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Abstract. New approaches of particle swarm optimisation algorithm based on Gaussian and Cauchy distributions to 
adjust the control points of B-spline neural networks are proposed. B-spline networks are trained by gradient-based 
methods, which may fall into local minimum during the learning procedure. To overcome the problems encountered by 
the conventional learning methods, particle swarm optimisation  a swarm intelligence methodology  can provide a 
stochastic search for global optimisation of B-spline networks for nonlinear system identification. Simulation results 
show the potential of the proposed optimisation with particle swarm of B-spline networks for the identification of 
Rössler system. 
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1. Introduction  
 

The problem of nonlinear function approximation and system identification has been studied in many fields of 
Science by many researchers and can be solved by various mathematical approaches. The conception of mathematical 
models for the representation of complex systems of time series is an excellent procedure and with practical 
applications. However, in general, the construction of adjusted mathematical models for the engineering intentions is 
not a simple task. In the last decades, diverse conceptions of algorithms for modeling and identification of complex 
dynamics systems have been proposed in literature, such as: frequency methods, techniques based on estimates of 
Wiener models, Hammerstein, bilinear and Volterra, nonlinear regression, wavelets and recursive identification (Ljung 
1987; Haber and Unbehauen 1990). An excellent approach, between much others, for mathematical representation of 
dynamics systems with complex or chaotic behavior it is of the neural networks. 

A relevant approach is to find the best approximation with respect to certain class of basis functions for neural 
networks representation. In this case, there are many possible choices of basis functions, such as radial basis function, 
associate memory networks, wavelets, and B-spline function.  

The main advantage of the B-spline functions over other radial functions e.g., the Bezier curve, is the local control 
of the curve shape, as the curve only changes in the vicinity of a few control points that have been changed (Newmann 
and Sproull, 1979). A B-spline neural network (BSNN) consists of the piecewise polynomials with a set of local basis 
functions to model an unknown function for which a finite set of input-output samples are available.  The performance 
of the identification depends largely of an optimisation algorithm for the training procedure of BSNN in order to avoid 
any possible local minima. In this Letter, we propose a modified particle swarm optimisation (PSO) approach to train 
the BSNNs. Simulation results for the identification of a chaotic temporal series show the feasibility and effectiveness 
of the proposed approach. 

The paper is organized as follows. Basic concepts of B-spline neural networks are presented in section 2. In section 
3, the design procedure of new PSO approaches is proposed. In the section 4, the simulation results of identification of a 
nonlinear system are presented and discussed. The conclusions and futures works are commented in the section 5. 

 
2. B-splines neural networks 
 

BSNN is introduced as a class of one-hidden-layer feedforward neural networks composed of B-spline functions. 
Each basis function is composed of q polynomial segments. There exists a simple and stable recursive relationship for 
evaluating the membership of a B-spline basis function of order k, 
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where  is defined as the j-th univariate basis function of order q and )(⋅j

qN jλ  the j-th knot and Ij is the j-th interval. A 

output of neural network is 
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where xk and o  are the inputs and output of network, respectively, wj is the weight attached to the j-th basis function 

and  is given by the recursive form (2). The index j is associative with the region of local support 

, whereas the index q indicates the order of the basis functions (Harris et al., 1993). 
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The quality of approximation depends on the placement of knots of B-spline functions. The objective of 
optimisation of BSNNs by PSO is determination of the knots of each B-spline basis functions. However, the number of 
basis functions in this work is choice of user. 
 
3. Particle swarm optimisation for training BSNN 

 
PSO is a kind of evolutionary algorithm based on a population of individuals and motivated by the simulation of 

social behaviour instead of the survival of the fittest individual. It is a population-based evolutionary algorithm. Similar 
to the other population-based evolutionary algorithms, PSO is initialised with a population of random solutions. Unlike 
the most of the evolutionary algorithms, each potential solution (individual) in PSO is also associated with a 
randomised velocity, and the potential solutions, called particles, are then “flown” through the problem space. 
 Each particle keeps track of its coordinates in the problem space, which are associated with the best solution 
(fitness) it has achieved so far. This value is called pbest. Another “best” value that is tracked by the global version of 
the particle swarm optimiser is the overall best value, and its location, obtained so far by any particle in the population. 
This location is called gbest. The particle swarm optimisation concept consists of, at each time step, changing the 
velocity (accelerating) of each particle flying toward its pbest and gbest locations (global version of PSO). Acceleration 
is weighted by random terms, with separate random numbers being generated for acceleration toward pbest and gbest 
locations, respectively. The procedure for implementing the global version of PSO is given as follows (Krohling et al., 
2002): 
 
Step 1. Initialisation: Initialise a population (array) of particles with random positions and velocities in the n 

dimensional problem space. 
Step 2. Evaluation: For each particle, evaluate its fitness value. 
Step 3. Comparison 1: Compare each particle’s fitness evaluation with the particle’s pbest.   If current value is better 

than pbest, then set pbest value equal to the current value and the pbest location equal to the current location in n-
dimensional space. 

Step 4. Comparison 2: Compare fitness evaluation with the population’s overall previous best.  If current value is better 
than gbest, then reset gbest to the current particle’s array index and value.  

Step 5. Updating: Change the velocity and position of the particle according to equations (4) and (5), respectively: 
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Step 5. Stop criterion: Loop to step 2 until a criterion is met, usually a sufficiently good fitness or a maximum number 

of iterations (generations). 
 

where  stands for the position of the i-th particle, [ T
21 ,..., , iniii xxx=x ] [ ]T21 ,..., , iniii vvv=v  stands for the velocity of the 

i-th particle and represents the best previous position (the position giving the best fitness value) 
of the i-th particle. The index g represents the index of the best particle among all the particles in the group. Variable w 
is the inertia weight, c and  are positive constants; d( ) and D( ) are two random functions in the range [0, 1]. 
Particles’ velocities on each dimension are clamped to a maximum velocity Vmax. If the sum of accelerations would 
cause the velocity on that dimension to exceed Vmax, which is a parameter specified by the user, then the velocity on 
that dimension is limited to Vmax. Vmax is an important parameter. It determines the resolution with which the regions 
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around the current solutions are searched.  If Vmax is too high, the PSO facilitates global search, and particles might fly 
past good solutions.  If Vmax is too small, on the other hand, the PSO facilitates local search, and particles may not 
explore sufficiently beyond locally good regions. 
 The first part in equation (4) is the momentum part of the particle. The inertia weight w represents the degree of the 
momentum of the particles.  The second part is the “cognition” part, which represents the independent thinking of the 
particle itself.  The third part is the “social” part, which represents the collaboration among the particles. The constants 

 and  represent the weighting of the “cognition” and “social” parts that pull each particle toward pbest (pi) and 
gbest (pg) positions.  

1c 2c

 In this work, new approaches to PSO, named fast PSO are proposed which are based on the studies of mutation 
operators in fast evolutionary programming (Krohling et al., 2002). The aim is to modify the equation (4) of the 
conventional PSO (case 1) with d( ) and D( ) based on uniform distribution to use it with Gauss or Cauchy distribution 
in the range [0, 1].  

  
4. Identification of a Rössler’ chaotic system 
 
 Chaos’ theory studies pertinent phenomenon to the nonlinear dynamic systems (any process that evolve with the 
time) and that presents complex behavior to be treat mathematically. The theory of the chaos studies the unexpected 
phenomenon apparently, in the search of hidden standards and simple laws that conduct the complex behaviours. 
However, this study if became effectively reasonable from the decade of 1960, when the computers had started to 
possess reasonable graphical capacity and of processing, giving to the physicists and mathematicians the power to 
discover answers for basic questions of the science in general way, that before were obscure.  
 The nonlinear systems, had appeared from the chaos’ theory that supplies to an explanation, many times adequate, 
(through formulas and equations), to many behaviors current in the nature, such as: natural phenomenon (populations, 
turbulence, fluid movement, and cloud formation), complex behaviors in electric circuits, behavior of stock exchange 
and economy, nonlinear systems and variant in the time, telecommunications, system control, dynamic behavior of the 
cardiac beatings, among others. 
 The behavior of the chaotic systems can present the great sensitivity in relation to the initial conditions that are 
applied. Although, to be a difficult task to describe the behaviors of a chaotic system, in probabilistic terms this 
situation can be treated and some paradigms have been presented in literature for this purpose.  
 In this work, it considers the nonlinear Rössler system (Rössler, 1976). The german scientist O. Rössler proposed a 
chaotic attractor composed by nonlinear differential equations given by, 
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which exhibits a chaotic behavior at the popular parameters values (a, b, c) = (0,36; 0,40; 4,50). This behavior is 
illustrated in figure 1. 

 
Figure 1. Rossler’ attractor system for (a, b, c) = (0.36, 0.40, 4.50). 



 
 The processes identification is a procedure to identify a model of an unknown process, for intentions of forecast 
and/or understanding of the dynamic behavior of the dynamic system. A model describes reality in some way, and 
system identification is the theory of how mathematical models for dynamical systems are constructed form observed 
data. Typically, a parameterized set of models, a model structure, is hypothesized and data is used to find the best model 
within this set according to some criterion. The choice of model structure is guided by prior knowledge or assumptions 
about the system that generated the data. When little prior knowledge is available it is common to use a black-box 
model. A black-box model is a standard flexible structure and it can be used to approximate a large variety of different 
systems. Neural network models have proven to be successful non-linear black-box model structures in many 
applications. 
 The objective of this work is the identification of x-coordinate time series by BSNN using PSO. A measure of the 
BSNN accuracy can be found by evaluating the mean squared error (MSE), 
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where i is the index of the m points over which the MSE is computed, oj is the actual output (x-coordinate) of the system 
at the j-th input vector, and o  is the estimated output of the BSNN at the j-th vector input. The objective of PSO is the 

minimization of MSE. 
jˆ

Based on previous experience with particle swarm optimisation (trial and error, mostly) led us to set the acceleration 
constants  and  equal to 0.2; Vmax set to 20% of the dynamic range of the variable on each dimension, w=0.3 and 
the number of particles to 10. The stop criterion of PSO is 15 generations. The range of space search of BSNN 
parameters by PSO is [0.001 1]. The inputs of BSNN are [xk-1 xk-2 xk-3] and the estimated output is =xk+1 (Nonlinear 

AutoRegressive model in serie-parallel conception). The data of estimation phase of process mathematical model are 
constituted of samples 1 to 1000. However, the samples 1001 to 1500 are utilised in validation phase of the obtained 
mathematical model. 

1c 2c

jô

PSO approaches optimise three knots of order 2 for each input of BSNN, e.g., the total of optimised parameters is 9. 
The matrix weights w of basis function is obtained by pseudo-inverse of Penrose-Moore. 
 PSO approaches are compared in statistical terms and the results are summarised in Tables 1 and 2. Table 1 shows 
that the PSO(1) to PSO(7) were outperformed by PSO(9) based on mean, maximum and standard deviation of MSE. It 
also shows that the PSO(9) was quite robust was able to deal with BSNN optimisation. However, the best result 
(minimum) of MSE was presented by PSO(8). Figure 2 shows the best result obtained by PSO(8) with MSE equal to 
0,002453 and 0,002231 for estimation and validation phases, respectively. Tables 1 and 2 shows that PSO(4) was 
trapped in to local optima and failed to explore new areas.  

 

  
(a) time series  
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                                                               (b) estimation error 

Figure 2.  Best result for BSNN optimization (prediction one step ahead) using PSO(8). 
 
 

Table 1. Results obtained in estimation phase by the minimisation of MSE using PSO (it is adopted the particle with 
best MSE after the accomplishment of 10 experiments) 

PSO distribution of generation of 
random numbers  

 
MSE (estimation phase)  

type  d( ) D( ) mean minimum 
(best) 

maximum 
(worst) 

standard 
deviation 

1 Uniform Uniform 0.003426 0.002719 0.004165 0.000654 
2 Cauchy Uniform 0.003284 0.002805 0.004285 0.000580 
3 Uniform Cauchy 0.002940 0.002708 0.003234 0.000207 
4 Cauchy Cauchy 0.004616 0.002643 0.012163 0.004219 
5 Gaussian Uniform 0.002871 0.002597 0.003084 0.000195 
6 Uniform Gaussian 0.003142 0.002562 0.004126 0.000611 
7 Gaussian Gaussian 0.002917 0.002737 0.003185 0.000191 
8 Gaussian Cauchy 0.004302 0.002453 0.007781 0.002036 
9 Cauchy Gaussian 0.002715 0.002516 0.002884 0.000142 

 
 
Table 2. Results obtained in validation phase by the minimisation of MSE using PSO (it is adopted the particle with best 

MSE after the accomplishment of 10 experiments) 
PSO distribution of generation of 

random numbers  
 

MSE (validation phase)  

type  d( ) D( ) mean minimum 
(best) 

maximum 
(worst) 

standard 
deviation 

1 Uniform Uniform 0.002579 0.002473 0.002665 0.000085 
2 Cauchy Uniform 0.002714 0.002552 0.002858 0.000110 
3 Uniform Cauchy 0.002540 0.002446 0.002613 0.000079 
4 Cauchy Cauchy 0.004151 0.002355 0.010869 0.003756 
5 Gaussian Uniform 0.002597 0.002363 0.002789 0.000170 
6 Uniform Gaussian 0.002547 0.002291 0.002917 0.000252 
7 Gaussian Gaussian 0.002593 0.002490 0.002757 0.000101 
8 Gaussian Cauchy 0.002687 0.002231 0.003036 0.000308 
9 Cauchy Gaussian 0.002470 0.002288 0.002624 0.000129 

 
 
 

      



5. Conclusion and future works 
 

 In the last years of interest in the development of strategies of nonlinear identification of chaotic systems 
reappeared. This interest is motivated by diverse factors, such as: (i) advances of the nonlinear systems theory, causing 
applicable methodologies of project to an extension of control nonlinear problems; (ii) development of efficient 
identification methods for the treatment of empirical nonlinear models; (iii) continued development of the capacities of 
software and the hardware, becoming possible the incorporation of complex nonlinear models in control systems 
design.  
 The behavior of the chaotic systems can present the great sensitivity in relation to the initial conditions that are 
applied. Although, to be a difficult task to describe the behavior of a chaotic system, in probabilistic terms this situation 
can be treated and some paradigms have been presented in literature for this purpose. The behavior of a chaotic system 
can be evaluated through the configuration of nonlinear identification methodologies. The methodologies that can be 
used include the fuzzy systems, neural networks, genetic algorithms, among others approaches.  
 In this work, new approaches of particle swarm optimisation algorithm based on Gaussian and Cauchy distributions 
to adjust the control points of B-spline neural networks were proposed. B-spline networks are trained by gradient-based 
methods, which may fall into local minimum during the learning procedure. 

PSO using uniform probability distribution suffers form easy entrapment when the particles lie in a locally optima 
region. In this Letter any new PSO approaches has been introduced for BSNN learning. In this context, new PSO 
approaches using the combination of other probabilities distribution theories, e.g., Gaussian and Cauchy seem to be 
promising to escape form local minima. The use of Cauchy distribution in PSO could be useful to escape of local 
minima, while the Gauss distribution could provide a faster convergence in local searches. 

Simulation results show the potential of PSO for the BSNNs optimisation in systems identification. Wolpert and 
Macready (1997) have already proved that there is no generic optimisation algorithm that will work better in general on 
all problems. In this context, more works need be done to test the new PSO approaches on benchmark optimisation 
problems. 
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