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Abstract. This work proposes and evaluates the feasibility of the iterated extended Kalman filter, incorporating an adap-
tive noise technique, to solve the inverse problem of Electrical Impedance Tomography. The study aims at the improve-
ment of the method, in order to provide faster and more accurate estimates of the dielectric characteristics of a medium,
mandatory requisites in medical applications. A cylindrical phantom filled with saline solution, in which a glass-object
is immersed, provides experimental data used to validate the model. The immersion of the glass-object simulates a step-
function perturbation on the medium. Current patterns are injected and potentials are measured through brass electrodes
placed around the border of the phantom. A two-phase identification schema is employed. The approach is shown to
be effective in determining the position of the glass-object and the contact impedances of the electrodes. Convergence
criteria are used to assure correctness of the obtained estimates.
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1. Introduction

Electrical Impedance Tomography (EIT) attempts to generate images of a medium from estimates of its dielectric
properties. In order to accomplish this task, a low amplitude current pattern is applied to a body surface and the potential
at determined points of that surface is measured through electrodes. Measured potential is a function of the conduc-
tivity/resistivity distribution and overall geometric features of the object under analysis. Since potentials are known
and dielectric parameters not, the problem of estimating those properties of the medium is inverse. The conductivi-
ties/resistivities are, thus, the parameters of a model of the object; they result from the solution of the Laplace partial
derivatives equation with proper boundary conditions, which governs the phenomenon.

The potential applications of EIT in Medicine range from monitoring cyclic changes in lung condition of patients in
intensive care units to fast imaging of cerebrovascular accident (brain stroke); recent researches seek to use thorax images
from EIT to infer blood flow through the lungs. Nowadays, lungfunction monitoring is the main research area among
the EIT scientific community. The pursuit for methods capable of providing reliable and fast estimates of the conduc-
tivity/resistivity distribution in the medium has led to approaches that describe the inverse problem in dynamical form
using a state-space approach (Vauhkonen, Karjalainen and Kaipio, 1998), in which the state-vector contains dielectric
parameters to be estimated through the linearized Kalman filter. Further on, the same state-space model was used with
the extended Kalman filter (Kimet al., 2001; Kimet al., 2002; Trigo, 2001; Trigoet al., 2004).

In this work, we propose a two-phase method to solve the EIT problem based on a state-space approach to estimate
time-varying absolute conductivity/resistivity in a phantom and electrode contact impedances, using the extended iterated
Kalman filter as the estimator. The two-phase method characterizes by isolating estimation of medium parameters from
electrode contact parameters. This approach helps minimizing numerical errors that arise from the ill-posed feature of the
inverse problem.

2. Theoretical basis

2.1 Domain and Electrode Model

When a plane closed domainΓ with stationary charge and conductivity distributionσ(x, y), and purely conductive
medium is submitted to crossing steady current (Barber and Brown, 1984), the inner electrical potentialΨ is given by
Laplace equation

∇.(σ∇Ψ) = 0. (1)

At the boundary, currents are injected through electrodes;thus
[

σ ∂Ψ(σ)
∂n

= Jℓ on theℓ-th electrode
0 elsewhere at the boundary

]

(2)
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whereJℓ denotes the current density through the surface of theℓ-th electrode (Trigoet al., 2004).
In order to solve the Laplace equation, Eq. (1), with boundary conditions, Eq. (2), the closed domain is discretized

through the Finite Element Method (FEM), using triangular elements with constant conductivityσ and linear interpolation
functions (Murai and Kagawa, 1985). The minimization of thevariational principle associated with the Laplace equation
provides the local element matrices.

The electrodes are modeled as four-node elements with constant conductance, equally positioned around the border of
the discretized domain. The simplified complete model (Hua,Woo, Webster and Tompkins) is used to take into account
the high metal conductivity and the skin contact impedance.

When the local element matrices are stated in terms of the global coordinates of the mesh, the global resistivity matrix
(Trigo, 2001; Trigoet al., 2004) which includes electrode contact impedance effects, is obtained; then, the following
relation holds:

Y V = C (3)

whereY (σ) ∈ R
s× s is the conductivity matrix calculated at any particular distribution σp, V (σ) = [v1...vj ...vp],

vj ∈ R
s is a matrix containing nodal potentials corresponding to each applied current pattern, andC = [c1...cj ...cp],

cj ∈ R
s is a matrix of linearly independent bipolar diametrical current patterns (Trigoet al.). The superscriptss, m, and

ℓ stand respectively for the number of nodes, elements and electrodes of the FE mesh, in whichp current patterns are
applied.

2.2 Iterated Extended Kalman filter for EIT

A detailed discussion on Kalman filtering theory is out of ourcurrent scope. Extensive studies can be found in cited
references, such as Gelb (1979), and Jazwinsky (1970). We, however, state the main conditions necessary for applying
the filter equations.

Kalman filters demand the description of the dynamical problem in a state-space form, which includes asystem model
and anobservation model. Several mathematical models in the literature try to describe the phenomena that take place in
the cardiovascular system; so far, though, none of them havebeen able to account for all the effects (gas exchange, thorax
movement, cardiac pulsatile characteristic, varying blood and tissue dielectric properties). The same problem occurs in
the field of Atmosphere, Ocean and Earch sciences, whose models still poorly represent reality (Burgers, van Leeuwen
ans Evensen, 1998). One alternative to circumvent that difficulty is to admit arandom walkmodel.

The random walk model compensates for the lack of information on the system itself with the inclusion of a random-
noise term. In the case of EIT, the random walk model for the discrete-time evolution of the conductivityσ in the medium
is (Vauhkonen, Karjalainen and Kaipio, 1998),

σk = Φk−1σk−1 + ωk , (4)

known as thestate equation, in whichΦk−1 ∈ R
m×m is the discrete-time transition matrix andωk ∈ R

m is a zero mean
Gaussian white state noise vector whose covariance is the symmetrical positive semi-definite matrixQk ∈ R

m× m. The
indexk indicates the time-stepst = k∆t.

The observation model results from the FEM model, as follows: The domain discretization allows the measurement
of potential through the electrodes. The measured potentials vj result from the maphj : σ → vj , i. e., the statement of
the inverse problem since, from Eq. (3),

vj(σ) = hj(σ) = [Y (σ)]−1cj , j = 1, . . . , p. (5)

The discrete-timenonlinear observation modelis obtained from Eq. (5) by incorporating a noise vector inherent to any
measurement process. Thus,

vk(σk) = hk(σk) + νk, (6)

in whichνk ∈ R
ℓ is a zero mean Gaussian white measurement noise vector whosecovariance is the symmetrical positive

definite matrixRk ∈ R
ℓ× ℓ. The vectorsvk ∈ R

ℓ andhk(σk) ∈ R
ℓ represent electrode positions on the FE mesh, the

only place in which measurements can be made, for eachj = 1 . . . p current pattern.
Linearizing Eq. (6) around the last estimateσk−1 ∈ R

m, and keeping terms up to the first order, results in

vk(σk) = vk(σk−1) + Hk(σk−1) [σk − σk−1] + νk, (7)

whereHk = ∂hk

∂σ | (σk−1)
∈ R

ℓ×m is the sensitivity matrixthat corresponds to theℓ potential measurements. The
sensitivity matrix is obtained directly from the FE model (Yorkey, Webster and Tompkins, 1987).
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Defining anominal measurement(Jazwinski, 1970) as

zk , vk(σk) − vk(σk−1) + Hk(σk−1) [σk−1] , (8)

and using Eq. (7), one obtains thelinearized observation modelas

zk = Hk(σk−1)σk + νk (9)

Equations (4) and (9) define the state-space representationof the system, and the iterated extended Kalman filter can
be readily implemented. We point out that, throughout this work, it is assumed that the process noise and the measurement
noise are not correlated, i.e.E [ωkνT

k ] = 0 for all k, and that both process and measurement noise covariance matrices are
diagonal with equal and constant elements, orQk = ρ2

ωIm andRk = ρ2
νIℓ, with ρ2

ω andρ2
ν representing respectively pro-

cess and measurement noise covariances. Those hypotheses are used for the sole purpose of simplifying the calculations
involved in the iterative procedure.

The iterated extended Kalman filter differs from the extended version in the sense that the linearized observation
model of Eq. (9) is obtained thru repeatedly linearizing Eq.(6) around the last estimated state; thus, new estimates are
re-calculated using the same measurement vectorvk until there is no significative discrepancy between two consecutive
estimated states. There are several forms to present the filter equations; the one below is based in Gelb (1979) and
Jazwinski (1970), as follows:

σ̂
(−)
k = Φk−1σ̂

(+)
k−1 (10)

P
(−)
k = Φk−1P

(+)
k−1Φ

T
k−1 + Qk−1 (11)

Equations (10) and (11) represent the so calledpropagation stage1. When new measured data are available, theupdate
stagecalculates the Kalman gainGk and corrects the propagated state,σ̂

(−)
k , and error covariance matrix,P

(−)
k , through

equations

σ̂
(+)
k,j+1 = σ̂

(−)
k + Gk,j

{

vk − hk(σ̂
(+)
k,j ) + H(σ̂

(+)
k,j )

[

σ̂
(−)
k − σ̂

(+)
k,j

]}

(12)

Gk,j = P
(−)
k H

T
k (σ̂

(+)
k,j )

[

Hk(σ̂
(+)
k,j )P

(−)
k H

T
k (σ̂

(+)
k,j ) + Rk

]

−1

(13)

P
(+)
k,j+1 =

[

I − Gk,jH
T
k (σ̂

(+)
k,j )

]

P
(−)
k , (14)

that re-calculate the state and the error covariance matrixuntil

‖σ̂
(+)
k,j − σ̂

(+)
k,j−1‖p ≤ δ, (15)

where‖ · ‖ is a p-order norm andδ is empirically chosen. In this work, we use the Euclidean norm as the evaluation
parameter. The iterative estimation process can start as soon as initial stateσ0, and covariance matricesP0, Q0 andR0

are provided.

2.3 Adaptive State Noise Estimation

An important drawback for the implementation of Kalman filters in EIT is the arbitrary choice of the state noise
covariance matrixQ, once little is known about the real system dynamics. Normally, this matrix is kept constant during
the whole estimation process. Nevertheless, as is known in Kalman filter theory (Jazwinski, 1970),Q matrix exerts a key
influence upon state estimates and, consequently, upon the convergence of the process.

Theadaptive state noise estimation techniqueuses information provided by the filter itself in order to modify Qk and
prevent eventual divergence.

Kalman filter divergence is ascertained when the statisticsof the observation residuals(the difference between the
real measured value and the value calculated by the filter using the last available state estimate) are inconsistent withtheir
expected values (Rios Neto and Kuga, 1985). In practical terms, convergence is verified throughnormalized observation
residuals, defined as

rν ,







1

ℓ

ℓ
∑

j=1

[vk(σk) − v̂k(σ̂k)]j







/ζν , k = 1, 2, . . . , (16)

1The symbol “∧” indicates anestimate, while the superscripts “(-)” and “(+)” stand respectivelyfor “immediately before” and “immediately after”
arrival of a new batch of measurements.
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with ℓ andζν respectively stating the number of measurements and the standard-deviation of the measurement noise. If

E[rν ] = 0 and (17)

−3ζν ≤ rν ≤ 3ζν , (18)

during the whole estimation procedure, convergence is considered satisfactory (Fleury, 1985). The adaptive state noise
technique, presented in Jazwinski (1970), seeks toadaptthe state noise covariance matrix so as to maximize the proba-
bility that the observed and expected residual statistics are consistent. This approach does not consider the fact thatthe
residuals incorporate the uncertainty associated to the sensor, through measurement noise covariance matrixR.

Another approach, that excludes the influence of measurement noise from the above-cited maximization problem,
was proposed by Rios Neto and Kuga (1985). This method aims atobtaining a diagonal matrixQdk−1

∈ R
m×m, with

main diagonalqk ≥ 0 ∈ R
m, that promotes consistency between observed and expected statistics of the residuals. The

main idea is to describe the problem of obtainingQdk−1
as a state-space problem, usingqk as the state-vector and a

random-walk model for its dynamics, besides an auxiliary Kalman filter to predict the state.
An observation model withpseudo-measurementsto be used with the auxiliary Kalman filter is built from observed

residuals and the sensitivity matrix of the main inverse-problem. The state and observation equations for the auxiliary
Kalman filter are (Rios Neto and Kuga, 1985)

qk+1 = qk + ςk. and (19)

v
p
k = (Hp

k)qk + ηk, (20)

with p ,pseudoandv
p
k ∈ R

m the pseudo-measurement. Vectorςk ∈ R
m is zero-mean Gaussian with covariance

E[ςiς
T
j ] =

{

Qd
p
i if i = j

0 if i 6= j
(21)

Vectorηk ∈ R
m is a zero-mean noise vector such that

E[(ηk)2j ] = 4[(vk(σk) − v̂k(σ̂k))r
j ]

2
(Rk)jj + 2(Rk)2jj . (22)

The subscriptjj indicates each element of the measurement noise covariancematrix diagonal, whereas the pseudo-
sensitivity matrixHp

k and the sensitivity matrix of the original observation model comply with

(Hp
k)

j
qk = (Hk)jQdk−1[(Hk)j ]

T (23)

Estimates of the adaptive-noise vectorqk according to Eqs. (19) and (20) are obtained through a conventional Kalman
filter and used by the main filter, the iterated extended in ourcase.

2.4 Two-phase Identification Procedure

A two-phase identification procedure that separates the problems of estimating medium conductivity distribution and
medium-electrode contact impedances was proposed and evaluated by Trigoet al. (2004). The first phase concerns the
estimation of electrode contact impedances while keeping the medium conductivity distribution constant. On the second
phase, the previously estimated electrode impedances remain constant while the Kalman filter provides estimates for the
medium conductivity distribution. Phases one and two are alternately applied until the convergence criteria are fulfilled.
The reasoning behing this approach is based on theContraction Mapping Theorem.

Kalman filter can be understood as a recursive least-squaresminimization procedure (Jazwinski, 1970) that, at each
iteration, contracts the error covariance matrix trace. Ifone admits that, in a metric spaceS, the Kalman filter converges in
a neighbourhood ofσ0 ∈ S (initial estimate) of radiusr, to a vector̂σ∗ (Holtzman, 1970), when the trace ofPk is chosen
as the norm for the spaceS, each iteration on subspacesSM (M means “medium”), orSE (E means “electrodes”), ofS,
represents a contraction within this space. The sequentialcontractions on those subspaces or the repetition of contractions
within one subspace will lead to an estimate that also lies inther-vicinity of σ0, according to the Contraction Mapping
Theorem.

3. Methods

The experimental validation of the models developed was performed using a235 mm-diameter cylindrical phantom
with 32 rectangular12 mm-wide brass electrodes placed around the container’s border, keeping an equal gap between
each other. The container was filled with aNaCl solution of concentration 0,23g/l up to a26, 5mm height. Bipolar
diametrical current patterns with frequency25 kHz and amplitude2mA peak-to-peak were injected by a current mirror
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type generator, as described in Bertemes-Filho, Brown and Wilson (2001). A multimeter HP 34401A was used to measure
potentials at the electrodes (Trigo, 2001; Trigoet al., 2004). A62 mm-diameter cylindrical glass object is immersed in
the homogeneous medium, representing a step-function perturbation. We stress that neither the conductivity of this object
nor the conductivity distribution of the saline solution are knowna priori.

The phantom is represented by a circular domain, which is discretized by the FEM, as seen on Fig. 1, inm = 272
elements, from whichℓ = 32 elements have four nodes; the total number of nodes iss = 201. The32 elements with four
nodes represent electrodes, modeled using the simplified complete model (Hua, Woo, Webster and Tompkins, 1993).

The iterated extended Kalman filter with adaptive state noise is used to estimate electrode contact impedances, and to
identify the position of the glass object, in two phases, as described in section 2.4. The 240 elements that comprise the
medium are grouped in 32 ROIs (Trigo, 2001), according to Fig. 1. The identification of the resistivities on those regions
is one of the phases; the other refers to the identification ofthe 32 impedances at the interfaces between the saline medium
and the metallic surface of the electrodes.
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Figure 1. 272-element mesh with 32 ROIs

The initial parameters used on the identification procedureare presented in Table 1.

Table 1. Initial parameters for phases 1 and 2

identification sequence P0 Q R
nr. phase δ iterations
1 1 (electrode) 0,30 96 3, 5 × 10−4I32 7, 8 × 10−4I32 2, 5 × 10−3I32

2 2 (medium) 0,30 96 3, 5 × 10−1I32 7, 8 × 10−3I32 2, 5 × 10−3I32

3 1 (electrode) 0,30 96 3, 5 × 10−4I32 P32 2, 5 × 10−4I32

4 2 (medium) 0,30 320 3, 5 × 10−1I32 0, 4 × P32 2, 5 × 10−4I32

4a 2 (medium) 0,30 320 3, 5 × 10−1I32 0, 4 × P32 2, 5 × 10−4I32

5 1 (electrode) 0,80 96 3, 5 × 10−4I32 0, 4 × P32 2, 5 × 10−4I32

6 2 (medium) 0,20 96 3, 5 × 10−1I32 0, 4 × P32 2, 5 × 10−4I32

6a 2 (medium) 0,36 96 3, 5 × 10−1I32 0, 4 × P32 2, 5 × 10−4I32

4. Results

Table 2 states electrode contact impedances obtained afteridentification sequences 1, 3 and 5, phase 1. The mean value
is 0, 014 (Ω ·m2), and the standard deviation is0, 006 (Ω ·m2). Figure 4.(a) shows a 3D-plot of the last-iteration estimated
medium resistivity distribution for identification sequence 6a, phase 2, whereas Fig. 4.(b) presents its normalized residual
time-history.

5. Discussion

According to the Contraction Mapping Theorem, electrode contact impedances shown on Tab. 2 represent the partial
state estimated on phase 1, which lies on the subspaceSE . Supposing that the resistivity distribution estimated onphase
2 belongs to the subspaceSM , the estimation procedure, as a whole, should converge to a state in the neighbourhood of
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Distribuição de resistividade: filtro iterado e adaptativo − seqüência 6a

Legenda
   1e+03

     800
     600
     400
     200

−0.15
−0.1

−0.05
 0

 0.05
 0.1

 0.15−0.15
−0.1

−0.05
 0

 0.05
 0.1

 0.15

 0

 200

 400

 600

 800

 1000

 1200

resistividade (Ωm)

(a) last state estimated by the filter

−0.3

−0.2

−0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  10  20  30  40  50  60  70  80  90  100

re
sí

du
o 

no
rm

al
iz

ad
o

no. de iterações

(b) normalized residual

Figure 2. Results of identification sequence 6a

Table 2. Electrode contact impedances(Ω · m2)

ELECTRODE 1 2 3 4 5 6 7 8
IMPEDANCE 0,0099 0,0141 0,0078 0,0105 0,0212 0,0270 0,0133 0,0181
ELECTRODE 9 10 11 12 13 14 15 16
IMPEDANCE 0,0259 0,01167 0,0139 0,0136 0,0090 0,0141 0,0067 0,0098
ELECTRODE 17 18 19 20 21 22 23 24
IMPEDANCE 0,0158 0,0145 0,0157 0,0105 0,0253 0,0187 0,0070 0,0085
ELECTRODE 25 26 27 28 29 30 31 32
IMPEDANCE 0,0104 0,0098 0,0093 0,0164 0,0168 0,0133 0,01301 0,0058

the true state.
These hypotheses are corroborated by the behaviour of normalized residuals, Fig. 4.(b), whose actual statistics (mean

value=0, 042, standard deviation=0, 11) are consistent with their expected values, thus complyingwith criteria stated on
Eqs. (17) and (18), and assuring convergence of the process as a whole. The glass-object of unknown resistivity was
properly identified on phase 2, without anya priori information on its true position. Besides that, the ROIs we use have
no resemblance with the shape of the object. Therefore, the identification process can be considered general.

It must be pointed out that the convergence of the process is slow. The number of iterations shown on Tab. 1 express
how many times the iterated Kalman filter changed from alocal iteration(Jazwinski, 1970) to a global iteration. Perhaps
one reason for the reduced convergence speed is the high amplitude of the step-function perturbation, which forces the
filter to track the change with little information (only 32 potentials are used to estimate 272 parameters), a feature of the
ill-posed inverse problem.

6. Conclusion

This work has investigated the application of the iterated extended Kalman filter incorporating adaptive noise tech-
niques, to track impedance changes in EIT. A two-phase estimation procedure was used. Results with experimental data
from a phantom indicate that the the proposed approach can beemployed on medical applications whose main concern is
accurateness of the estimated images. Convergence was accomplished according to statistical criteria, which is a novelty
presented in this paper. Although convergence is still slow, the method can be improved by parallel computation and
sparse matrix techniques. In addition, implementations ofthe method using other system models should be investigated.
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