap-order norm and is empirically chosen. In this work, we use the Euclideammas the evaluation
parameter. The iterative estimation process can start@sa®initial statery, and covariance matricds), Qo and Ry
are provided.

2.3 Adaptive State Noise Estimation

An important drawback for the implementation of Kalman fiétén EIT is the arbitrary choice of the state noise
covariance matrix), once little is known about the real system dynamics. Nolymeiis matrix is kept constant during
the whole estimation process. Nevertheless, as is knowaim&n filter theory (Jazwinski, 197Q), matrix exerts a key
influence upon state estimates and, consequently, upootivergence of the process.

Theadaptive state noise estimation technigises information provided by the filter itself in order to nfgd); and
prevent eventual divergence.

Kalman filter divergence is ascertained when the statistidhe observation residualéthe difference between the
real measured value and the value calculated by the filteguke last available state estimate) are inconsistenttigtin
expected values (Rios Neto and Kuga, 1985). In practicaigeconvergence is verified througbrmalized observation
residuals defined as

4
r 232 Tonlon) — 0wl (/G k=120, (16)

j=1

1The symbol ‘A" indicates arestimate while the superscripts “(-)” and “(+)” stand respectivéty “immediately before” and “immediately after”
arrival of a new batch of measurements.
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with ¢ and(, respectively stating the number of measurements and thdatd-deviation of the measurement noise. If
E[r,]=0 and a7)

*3Cv <r < 3<1/7 (18)

during the whole estimation procedure, convergence isideres] satisfactory (Fleury, 1985). The adaptive statsenoi
technique, presented in Jazwinski (1970), seeksdtaptthe state noise covariance matrix so as to maximize the proba
bility that the observed and expected residual statistiexcansistent. This approach does not consider the facthibat
residuals incorporate the uncertainty associated to theosgthrough measurement noise covariance matrix

Another approach, that excludes the influence of measurenoése from the above-cited maximization problem,
was proposed by Rios Neto and Kuga (1985). This method airobtaining a diagonal matrig);, , € R™*™, with
main diagonal,, > 0 € R™, that promotes consistency between observed and expeatistics of the residuals. The
main idea is to describe the problem of obtainiig, , as a state-space problem, usipgas the state-vector and a
random-walk model for its dynamics, besides an auxiliariniéan filter to predict the state.

An observation model witpseudo-measuremeritsbe used with the auxiliary Kalman filter is built from obged
residuals and the sensitivity matrix of the main inversebpem. The state and observation equations for the auxiliar
Kalman filter are (Rios Neto and Kuga, 1985)

Qi41 = qj + sk and (19)

vy = (H})qy + 1y, (20)

with p £pseudandv? € R™ the pseudo-measurement. Veatgre R™ is zero-mean Gaussian with covariance

b
Elsis, | :{ (?d& ;:Z;j (21)

Vectorn,, € R™ is a zero-mean noise vector such that

E[(n;,)] = 4[(vi(ok) = 01(64))5) (Ri) ;5 + 2(Re)3,;- (22)

The subscriptjj indicates each element of the measurement noise covanmatrtéx diagonal, whereas the pseudo-
sensitivity matrixH), and the sensitivity matrix of the original observation miazEmply with

(HP) gy = (Hy); Qap—y [(Hx) ;] (23)

Estimates of the adaptive-noise veajgraccording to Egs. (19) and (20) are obtained through a cdiorexi Kalman
filter and used by the main filter, the iterated extended ircase.

2.4 Two-phase Identification Procedure

A two-phase identification procedure that separates thiglgams of estimating medium conductivity distribution and
medium-electrode contact impedances was proposed andagz@lby Trigoet al. (2004). The first phase concerns the
estimation of electrode contact impedances while keegiagrtedium conductivity distribution constant. On the selcon
phase, the previously estimated electrode impedancesremastant while the Kalman filter provides estimates fer th
medium conductivity distribution. Phases one and two aerrately applied until the convergence criteria are felil
The reasoning behing this approach is based otirdraction Mapping Theorem

Kalman filter can be understood as a recursive least-squargsization procedure (Jazwinski, 1970) that, at each
iteration, contracts the error covariance matrix tracenk admits that, in a metric spa8gthe Kalman filter convergesin
a neighbourhood af € S (initial estimate) of radius, to a vectois™ (Holtzman, 1970), when the trace Bf is chosen
as the norm for the spaée each iteration on subspaceg (M means “medium”), oSz (£ means “electrodes”), ¢,
represents a contraction within this space. The sequectidtactions on those subspaces or the repetition of adittns
within one subspace will lead to an estimate that also lighém-vicinity of o, according to the Contraction Mapping
Theorem.

3. Methods

The experimental validation of the models developed wakpaed using 235 mm-diameter cylindrical phantom
with 32 rectangulan2 mm-wide brass electrodes placed around the container’s hdeeleping an equal gap between
each other. The container was filled witi\auC'! solution of concentration 0,28/ up to a26, 5mm height. Bipolar
diametrical current patterns with frequerity k H z and amplitudem A peak-to-peak were injected by a current mirror
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type generator, as described in Bertemes-Filho, Brown aitgb/(2001). A multimeter HP 34401A was used to measure
potentials at the electrodes (Trigo, 2001; Trigfeal, 2004). A62 mm-diameter cylindrical glass object is immersed in
the homogeneous medium, representing a step-functioarpation. We stress that neither the conductivity of thigob
nor the conductivity distribution of the saline solutiore&nowna priori.

The phantom is represented by a circular domain, which isrelized by the FEM, as seen on Fig. 1nin= 272
elements, from whicli = 32 elements have four nodes; the total number of nodesi<201. The32 elements with four
nodes represent electrodes, modeled using the simplifiaglede model (Hua, Woo, Webster and Tompkins, 1993).

The iterated extended Kalman filter with adaptive stateen@isised to estimate electrode contact impedances, and to
identify the position of the glass object, in two phases, escdbed in section 2.4 The 240 elements that comprise the
medium are grouped in 32 ROIs (Trigo, 2001), according to Eigrhe identification of the resistivities on those regions
is one of the phases; the other refers to the identificatidineoB2 impedances at the interfaces between the saline mediu
and the metallic surface of the electrodes.

. A _ 4 14
ﬁ%‘% p
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Figure 1. 272-element mesh with 32 ROIs

The initial parameters used on the identification proceduegresented in Table 1.

Table 1. Initial parameters for phases 1 and 2

identification sequence Py Q R
nr. phase 1) iterations
1 | 1 (electrode)| 0,30 96 3.5x 107455 | 7,8 x 107435 | 2,5 x 107315,
2 2 (medium) | 0,30 96 3,5x 107 55 | 7,8 x 1073135 | 2,5 x 107315,
3 | 1 (electrode)| 0,30 926 3,5 x 107415, Pso 2,5 x 107415,
4 | 2(medium) [ 0,30 320 | 3,5x 10 'Is, 0,4 x Psy 2,5 x 10~ I3,
4a| 2 (medium) | 0,30 320 3,5 x 1075, 0,4 x P39 2,5 x 107415,
5 | 1 (electrode)| 0,80 96 3,5 x 1075 0,4 x Pso 2,5 x 10159
6 | 2 (medium) | 0,20 96 3,5 x 1075, 0,4 x P39 2,5 x 107415,
6a | 2 (medium) | 0,36 96 3,5 x 1075, 0,4 x Psy 2,5 x 1075,

4. Results

Table 2 states electrode contact impedances obtaineddstdification sequences 1, 3and 5, phase 1. The mean value
is0,014 (©2-m?), and the standard deviationis006 (2-m?). Figure 4(a) shows a 3D-plot of the last-iteration estedat
medium resistivity distribution for identification sequenta, phase 2, whereas Fig. 4(b) presents its normaligietlied
time-history.

5. Discussion

According to the Contraction Mapping Theorem, electrodetact impedances shown on Tab. 2 represent the patrtial
state estimated on phase 1, which lies on the subspac&upposing that the resistivity distribution estimatecpbase
2 belongs to the subspaBg,, the estimation procedure, as a whole, should convergetttaia the neighbourhood of



Procedings of TMSi 2005 Technology Meets Surgery International
Copyright © 2005 by ABCM July 18-19, 2005, Sao Paulo, SP

o
@

Di de filtro iterado e ivo — 6a |
|

Legenda ;“
1e+03 -

o
IS

resistividade (Qm) 400

o
w

1200
1000

o
Ny

o i, | S 1
€ IR I LW A0\ LN M
; S | 1T
-01 V L I |
| ! ]
o I |
-0.2 "‘ v
0 10 20 30 40 o de :graqaes 60 70 80 90 100
(a) last state estimated by the filter (b) normalized residual
Figure 2. Results of identification sequence 6a
Table 2. Electrode contact impedan¢8s m?)
ELECTRODE 1 2 3 4 5 6 7 8
IMPEDANCE 0,0099 | 0,0141 | 0,0078| 0,0105| 0,0212| 0,0270| 0,0133 | 0,0181
ELECTRODE 9 10 11 12 13 14 15 16
IMPEDANCE 0,0259 | 0,01167| 0,0139| 0,0136| 0,0090| 0,0141| 0,0067 | 0,0098
ELECTRODE 17 18 19 20 21 22 23 24
IMPEDANCE 0,0158 | 0,0145 | 0,0157| 0,0105| 0,0253| 0,0187| 0,0070 | 0,0085
ELECTRODE 25 26 27 28 29 30 31 32
IMPEDANCE 0,0104 | 0,0098 | 0,0093| 0,0164 | 0,0168| 0,0133| 0,01301| 0,0058

the true state.

These hypotheses are corroborated by the behaviour of finethaesiduals, Fig. 4(b), whose actual statistics (mean
value=), 042, standard deviatior; 11) are consistent with their expected values, thus complwiitig criteria stated on
Eqgs. (17) and (18), and assuring convergence of the prosessviole. The glass-object of unknown resistivity was
properly identified on phase 2, without aaypriori information on its true position. Besides that, the ROIs we bave
no resemblance with the shape of the object. Therefored#ification process can be considered general.

It must be pointed out that the convergence of the processvis $he number of iterations shown on Tab. 1 express
how many times the iterated Kalman filter changed frolocal iteration(Jazwinski, 1970) to a global iteration. Perhaps
one reason for the reduced convergence speed is the higlit@epf the step-function perturbation, which forces the
filter to track the change with little information (only 32 teatials are used to estimate 272 parameters), a featulne of t
ill-posed inverse problem.

6. Conclusion

This work has investigated the application of the iterate@mded Kalman filter incorporating adaptive noise tech-
niques, to track impedance changes in EIT. A two-phase asomprocedure was used. Results with experimental data
from a phantom indicate that the the proposed approach camp®yed on medical applications whose main concern is
accurateness of the estimated images. Convergence wasplstwed according to statistical criteria, which is a rigve
presented in this paper. Although convergence is still st method can be improved by parallel computation and
sparse matrix techniques. In addition, implementatiorte®method using other system models should be investigated
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