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Preface

This book contains articles presented at the Third International Symposium on Solid Mechanics,
held in Floriandpolis, Brazil, 25-27 May 2011. The International Symposium on Solid Mechanics —
MecSol — is the first Brazilian series of conference fully dedicated to this branch of the engineering
science. It had its first edition in 2007 in Sao Paulo, then in Rio de Janeiro in 2009.

The MecSol Symposium is organized under the aegis of the Solid Mechanics Committee of the
Brazilian Society of Mechanical Sciences and Engineering. The present book reflects the effort of the
committee and authors to spread in the technical society knowledge in the field of Solid Mechanics.

As in the previous books, this edition features articles with focus on fundamental and applied
issues, including computational, theoretical and experimental contributions, drawing upon the various
branches of engineering science and the allied areas within applied mathematics, materials science,
structural engineering and applied physics.

The editors would like to thank all the contributors to this volume for their effort in producing such
fine articles. We also would like to thank Renato Yamassaki for formatting the whole book. Finally, we
would like to acknowledge the support of the Brazilian Society of Mechanical Sciences and Engineering
and the Department of Mechanical Engineering from the Federal University of Santa Catarina to this
event.

Eduardo Fancello
Paulo de Targo R. Mendonga
Marcilio Alves
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A study of macroscopic failure of laminates with phases
exhibiting softening hyperelasticity using a two-scale
asymptotic homogenization method

A. R. Aguiar, L. D. Pérez-Ferndndez

Department of Structural Engineering, Sao Carlos School of Engineering,
University of Sao Paulo, Brazil. Av. Trabalhador Séo carlense 400, Centro,

18566-590
Sao Carlos — SP, Brazil

Abstract

In classical hyperelastic models, the strain energy density becomes unbounded as the strain becomes large. In
reality, defects, such as voids and microcracks, are created and accumulate inside a body as the strain becomes
large, reducing its strength to further deformation. Also, no real material can sustain large enough strains.
Based on these considerations, we investigate a class of softening hyperelastic materials that, while preserving
classical hyperelastic behavior for moderate deformations, captures softening behavior of materials at large
strains. It is based on the introduction of a limiter for the strain energy, which quantifies the amount of defor-
mation the material can undergo hyperelastically before failing. Softening hyperelasticity has been successfully
applied to various problems of interest in engineering and biomedicine that involve cavitation and fracture. To
the best of our knowledge, the macroscopic failure induced by the microscopic softening of softening hyperelas-
tic constituents of composite materials has not been studied yet. We adopt a homogenization-based approach
by applying the two-scale asymptotic homogenization method to predict the macro-failure of laminate com-
posites with softening hyperelastic phases; in particular, we investigate bilaminates under uniaxial deformation
parallel to the lamination direction.

Keywords: hyperelasticity, softening, composites, asymptotic homogenization, material failure.

1 Introduction

Material failure is usually addressed via the phenomenological approach of damage mechanics. From
the theoretical point of view, such an approach is known to be very flexible, as it allows considering
physical processes that cause macroscopic damage at small length scales. In practice, however, the
calibration of damage model via experimental procedures is anything but simple, as measuring relevant
damage parameters and other technicalities are typically complex. Thus, alternative theories describing
material failure in ways simpler than traditional damage mechanics are desirable [1-4].
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2 A.R. Aguiar and L.D. Pérez-Fernandez

An alternative theory is based on an atomistic analysis of fracture, linking material debonding
to atomic separation. In [5, 6], the atomistic and continuum material descriptions are combined to
simulate the failure process. The ensuing method applies the Cauchy-Born rule linking microscopic
and macroscopic length scales to certain empirical potentials, which include the possibility of full
atomic separation. Such continuum-atomistic linkage leads to the formulation of a macroscopic strain
energy function, which allows for softening and strain localization. The method is very effective at
small length scales, where purely atomistic analysis becomes computationally intensive. However,
addressing macroscopic damage becomes unpractical as it involves the numerical averaging of the
inter-atomic potentials over a representative volume.

An alternative to the continuum-atomistic method addressing macroscopic failure is the so-called
softening hyperelastic model presented in [7]. This is a phenomenological model in which softening is
controlled by a limiter for the strain energy that quantifies the amount of deformation the material can
undergo hyperelastically before failing. Therefore, any classical hyperelastic model can be enhanced
by including softening in it, so that moderate strains will produce hyperelastic deformations while
large ones will cause failure via hyperelastic softening.

In the present contribution, we use the softening hyperelastic model to investigate a composite
material formed by microscopically-arranged hyperelastic constituents that can undergo softening.
Can macroscopic failure of such material be described via a homogenization-based approach? This
work is an attempt to address such a question, which has the potential of theoretically control the
macro-failure in terms of the parameters describing phase failure. Here, the two-scale asymptotic
homogenization method described in [8,9] is applied to such endeavor.

2 Finite elastostatics

Let B C R? be the region occupied by a heterogeneous body with volume |B| and smooth boundary
0B. Here, a material point of the body coincides with a point X € B in the reference configuration.
Let o : B — R? be a deformation field acting on the body. The corresponding displacement field and
deformation gradient are given by, respectively, u (X) =z (X) — X and

F =grade =1 +gradu, X € B, (1)

where grad : R® — R® @ R? is the gradient operator for vector fields, and 1 is the identity tensor.
Then, F',gradu : B — Lin, where Lin is the set of second-order tensors.
The body is in equilibrium under the action of a body force b: B — R?, that is,

divP+b=0, X e€B, (2)

where div : Lin — R3 is the divergence operator for tensor fields, and P : B — Lin is the first Piola-
Kirchhoff stress tensor. In a rectangular Cartesian coordinate system fixed at the origin, definition (1)
and equilibrium equation (2) are written as
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Study of macroscopic failure of laminates using two-scale asymptotic homogenization method 3

Fij— an —5ij+87)(j, XeB (3)
and
IP;;
i — Y, X B7 4
e +b,=0 € 4)

where ¢,j € {1,2,3}, and Fj;, z;, Xj, 0;5, w;, P;;, and b; are the components of F, x, X, 1, u, P and
b, respectively. In (4) and, unless stated otherwise, in what follows, the usual summation convention
over repeated lower case Latin subscripts is adopted.

The constitutive behavior of the body is formally stated by an endomorphism over Lin such that
F — P (F). The realization of such constitutive law will depend on the particularities of the material
to be studied. In this work, the body is assumed to behave hyperelastically, that is, there exists a
stored energy function W : Lin — R, F — W (F), such that

oW
Pi=gp XEB (5)

Substitution of (5) into the equilibrium equations (4) yields

o0 oW

b; =0, X Ba
X, {6&,} + 0 € (6)
which, together with (1) and an appropriate boundary condition, say,

u=u, X €0B, (7)

where @ : 0B — R3 is a known displacement field over the boundary, defines a boundary value problem
for the determination of the displacement u : B — R3.

A well-known particular case of (7) corresponds to the uniform displacement w = (F — 1) X, where
F=(F)and (-) = ‘—él J (+) dX is the average operator over the body. In this case, a usual practice
is to take u = @ + u’ where w’ = 0 on the boundary. Then, it follows from (1) that F = F + F’,
where F' = gradu’ and (F') = 0.

3 Softening hyperelasticity

In classical hyperelastic models, the stored energy function W grows unbounded as the deformation
gradient tends to infinity:
|IF|| = 0o =W — oo, (8)

where || - || is an appropriate norm. This is an ideal elastic behavior since no real material is able to
undergo increasingly large deformations without exhibiting irreversible changes due to the formation
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4 A.R. Aguiar and L.D. Pérez-Fernandez

and accumulation of micro-defects. To account for more realistic behavior, we introduce ¢ : Lin — R
which keeps the classical hyperelastic behavior predicted by W under moderate deformations and
tends to a limiting constant value ® € R accounting for material failure as the deformation becomes
large, that is,

|IF|| = o0 =9 — . (9)

An expression for ¢ that satisfies (9) is proposed in [7] and is given by

W
@[J:<I>—<I>exp{—}. (10)
P
Observe from (10) that the following properties hold:
W=0==0, (11)
W — 00 =1 — @, (12)
W<d=yp~W. (13)

Observe from the exposition above that (12) satisfies (9). Property (13) follows by taking the power
series expansion of (10) and clearly states that classical hyperelastic behavior is kept. By replacing W
with ¢ in (5), we obtain

oy oW w
P = 5F _aFl--eXp{_cp}' (14)

4 Composites

In this work, we consider a heterogeneous body composed by N distinct phases that are periodically
distributed inside the body. This is the case, for instance, of a bilaminate composed of two types
of lamina with an alternating stacking sequence. Each phase occupies a region B, with volume |B,|
and boundary 0B,., such that UqI»V=1 B, =B and B.(\Bs =0, Vr,s =1,2,..., N,r # s. We use the
characteristic function x, : B — {0,1} to identify each phase in the composite material. Assuming
local softening hyperelastic behavior, phase r is modeled by an energy function v, : Lin — R defined
as in (10), that is, related to a classically-hyperelastic energy function W, : Lin — R and with the
corresponding failure energy ®,. Then, the stored energy density ¢ : Lin x B — R is a piecewise
function over B defined by

v =1v.xr, X E€EB. (15)

Substituting (15) in (14) and then substituting the resulting expression in (4), we obtain the equi-
librium equations
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9 | Oy

— +b=0, Xe€B. 16
v | 5e] +o (16)
For the formulation of the problem to be complete, boundary conditions of the form (7) and con-
tinuity conditions for tractions and displacements on the interfacial surfaces I'y; = 9B, () 0Bs,
Vr,s =1,2,..., N, r # s, must be imposed. The ideal case of perfectly bonded phases implies continuity
of tractions and displacements across the interfaces, that is,

[Pivily = 0,[u]y, =0, (17)

where HFN denotes the jump operator across interface I',s, and v is the unit normal vector to I';..

The solution of the boundary value problem given by (16), (17) and (7) is sought in a way similar
to the one employed for linear composites, that is, we take w = y,u, to be a piecewise linear vector
field with w, = @ + u,. and y,ul. = w'. The corresponding deformation gradient is F' = x,.F, with
F, € Lin constant, F, = F + F, with F' = x, F, and F, = gradu/.. With such considerations, we
ensure compatibility of deformation. Also, note that (F') = 0 and (F) = F as above.

5 Two-scale asymptotic homogenization

Now, assume that the characteristic sizes of the phases in the heterogeneous body are small when
compared to a characteristic size of the composite. For instance, the thicknesses of laminae in a lam-
inate are much smaller than the thickness of the laminate. This means that the constitutive behav-
ior of the composite exhibits rapid oscillations. Moreover, if the phases are periodically distributed
inside the composite, that is, the composite can be reproduced by replicating some periodicity cell
Q inside the region B, so are such oscillations. In the case of a bilaminate, €2 is formed by any
two consecutive laminae. The ratio of the characteristic size of {2 to the characteristic size of the
composite is a small geometric parameter € > 0. In order to account for these periodic oscillations,
we define the local “fast” variable Y = £~ !X. Using this definition, the average operator becomes
()= ﬁfgﬂ()dX = ﬁfsﬂ)dY

The solution u of the boundary value problem defined by (1), (7), and (14)-(17) is sought as a
two-scale asymptotic expansion in powers of e:

u=u® +eu® +2u® + 0 (%), (X,Y)eBxQ, (18)

where the (macroscopic) displacement field u(® : B — R? depends only on X, while the other
coefficients u(” : B x Q@ — R3, i > 1, depend on both variables X and Y and are Q-periodic in Y.
Notice that such Q-periodicity of u(¥) implies that (gradu(®) = 0.
Substitution of ( 18)6 (in)to (1)6?n)d substitution of the resulting expression into (5) together with the
. 1a(-
d

. 9 _ .
chain rule 7% ()= ox, tzov yields
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6 A.R. Aguiar and L.D. Pérez-Fernandez

F=F9 4 :FV) 1 0(?), (X,Y)eBxQ (19)
and
P=P9 +c:PM 1 0(?), (X,Y)eBxQ, (20)

where F(i)7 PY:BxQ— Lin, i =0, 1. Using rectangular Cartesian coordinates, the components of
F(O)7 F(l), and P are given by, respectively,

oul® ot

0) _ s i
Fy7 = 0ij + X, + 7 (X,Y) e BxQ, (21)
) (2)
1) 8ui aul
F. = + , (X, Y)eBxQ (22)
00X, 0Y; ’
and
PO— 2 xy)eBxqQ. (23)
oFY
vy 1F@)

As the coefficients u(® are Q-periodic in Y, so are F and PO, Moreover, averaging of (19) with
(21) yields

F=(F) — <F<°)> =1+ gradu(®. (24)

e—0t

Substitution of both (20) and (18) into the perfect bonding conditions for tractions (17); and
displacements (17) yield, respectively,

[[Pi(f)yj]]m —0, [[Pg)yj]]r —0, (25)

s

and

o], <o [0], o[s], -o 2

rs rs s

Also, by substituting (18) into the boundary condition (7), we find that

u® =a,uV =0,u? =0,(X,Y) € 9B x 9. (27)
Next, substitution of (20) into the equilibrium equation (16) together with the application of the

chain rule yields
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*18]3"(;) 0 aPi(;)) api(jl) b;| +0()=0, (X,Y)EBxQ 28
anj+€ 8Xj+8yj+z+(5)—,(,)e x Q. (28)

Now, substitute both (23) and (21) into (28), group the terms together by the powers of e, and
equate to zero the resulting coefficients to obtain a sequence of Partial Differential Equations (PDEs)
for the determination of the unknowns «(® in (18). In particular, the PDE corresponding to the first
member of the sequence is

apL
v]
9,

=0, (X,Y)eBxQ. (29)

Since P(¥ and F© are given by, respectively, (23) and (21), we can use the PDE (29), the perfect
bonding conditions (25); and (26)s, and the boundary condition (27)s, to define a local problem for
the determination of w(!). Observe from (21) that this local problem for u(*) involves knowledge of
gradu(® | which is obtained below. Thus, in fact, we have a family of local problems defined in terms
of gradu(®).

In order to obtain the macroscopic displacement u(?), we apply the average operator onto the
coefficient of €% in (28) and recall from above that P are Q-periodic in Y. We then obtain that

2(Py)

where,

<PZ.(]Q)> - % , (X,Y)eBxQ. (31)
K F(0)

To obtain (31), we have used (21) together with the macroscopic homogeneity condition (F;) (P;;) =
(Fi; Pi;) presented by Hill in [10]. Relation (31) is the effective law of the composite and represents
the macroscopic realization of the local constitutive relation (5). Expression (31) can also be written
as

5 Oy
Pi' = Cp
1= oF,

; (32)
F=F+F/

where P = <P(O)>, cr = {xr) = I\%I" Zivzl ¢ = 1, F', is the restriction of gradu(") to phase r, and

u™M) is the solution of the local problem.
The system of PDEs (30), the effective law (31), or, (32), together with F = <F(O)> =1+

gradu(®, and the boundary condition (27); define the macroscopic, or, homogenized problem for the
determination of u(©).
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8 A.R. Aguiar and L.D. Pérez-Fernandez

In the following example, we obtain the effective laws of periodic bilaminates by prescribing F' =
1+gradu(?), solving the corresponding local problems to obtain F’ = gradu(!), and then substituting
F + F =1+ gradu® + gradu into the effective law (32).

6 Example: homogenization of periodic bilaminates

Consider a two-phase (N = 2) laminate composite formed of periodically alternating homogeneous
laminae along the Ys-direction. The periodicity cell of such a bilaminate is Q = Q; |2, where, for
a given ¢; € (0,1), 23 = (0,1) x (0,¢1) x (0,1) e Q2 = (0,1) X (¢1,1) x (0,1). Considering a fixed
orthonormal basis (e;, ez, e3) for the rectangular Cartesian coordinate system, continuity of both
displacement u™® and traction PZ-(QO) = e; - P©e, across the contact surface T'1o = 9O o =
{Y :Y1,Y3 €[0,1],Y2 = ¢1} are guaranteed by assuming that the laminae are perfectly bonded to
each other.

Based on the exposition above, it is reasonable to assume that Fi(20) depend on the lamination
direction only, which is parallel to the coordinate ¥ = Y5. Thus, FO = Xngo) + ngg‘” with
FO = F+ F. r =12 where F = 1+ gradu(®, F/, = 0, j # 2, and F}, = ag—;) which is
to be obtained from the local problem. Then, recalling that u( is Q-periodic, it follows from the
application of the average operator to F’ that <F’> = c1F + coF}, = 0. Since ¢y = 1 — ¢;, we have
that Fj, = —%F/l Denoting G = F'}, we have that F' = G (Xl — %XQ). It then follows form the
exposition above that the components G;; of G are such that G;; = 0, j # 2, and G} is the restriction

aulV
of -~ to Q. Then,

' C
Fi(jo) = Fij + 002Gy (Xl - C;X2> , (X,Y)eBx. (33)

A 15(0)
Moreover, PDEs (29) of the local problem become dg’;f = 0, which implies that the components

Pl-(QO) do not depend on Y. The other components Pi(;)), j # 2, can still depend on the heterogeneity
direction, which we recall from above is parallel to Y.

On the other hand, the perfect bonding condition (25); of the local problem is now [[Pg))]] e = 0.
—c

Since Pl-(QO) is independent of Y, its continuity is guaranteed for every Y € Q and not only for Y = ¢;.
Thus, the components of PO that are independent of Y satisfy

I
8Fi2

_ Oy

F=F{ OFis

(X,Y)eBxQ, (34)

)
F=F

where the components of F*) are obtained from (33) for Y € €,.. Notice that the conditions (34)
yield a system of nonlinear algebraic equations that are employed to obtain the G corresponding to
each fixed F. With these considerations, the effective law (32) becomes
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Oy ;
o Cr 9F,; Fep’ J#2 (35)
N Qe R=1lor2, j=2"
2 |F=F+F’
where
G, R=1
Ffy = (36)
-G, R=2

and G is the solution of (34). In (35), the equality for j = 2 is a consequence of taking F',. constant
in phase r in (32), and (34) being identically satisfied for G.
Let us now consider that the stored energy function of each lamina is given by

W, = 1 (FS)) _ 1) Cor=1,2, (37)

where pu,. is a material property, I (F) = FT . F for F € Lin, with the superscript T denoting the
transpose of a tensor, and Fﬁ.‘” is of the form given by (33) with Y € §,. and G being the solution of
(34). An expression similar to (37) is employed in [9] to analyze reinforced hyperelastic elastomers at
finite strain.

In the case of a hyperelastic material without softening, we replace v, by W,. given by (37) in (35)
to obtain

() = crpn + copa,  J#2
-1 -1 .
() = (,% + ,%) , j=2

In the case of a hyperelastic material with softening, we use the expressions (10) and (37) to obtain
the stored energy function for each lamina, which is given by

Py =20 (F;; —6;), p= (38)

—® _Hr (0) _ -
S fbrexp{ @I(FT 1)} r=1,2. (39)

Then, substitution of (39) into (34) yields the following system of nonlinear algebraic equations for
Gigt
27 (Fiz + Giz — 6;2) exp {E (F(O)>} 2R, ﬁGiz —0i2 ] =0, i=1,2,3, (40)
31 ) 2

where
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E (F(O)) :<,u2 — 'ul) (FijFij —2F; + 3)
(41)

-2 (Clm + Ml) (Fi2Giz — 2Ga2) + GixGiz

2
ay K2 M
ca) @2 Py
Now, in order to illustrate the influence of softening hyperelasticity of phases on the effective behav-
ior of the bilaminate, consider the simple case of uniaxial extension in the lamination direction.

Denoting by A; the principal macro-stretches and by J = det F' the determinant of the macroscopic
deformation gradient, (33) becomes

_ c - [ J .
Fy9) =X+ Gao (Xl - C:X2> FY =F =5 = ;\*’Fi(jp) =0, #J. (42)
2

In this case, it follows from (42) and (39) that <P1(§))> = <P3(§)> and Pi(jo) = <Pi(j0)> =0,7# 7, and

system (40)-(41) reduces to a single equation for the determination of Gag, which is given by

M1 J (0) M2 J C1
Ly —1 Ey (F k(L an )= 4
o, <,\§+G22 )eXp{ A( )} o, ()\% e 0, (43)

where

— 2 —
Oy (2 M) loxey (L) _ax, —2Z
Ex (F©) (@2 <I>1> 2)\1+( ) 4h - 255 +3

H 2
c1 o 1 J c1 2 M1
Y e - R e a) 2
(02‘52+‘1’1) (Af > 2 <02> P P

Finally, by substituting the solution Gaz of (43)-(44) into (35) with (39), the non-null components
of the effective law are obtained.

We now present numerical results concerning the uniaxial extension of homogenized composites,
which are obtained from the application of the two-scale asymptotic homogenization on two periodic
bilaminates. The phases of the two bilaminates behave according to, respectively, the classical hyper-
elastic model given by (37) and the softening hyperelastic model given by (39). In both cases, we have
that 1 = 2, g =4, ®; = 3 =1, ¢; = ¢ = 0.5, and J = 1.1. In Fig. 1, we show the components
Py = <P1(§))> and Py = <P2(g)> of the effective first Piola-Kirchhoff stress tensor plotted against the

(44)

principal macro-stretch A;.

Observe from Fig. 1 that the homogenization method is capable of predicting the macroscopic failure
of the composite induced by local failure of the laminae. Also, the shape of the curve of P;; in the
softening hyperelastic case resembles the one presented in Fig. 8 of [7] for the failure behavior and
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1.5 T T T 1.5 T T T
— Softening hyperelasticity —Softening hyperelasticity
~e—Classical hyperelasticity —e—Classical hyperelasticity

<P(O)>
(0),
<P22>

Figure 1: Effective behavior obtained via a two-scale asymptotic homogenization for two periodic
bilaminates composed of, respectively, classical and softening hyperelastic phases.

rupture of a softening Fung-type balloon under inflation. Observe also from Fig. 1 that both curves are
on the top of each other for small to moderate stretches, which indicates that the softening hyperelastic
model is capable of obtaining the same behavior of a classical model for moderate deformations, as
predicted by property (13).

7 Conclusions

In this work, we addressed the problem of macroscopic failure of hyperelastic composite materials. We
employed softening hyperelasticity to model the local failure of the phases, and then applied a two-scale
asymptotic homogenization to predict the corresponding effective behavior. We solved an example
problem involving the uniaxial extension in the lamination direction of two periodic bilaminates,
which are composed by, respectively, classical and softening hyperelastic laminae. The results indicate
that, even when softening is local, the homogenization procedure is capable of predicting classical
macroscopic hyperelastic behavior for moderate deformation and macroscopic failure for large enough
deformations.

Acknowledgement Financial support for this research was provided by the National Council for Sci-
entific and Technological Development of Brazil, CNPq, through grants numbers 150004/2010-9,
504778/2009-9 and 314410/2009-0.
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A load survey for a lifting operation of an emergency
tower for electrical energy lines transmission
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Abstract

The emergency towers for electrical energy lines transmission are structures that should be light weight and
easily assembled for a quickly replacement of damaged towers. In this context, some devices must be used in
the lifting operation in order to reduce the total time of assembling. These devices named ginpole can be used
in a lifting operation of horizontal assembled towers. So, this work concerns a numerical analysis for a load
survey for lifting operation of a guyed truss emergency tower using fixed ginpole. These loads will be used
to design the ginpole and to optimize the position of the cables fixed on the emergency tower in the lifting
operation. This load survey is analyzed from geometrical position and dimensions of all devices used in the
lifting operation as: emergency tower, ginpole, engine power and cables. The free software ScilLab is used to
solve the non linear equilibrium equations due to the relationship between all parameters involved.

Keywords: tower, restoration, electrical energy, transmission, computational methods.

1 Introduction

Electrical energy is usually produced in hydroelectric and thermoelectric plants far from the consumer
centers, and is transmitted by means of transmission lines that cross large areas with the most varied
topography. The electricity supply interruption because of the fall of the towers due to hurricanes, rock
and earth landslides, foundation erosion, tower corrosion, vandalism, may result in serious economic
losses for the society. Therefore, the power restoration transmission system as soon as possible is the
primary goal to be achieved by company’s teams of maintenance services. The restoration tower or
emergency tower used for the immediate line restoration after these events is the first step to be
taken. However, sometimes the field topography presents major difficulties for the team to maintain,
as a place of difficult access, land on steep slopes, marshy ground, which makes the assembly of the
emergency towers to be in a slow way. To meet these peculiarities, the restoration towers shall have
the main features, easy transport, easy assembly and low cost or cheaper than the ordinary towers.
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This present work concerns one of all steps of the emergency tower design. It concerns a numerical
analysis for a load survey for lifting operation of the tower using fixed ginpole and these ones can be
used to design the ginpole and to optimize the position of the cables fixed on the emergency tower in
the lifting operation. The loads are analyzed from geometrical position and dimensions of all devices
used in the lifting operation as: emergency tower, ginpole, engine power and cables. At each instant
of the lifting operation, the loads acting on the ginpole and the internal forces and moments in the
tower can be obtained by solving the equilibrium equations. These equilibrium equations represent a
non linear problem due to the relationship between all parameters involved.

2 The mathematical model of the problem

In the lifting operation of an emergency tower assembled on a horizontal position it should be used
a ginpole device in order to create an upward force. As any other device of the emergency tower
to be designed, it should be obtained the loads acting over the ginpole in this operation. Moreover,
the position of the cables should be calculated in order to avoid failure at any structural element of
the tower and at the whole tower itself due to the force imposed by an engine power used to lift it.
So, for determination of these forces it is necessary the resolution of equilibrium equations obtained
from geometrical evaluations of the parameters involved. Figure 1 presents a model that describes the
emergency tower and all elements used in the lifting operation.

IE

I |

le

Al
9
o

\4 YYVYYYYVYY

1/2 |

~
S

Y P,

Figure 1: The lifting operation model of the emergency tower on a horizontal position.

In this model, BF represents the emergency tower with its own weight Wt, BC represents the gin-
pole, and the segments AC, DCE represent cables. At A is placed the engine power, B represents an
articulation and C a roller that permits the slipping of the cables. The loads acting on the cables
are named pl and p2. The tower is 34m high, the ginpole is ¢ high and the distance between the
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A load survey for a lifting operation of an emergency tower for electrical transmission 15

engine power and the tower is L. These lengths are fixed by line transmission specifications. D and E
are points where cables are anchorage on the tower. The position of these points, [p and [z, and the
position of the tower in each instant of the lifting operation regulate the loads over the ginpole and
internal forces and moments in the tower.

Figure 2 presents the emergency tower at any other position on the lifting operation. Due to the
fixation of the ginpole at the tower, it will be always normal to the tower throughout the lifting
operation. So, BCD and BCE triangles sides are fixed in the first stage of this operation, as shown
later. Nevertheless, the triangle ABC changes its internal angles by the reduction of the segment AC.

Figure 2: The lifting operation model of the emergency tower on any other position.

The survey of the loads in this operation should be divided in two stages: a) in the first stage in
which the ginpole is loaded at its top, and, b) in the second stage in which the ginpole is no more
loaded. The transition between these two stages is defined by the angle oy, Figure 3 presents this

situation.
At this instance, it could be stated from triangle CDE:

wt(r—B) Fr=m=mw=F—7 (1)
From the extension of segment AC, it could be found at C the relation:

T w
0+ (5-0)+ S =rmo
+ > B8+ 5 =T
where 8 = arctan (%)and v = arctan (ﬁ%)
On the ABC triangle, the cosine rule on 6 can be shown as:
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VAN
AR

Figure 3: The transition between the two stages on the lifting operation.

[ =AC" + 12— 2.AC.lc.cosf

So, the segment AC at this instant can be found by rearranging equation (3):

ac’ - (2.c.cos0) AC + (I& — L*) =0

a0 — 2.05.cos 0 + VA
B 2
where A = (2.1c. cos0)® — 4. (IZ — L?).

The angles ¢ and « can also be related as:

™
(bJrEJrOét:W

So:

— — oy

ASS
|

It could be find that:
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sin (o) = cos (¢) (8)

On the same ABC triangle, the cosine rule on ¢ can be shown as:

AC =12+ L? —2.1¢c.L. cos (¢) (9)

So, the angle a; from which the ginpole has no load over it is:

2+ 1>~ AC
oy = arcsin <C+210L> (10)

It can be observed from equations (2), (5) and (10) that «; is function of v and f, thus function of
the positions of the anchorages D (Ip) and E (Ig).

So, if the goal is to determine the internal forces and moments in the tower, the equilibrium equations
should be imposed in each stage individually. As it will be seen later, on the first stage the equilibrium
equations can be solved analytically, and on the second stage equilibrium equations should be solved
numerically due to the its non linearity.

2.1 Equilibrium equations on the first stage

From Figure 2, the equilibrium of momentum imposed at B is as:

l
?F.Pt.cosa:pg.(D.sinﬁ+E~Sin’7) (11)

where § = arctan (%) and v = arctan (%)
So, the load imposed by the cables over the tower is:

lp.P;.cosa
D.sinf8 + E.sin%y)

p2=2.(

And also:

l
?F.Pt.cos a; = le.py.sinf (13)
So, the load imposed by the engine power is:

lp.P;.cosay

p1= (14)

2.lc.sinf
In the intention to determine the internal forces and moments, the tower is divided in 3 patches
named BD, DE, EF. After that, analytical functions of the internal forces and moments can be obtained
from equilibrium.
By the equilibrium conditions, the internal forces and moments can be obtained in each patch as:
axial force P, shear force Q and bending moment M.
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a. Patch CB (0 < 2’ < D):
Axial force P —

P(z')=—(lp —2') Wy.sina — pa. (cos B + cos ) (15)

Shear force Q —
Q (2') = pa. (sin 8+ siny) — Wi.cosa. (Ip — ') (16)

Bending Moment M —

Wy.cosa. (Ip — a')°

M (2') =ps. ((Ip — 2') .sin 8 + (Ig — 2’) .siny) — 5 (17)
b. Patch DE (D < 2’ < E):
Axial force P —
P(gg’) = —Wt.sina. (Ip — a?’) — p2.cosy (18)
Shear force Q —
Q (z') = pa.siny — Wy.cosa. (lp — 2') (19)
Bending Moment M —
. (g —a')?
M (2/) = po.sin~y. (I — a') — 2t COS“; r =) (20)
c. PatchDE (E < z' < F):
Axial force P —
P(z') = —Wy.sina. (Ip — ') (21)
Shear force Q —
Q') = —W;.cosa.(lp — ') (22)
Bending Moment M —
—W,. (g —a')?
M () = Wi.cosa. (Ip — ') (23)

2

2.2 Equilibrium equations on the second stage

On this stage, the geometrical parameters considered earlier change, so the angles § and v are no
more constants, as on the first stage. Thus, 8’ and v’ represent these angles in each instant. Figure 4
presents the geometrical configuration on this stage.

The determination of the internal forces and moments in the tower depends on the inclinations 3’
and ~’ of the cables, in order to find the components of all forces action on it. In this way, these
components are function of the coordinates of point C(x,y) and position of the anchorage D and E on
the tower. The line passing through point G is the prolongation of the line that defines the segment
AC. Thus, the segment CG is the bisectrix of the angle formed by segments CD and CE.
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Figure 4: Geometrical configuration on the second stage.

The coordinates of the points involved in this analysis are:
A= (—L,O), B= (xay)a C= (an)

D = (Ip.cosa,lp.sina), E = (lg.cosa,lg.sina), G = ((Ip+ a).cosa,(lp+ a).sina)

As it can be observed, the unknown of the coordinates of these points are x, y and a. For the
resolution of this problem three equations should be stated:
1. The length of the cable DBE is constant throughout the lifting operation:

DCE = \/() +12) + /(5 +12) (24)

So, the equation (25) should be satisfied:

\/(lD.sina —y)? + (Ip.cosa — x)* + \/(ZE.sina — )’ + (lg.sina—2)> —=DCE =0 (25)

2. Point C should be on the straight line passing to points A and G. This stating is shown by the
equation:
((lp +a).sina) ((lp +a).sina)

. ((Ip +a).cosa+L)'w_ ((Ip +a).cosa+L)'L =0 (26)
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3. The segment AB and the bisectrix of the angle DCE should be collinear. To satisfy this condition
the inclination of segmentsC'D, CE, and CG about the x axis should be found. So, to warrant
the third statement, at point C it can be set the expression:

arctan (llEsma—y) — 1 =1 — arctan <llD.sma—y) (27)

E-COSQ — X D.COSQ— T

Rearranging equation (27) as a function of z, y and a, it suits:

l . S lg.sina — Ip.sina —
2. arctan (p+a).sina —arctan | (ZECTY N pretan ((20RYTY ) g (28)
(ilp+a).cosa—L lg.cosa — x Ilp.cosax — x

The latest equation (27) and (28) are non linear for the unknowns z, y and a.

In this work, the Newton Method was used to solve the non linear equation systems. Tests were
performed in order to verify the convergence of the resolution and to validate the results. The free
software Scilab was used to program the numerical method for the resolution of these equations.

The Newton Method searches the roots of non linear equation systems in a linearization procedure
such as:

J(X*) . xF=—-F (X*) (29)
where vector F' (X k)is composed by the three equations that form the system:
(D +a).sina (D +a).sina

FQ)=y- .x — .
)=y (D+a).cosa+Lx (D+a).cosa+ L

F(2) :\/(ID.sina—y)2 + (Ip.cosa —z)* + \/(ZE.sina —)? + (lg.cosa — x)?

- (\/z% + 1%+ \/120 +zg>

l . si — Io. si _ L si _
F (3) = 2. arctan (Ip +a) sina—y — arctan w — arctan w (30)
(Ip+a).cosa—x lg.sina —z Ip.sina —z

Vector X* is the solution of equation (30), at the k iteraction is:

K

XE =4 yK (31)

G;K

In the equation (29), J (X k) represents the Jacobian matrix composed by the partial derivatives of

vector F (Xk) in respect to the variables x, y and a, as:
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ox Oy da

K OF (2 OF (2 OF (2
J(X*) = aa(c ) 37(; ) 6¢(l ) (32)

OF(3) OF(3) O8F(3)

ox oy da

The actualization of the solution of the non linear system is done by:

X =XK1 (33)

where 6 is the step of the iteraction process. The convergence is reached when ¢ is lower than 1078,

After the resolution of the non linear system, where the variables x, y and a are found, the internal
forces and moments on the second stage of the lifting operation can be found using the same equations
presented earlier, from (15) to (23).

As an example of the determination of the internal forces and moments in the tower on the first
and second stage, it is proposed the data: [ = 6m, Ip = 16m, [ = 30m, lp = 34m, L = 12m and
the equivalent force due to self weight of the tower P, = 10.000N. Figures 5 and 6 present the internal
forces and moments diagrams for o« = 0°, on the first stage, and for a = 60°, on the second stage,
respectively. It can be observed in these figures the effect of the distributed load W3, especially on the
axial internal effort P.

(a) (b) (c)

Figure 5: Internal forces and moments diagrams in the tower for o = 0°: (a) axial force P, (b) shear
force @ and (c) bending moment M.

Figure 7 presents the axial and transversal loads acting at the top of the ginpole. It can be observed
that for the design of this device, concerning its stability and strength, the critical position is for a =
0°.
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16000

18000

(a) (b) (c)

Figure 6: Internal forces and moments diagrams in the tower for o = 60°: (a) axial force P, (b) shear
force @ and (c) bending moment M.

15000

(a) (b)

Figure 7: Load acting at the top of the ginpole: (a) axial load and (b) transversal load.

3 Conclusions

This work deals with the survey load in the lifting operation of an emergency tower used to restore
damaged transmission lines. These loads are used to design the devices used in this operation, especially
the ginpole. Moreover, in order to find the better position of the cables anchoraged on the tower to
avoid failure at the whole tower itself in this operation. In this context, the loads acting over the ginpole
and the internal forces and moments should be found. The determination of these loads induces to a
resolution of a non linear equation system that involves geometrical parameters. The Newton Method
was used to solve numerically this non linear equation system. The results have shown the robustness
of the Newton Method for this kind of problem.
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Abstract

This paper deals with the molecular mechanics simulations of graphene nanostructures and their vibration
behavior for potential applications on nano-electronics and nanocomposites. These nanostructures are good
candidates to nano resonators due to high specific stiffness and strength and elevated aspect ratio. The funda-
mental frequencies for CN'Ts range from 10-250 GHz and 100-1000 GHz for the cantilevered and bridged con-
ditions, respectively. As the ratio length/diameter increases the fundamental frequency decreases, as expected.
A decrease on fundamental frequencies with the bending waviness was noticed for all conditions. The mode
shape for bent carbon nanotubes seems to be a superposition of the vibration mode and the bending mode for
the zigzag configuration. Multi-layered graphene were also investigated. The fundamental frequencies ranged
from 50-150 GHz, with an odd/even shape mode switch.

Keywords: graphene nanostructures, carbon nanotubes, vibration analysis, molecular mechanics, nano res-
onators.

1 Introduction

As commented by Campanella [1], one of the key components into micro electromechanical systems
(MEMS) is the resonator. Nanotechnology allowed the development of the so called nano electrome-
chanical systems, NEMS for short. Reduction in the size of a resonator enhances its resonant frequency
and reduces its energy consumption. According to Jah [2], sensors sensitivity are directed related to
the resonant frequency, i.e. higher resonant frequency means higher sensitivity. Nowadays, more and
more wireless communication devices are required, the usage of higher frequency resonators enable
the production of higher frequency filters, oscillators, and mixers. The improvement of high-frequency
NEMS brings about new applications ranging from signal processing [3] to biosensors [4]. Potential
candidates to nano resonators are carbon nanotubes and graphene nanosheets.

According to Saito and his co-workers [5], carbon nanotube is a honeycomb lattice rolled into a
cylinder. Carbon nanotubes (CNTs) have been the center of many researches due to their dimensions
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and remarkable electro-mechanical properties. In general, a CNT diameter has a nanometer size and
its length can be more than 1um. Its large aspect ratio (length/diameter) is appointed as one of the
reasons for the CN'Ts notable properties. As mentioned by Kalamkarov et al [6], CNTs have predicted
specific strength around 600 times larger than steel.

CNT capabilities have been observed experimentally and verified by numerical simulations. Among
the different numerical simulations, two different approaches are the most common, i.e. molecular
dynamics [7], atomistic simulations [8] also known as molecular mechanics [9]. The traditional molec-
ular dynamics (MD) simulations are limited because is computational intensive, while the molecular
mechanics is more flexible and more computational efficient.

As discussed by Gibson and co-workers [10], the knowledge of vibration behavior of CNTs is critical
in a large number of nanomechanical devices such as oscillators, clocks, field emission devices and
sensors. Furthermore, during the sonication process for nanocomposites synthesis of carbon based
nanoparticles, e.g. CNTs and graphene, vibration takes place. Therefore, the development of an accu-
rate model for the natural frequencies and mode shapes of carbon based nanoparticles is an important
issue.

Here the concept of molecular mechanics described by Li and Chou [9] and Tserpes and Papanikos
[11], and extended by Avila and Lacerda [12] is associated to the three-dimensional finite element
model and later on employed to predict the vibrational behavior of carbon based nanoparticles, i.e.,
carbon nanotubes and graphene nanosheets.

2 Structure of a single wall carbon nanotube

The molecular mechanics approach can be described by numerical methods where the equilibrium
configuration of the model system is required by minimizing the energy, which consists of the sum of
the inter-atomic potential minus any work by external forces. SWNT may be thought of as a sheet of
graphene rolled along a chiral vector, C, as described by Fig. 1.

\ 2ig:Zag \
\ }\/ \

< \! Carbon Nanotube

Figure 1: Chiral angle and vector representation adapted from Avila and Lacerda [12].
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Dresselhaus and co-workers [13] described SWNT in terms of nanotube diameter (d) and its chiral
angle (0). The chiral vector (Cp,) was defined in terms of the graphene sheet lattice translation integer
indices (n,m) and the unit vectors (a1, as) and it is defined as:

Ch = niiy + mi, (1)

where the unit vectors in (x,y) coordinates are defined as:

(V31 (V31 o)
a=|-55]a =550
the length of the unit vector a is defined as 2.46 angstroms, or 1.73 times the carbon-carbon distance,
i. e. 1.421 angstroms. The nanotube circumference (p) was defined by:

p=|Ck| = avn?+m?2+nm (3)

from simple geometry, it is possible to obtain the nanotube diameter (d) as:

/12 2
d:gz n+mnma (4)
T T

and the chiral angle (6), between 0 and 7/6 rad, was described by Dresselhaus et al [13] by

3 2
sinf = Vam cosf = ntm (5)
2v/n? + nm +m? 2v/n? + nm + m?
The three main SWNT configurations were described by Kalamkarov et al [6] in Fig. 2. Notice
that each configuration has its own cap distinct formation. As the aspect ratio (length/diameter) is

in general large, it is possible to discard the cap effect without loss of generality.

3 Molecular mechanics basics

As stated by Li and Chou [9], the carbon atoms in the nanotube are held together by covalent bonds
of characteristic bond length and bond angles, and the corresponding molecular forces constrain any
displacement of individual atoms. In the molecular structural mechanics approach, a single-walled
carbon nanotube is simulated as a space frame structure, with the covalent bonds and carbon atoms
as connecting beams and joint nodes, respectively. If the beam elements simulating the covalent bonds
are assumed to be of round section, then only three stiffness parameters, i. e., the tensile resistance
EA, the flexural rigidity EI and the torsional stiffness GJ, need to be defined for deformation analysis.
Figure 3 describes the correlation between the atomic interactions and their molecular mechanics
equivalent.

Avila and Lacerda [12], based on the energy equivalence between local potential energies in computa-
tional chemistry and elemental strain energies in structural mechanics, established a direct relationship
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0 =30, Arm-chair

6 =0, Zig-zag

0<6 <30, Chiral {7

(m,n)=(10,5)

Figure 2: SWNT configurations and their caps adapted from Kalamkarov and collaborators [6].

between the structural mechanics parameters and the molecular mechanics force field constants. Such
parameters are mathematically represented by:

BA_,EI_ . GI_
L L L

where L denotes the bond length, and k,. , kg and k, are the force field constants in molecular
mechanics. By assuming a circular beam cross section (bond) with diameter dp, and setting the area,
moment of inertia and polar moment of inertia as A, = wd? /4, I, = ndj} /64 and J, = 7d} /32, Tserpes
and co-workers [11] presented the covalent bond equivalent Ej, and Gy, as

ko k2L K2 .
dy =442 EB,=r2 G =t 7
’ ke 0 dmky " 8mk2 @

In order to compute the fundamental frequencies and vibrational modes of a carbon nanotube, Li
and Chou [14] simulated the nested tube layers by equivalent space frame structures and the Van der
Waals interactions between tubes by spring elements. The van de Waals forces were approximated by
the Lennard-Jones forces. The equation of motion for the free vibration of an undamped structure is
described as,

iy ko iy (6)

[M] {9} + [K]{y} = {0} (8)

where [M] and [K] are, respectively, the global mass and stiffness matrices. The nodal acceleration
and the displacement vectors are represented by {#} and {y}, respectively.

The C-C bonds were replaced by beam elements with properties based on chemical potentials.
Therefore, once the chemical-mechanical equivalence was established, the global stiffness matrix [K]
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Figure 3: Equivalence between molecular and structural mechanics. (a) molecular mechanics; (b)
structural mechanics adapted from Tserpes and Papanikos [13].

followed the conventional finite element assemblage procedure as described in Bathe [15]. As com-
mented by Li and Chou [14], there are two kinds of elemental stiffness matrix [K]¢. One is for the
beam element in tube layers, i.e.

K = [ [k ] o)

where the sub matrices [k;;], [kij], [kji], and [k;;] are stiffness coefficients related to the cross-sectional
parameters of beam element i-j. The second elemental matrix is based on non-linear spring element
representing Van der Waals interactions, i.e.

[K]zdw = l

] o kil = = [kl (10)
where [0] is a null matrix and
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o 20(2) " =7(9)] (1)

The global mass matrix [M] is based on the atomistic feature of a carbon nanotube, like in Li and
Chou [14]. The masses of electrons are neglected and the masses of carbon nuclei (m, = 1.9943 x 10~26
kilogram) are assumed to be located at the centers of atoms, i. e., the joints of beam members. The

x 0
[Al=1] 0 0
0 0 0

flexural rotation and torsional rotation are assumed to be identical to zero as the carbon nuclei radius
are extremely small (r. = 2.75x107% nm). Based on these considerations, and the fact that in a CNT
each carbon atom is bonded to three others, the elemental mass matrix was described by Li and Chou
[14] as,

[M]e:diag{mc/?) me/3 me/3 0 0 0 (12)

Following Mackerle [16], the natural frequencies and mode shapes of a finite element formulation
are obtained solving an eigenvalue problem as,

(K] - w? [M]) {y} =0 (13)

where the angular frequency is defined as w = 27 f.

4 Vibrational behavior studies

According to Gibson et al [10], the knowledge of vibrational behavior of carbon based nanoparticles is
critical for various industrial applications, e.g. oscillators, nanocomposites. To be able to investigate
the vibrational behavior of such nanoparticles, two groups were considered, i. e. carbon nanotubes
and graphene nanosheets. For CNTs, two major boundary conditions were applied. The first one
was the cantilever beam and the second one the bridged carbon nanotubes. To be able to validate
the proposed model a numerical simulation of resonant frequencies of bridged zigzag and armchair
carbon nanotubes were performed. These cases were studied by Li and Chou [14] and the results
are available for comparison. Another set of data available for to be used as benchmark is the one
provided by Sakhaee-Pour and co-workers [17]. Table 1 shows a comparison between the present model
and data from Sakhaee-Pour et al. [17], for an armchair configuration. As it can be noticed, a small
difference (less than 2%) is noticed between the two models. This difference can be attributed to the
geometric differences between the two models. Sakhaee-Pour et al [17] provided the nanotube diameter
(0.814 nm) and the nanotube length (5.660 nm). For a (6,6) armchair configuration, the calculated
diameter was equal to 0.808 nm, while the length employed was 5.600 nm. Table 2 summaries the
zigzag configuration results. In this case, the difference between Sakhaee-Pour et al [17] results and
the present model was higher. The largest difference was around 8%. This difference can be attributed
to two factors. The differences into the geometry, for Sakhaee-Pour et al [17] considered a diameter
of 0.626 nm and length of 5.826 nm, while the present model for a (8,0) configuration the diameter is
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0.622 nm and the length of 5.80 nm. The second factor is the zigzag configuration itself. As commented
by Gibson et al [10], for zigzag nanotubes small geometric variations can lead to variations on natural
frequencies due to atoms distribution.

Table 1: Natural frequencies (GHz) for the armchair SWNT configuration.

Mode ID Sakhaee-Pour Present model Absolute error [%)]
Cantilevered Bridged Cantilevered Bridged Cantilevered Bridged
1 104 557 104 551 0.0 1.1
2 104 557 104 558 0.0 0.1
3 562 1280 566 1270 0.7 0.7
4 562 1280 566 1278 0.7 0.1
) 650 1320 640 1296 1.5 1.8
6 947 1910 954 1873 0.7 1.9

Table 2: Natural frequencies (GHz) for the zigzag SWNT configuration.

Mode ID Sakhaee-Pour Present model Absolute error [%]
Cantilevered Bridged Cantilevered Bridged Cantilevered Bridged
1 72 427 76 462 5.6 8.2
2 72 427 76 462 5.6 8.2
3 421 1050 443 1128 5.2 7.6
4 421 1050 443 1128 5.2 7.6
5 628 1270 646 1332 2.9 4.9
6 882 1780 923 1895 4.6 6.5

Another benchmark problem is the one published by Harrar and Gibson [18]. They developed a
finite element model based on shell elements that can be applied to carbon based nanostructures, in
special carbon nanotubes. Table 3 shows, for the bridged configuration, the three zigzag nanotubes
studied by Harrar and Gibson [18], by Li and Chou [19] and the present model.

The large maximum absolute error for small L/D ratio (3.55) can be attributed to differences on
boundary conditions applied by Li and Chou [19], i.e. nanotube diameter and mass distribution due
to the number of atoms (each carbon atom has a correspondent node). Notice that both models, the
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Table 3: Natural frequency (GHz) for the zigzag SWNT with different aspect ratios.

Diameter Length Li and Harrar and Gibson Present Max.
Ch del Absolute
[nm] [nm] ou Space frame model Shell model =~ M09€ Error [%)]
1.1 3.9 1041 1167 1092 1197 14.9
1.1 5.6 662 692 656 705 7.4
1.1 8.0 380 377 374 382 2.1

one described by Harrar and Gibson [18] and the present model, used the same software for nanotube
generation, i.e. Nanotube Modeler [20]. The diameter for the (14,0) nanotube for both cases are
identical (1.08 nm) and the number of carbon atoms is also the same (518 carbon atoms). The mass
distribution is the same, and consequently the natural frequencies are approximately the same. This
hypothesis is confirmed by the close results obtained by the present model and the data presented by
Harrar and Gibson [18].

As discussed by Li and Chou [14] and Gibson et al. [10], the fundamental frequency of carbon
nanotubes can be influenced by various factors, e.g. boundary conditions and geometric configura-
tions. To investigate how these parameters affect natural frequencies and vibration modes, a series
of numerical simulations were performed. The nanotube diameters ranged from 0.38 nm to 0.89 nm,
while length /diameter ratios varied from 6 to 19. As it can be observed in Fig. 4, the fundamental fre-
quencies were in the range of 10-250 GHz and 100-1000 GHz, for cantilevered and bridged nanotubes,
respectively. These results are in good agreement with those presented by Li and Chou [14]. However,
for the bridged, the peak value obtained using the proposed model was lower (998 GHz) than the one
reported by Li and Chou [14], i. e. 1042 GHz. This difference can be due to the boundary conditions
applied and the number of atoms considered in each model. In the present model, one layer of node
(atoms) was constrained, while in Li and Chou [14] a different number of layers were probably used.
Note that in another paper, Li et al. [21] constrained 5 layers of atoms as a clamped condition. Small
differences on length lead to different numbers of atoms and consequently different total mass. Yet,
the results obtained by the present model are in good agreement with the one presented by Li and
Chou [14, 19].

Another issue that must be investigated is the carbon nanotube waviness. As described by Gibson
and colleagues [10], carbon nanotubes are naturally curved due to the synthesis process. To be able to
investigate the waviness effect on carbon nanotubes fundamental frequencies, a fixed aspect ratio L/d
of 18, the largest aspect ratio employed by Li and Chou [19], was assumed. Two different configurations,
one armchair and another zigzag, were selected. Furthermore, the waviness was simulated by bending
the nanotube with respect to z axis from 0 to 90 deg at 30 deg interval. As commented by Gibson
and co-workers [10], a macro mechanical correlation between models for vibrating curved beams and
arches show that the curvature of the beam or arch has strong effect on modal frequencies.
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Figure 4: Fundamental frequencies of single-wall carbon nanotubes.

The work done by Lee and Wilson [22] showed that for fixed-fixed arches the natural frequencies
decrease with the increase of curvature. This behavior was also noticed for the set of bridged nanotubes
configurations studied. As it can be shown in Figure 5, the nanotubes with smaller diameters (3,3)
and (5,0) seem to the ones with the smallest variations. Notice that according to Harrar and Gibson
[18], variations on natural frequencies of wavy nanotubes are related to the projected length of the
nanotube. Another issue must be added to this analysis, the diameter variation due to bending.
Small diameters will lead to smaller differences on cross section diameter, thus smaller variations on
natural frequencies, as equation (1) in Harrar and Gibson [18] demonstrates. This hypothesis is also
corroborated by Stokey [23]|. In his investigation, Stokey [23]| recalled the Timoshenko Beam Theory
for considering the effects of shear deflection and cross section rotation. By analyzing the governing
equations described by Stokey [23], it is possible to conclude that natural frequencies are directly
proportional to the radius of gyration of the curved beam. By applying this analogy to curved carbon
nanotubes, it is possible to concluded that curved nanotubes, under bridged configuration, with larger
diameters will have larger gyration radius and greater variations on natural frequencies when curvature
changes. The two configurations with the smallest diameters, i.e. (5,0) with 0.38 nm and (3,3) with
0.40 nm, are the ones less affected by the curvature effect. As the carbon nanotube radius increase,
the largest radius is 0.81 nm for the (6,6) configuration, the decrease on natural frequency is more
evident (= 23%). Nevertheless, the (10,0) configuration with 0.78 nm diameter seems to be virtually
insensible to curvature effect (variation of approximately 6%). As discussed by Li and Chou [19], this
phenomenon can be explained by the perfect symmetry on mass distribution for the (10,0) SWNT
configuration.
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When the boundary condition is changed from bridged to cantilevered, the natural frequencies
variation is smaller as it can be noticed in Fig. 6. This behavior was expected as the same trend was
observed for straight SWNT. Furthermore, as commented by Stokey [23], variations curvature has no
practical influence on fundamental frequency (first vibration mode) for the cantilevered configuration.
This behavior is true for the nanotubes with small diameters, i.e. (3,3), (5,0) and (4,4). For these
configurations variations on natural frequencies due to bending ranged from 1.6% to 6.5%, while for
the large diameter nanotubes the peak variation on natural frequency was around 17.6%. Once more
the (10,0) configuration presented a small variation on natural frequency (~4.2%) despite of its large
diameter 0.78 nm.

To investigate the vibration modes changes as function of the bending waviness, a well-known CNT,
i.e. (14,0) with length of 3.9 nm and bridged boundary condition, was selected as benchmark. This
SWNT was studied by Gibson and co-workers [10], Li and Chou [19] and Harrar and Gibson [18].
Figure 7 shows the first five vibration modes. These vibration modes are identical the ones showed by
Gibson et al [10]. Figure 8 shows the first five vibration modes for the same SWNT configuration with
a bending waviness of 30 deg. As it can be noticed, the bending waviness seems to be superimposed
to the vibration modes of the straight nanotubes. The same pattern is observed for the 60 deg and 90
deg bending waviness, as shown in Figs. 9-10.

Figure 7: Vibration modes for the (14,0) SWNT straight.

Shape modes for bent SWNT seem to be essentially a superposition of each vibration mode and the
bending waviness. Recalling Gibson et al [10], carbon nanotube can be described as one dimensional
entity. Therefore, a different approach must be employed for analyzing graphene nanosheets as they are
similar to plates. However, as discussed by Avila et al. [24], for some nanocomposites manufacturing,
the graphene nanosheets are usually exfoliated in blocks. Therefore, this research focuses on vibrational
behavior of multi-layered graphene nanosheets. According to Avila and co-workers [25] and Li and
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Chou [14], the inter-graphene inter layer spacing is 0.34 nm. As the Lennard-Jones potential force
approaches to zero for distances bigger than 0.85 nm, only atoms around this distance are considered.
As it can be noticed from Figs. 11 and 12 (multi-layered graphene cantilevered and bridged), the
Van der Waals forces act as a “control system”. They allow the graphene nanosheets to deform on
even shape modes and let the graphene nanosheets return to equilibrium (non-deformed shape) on
odd shape modes. This odd/even behavior alternates with the number of layers. The same pattern is
noticed for both configurations, i. e. cantilevered and bridged. Furthermore, for one single graphene
nanosheets or blocks, the fundamental frequency for a 2.5 nm by 2.5 nm square graphene nanosheets
is around 52.87 GHz and 148.45 GHz, for cantilevered and bridged configurations, respectively.

(a) (b)

Figure 11: Multi-layer graphene shape modes for cantilevered condition. (a) even; (b) odd.

Figure 12: Multi-layer graphene shape modes for bridged condition. (a) even; (b) odd.
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5 Conclusions

Carbon nanotubes were investigated considering two major boundary conditions, i. e. cantilevered
and bridged. Those are the ones with larger potential applications for nano mechanical resonators.
The length over diameter ratio (L/d), the nanotube configuration (armchair and zigzag) and the
waviness effect were investigated. The fundamental frequencies ranged from 10-250 GHz and 100-
1000 GHz for the cantilevered and bridged conditions, respectively. As the ratio L/d increased, the
fundamental frequency decreased, as expected. For carbon nanotubes under the bridged configuration,
the bending waviness effects lead to a decrease on natural frequencies. Large variations, up to 23%,
on natural frequencies were observed on carbon nanotubes with large diameters. The only exemption
was the (10,0) configuration where despite of the large diameter (0.78 nm), the natural frequencies
were practically constant with the bending waviness variation. This phenomenon can be explained by
the perfect symmetry on mass distribution for the (10,0) SWNT configuration. Numerical predictions
on shape modes for a (14,0) configuration, the same used by Li and Chou [19] for straight nanotubes,
indicate a mode superposition of the bending shape and the vibration modes.

Multi-layered graphene nanosheets were also studied. In this case, the Van der Waals forces were
considered. It seems that the Van de Waals forces acts a “control system”. They allow the graphene
nanosheets to deform on even shape modes and let the graphene nanosheets return to equilibrium
(non-deformed shape) on odd shape modes. This odd/even behavior alternates with the number of
layers.
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Abstract

In Deterministic Design Optimization (DDO), constraints are given by codified design rules involving alow-
able stresses, strains or deflections. Uncertainties in structural loads, material resistances and other problem
parameters are taken into account in a subjective and indirect way, by means of partial safety factors specified
in design codes. By definition, the optimum structure will have more failure modes designed against the limit:
hence, the optimum structure obtained via DDO will be less safe than the original, non-optimal structure. This
is a consequence of treating uncertainties in an implicit way. Hence, it can be said that DDO yields the shape
or configuration of a structure that is optimum in terms of mechanics, but the formulation grossly neglects
the effects of parameter uncertainties on structural safety. Reliability-based Design Optimization (RBDO) has
emerged as an alternative to properly model the safety-under-uncertainty part of the problem. In RBDO,
alowable failure probabilities are specified as design constraints, and it is possible to ensure that a minimum
(and measurable) level of safety is achieved by the optimum structure. The general RBDO formulation, how-
ever, addresses the minimization of manufacturing costs, with no account for the expected costs of failure.
Risk optimization (RO) increases the scope of the problem, by quantifying the monetary consequences of
failure, as well as the costs associated to construction, operation and maintenance. Risk Optimization stands
for the minimization of total expected costs, addressing the compromising goals of economy and safety. In
this paper, results obtained with DDO, RBDO and RO are compared for some example problems. The wider-
scope RO solution is found first, yielding the optimum safety coefficients and optimum failure probabilities
for each problem. These values are used as constraints in DDO and RBDO, respectivelly. Results show that
even when the optimum safety coefficients are used as constraint in DDO, the formulation leads to optimum
configurations which respect these design constraints, reduce manufacturing costs but increase total expected
costs (including expected cost of failure). When the optimum system failure probability is used as constraint
in RBDO, the formulation also leads to a reduction of manufacturing costs, but to increases in total expected
costs. This happens when the costs associated to different failure modes are distinct. Hence, it is shown in
this paper that the optimum structural configuration can only be found by the wider-scope risk optimization
formulation.

Keywords: structural optimization, optimum design, DDO, RBDO, reliability analysis.
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1 Introduction

In a competitive environment, structural systems have to be designed taking into account not just
their functionality, but their expected construction and operation costs, and their capacity to generate
profits. This capacity depends on the risk that construction and operation of a given facility implies to
the user, to employees, to the general public or to the environment. The capacity to generate profits
can be adversely affected by the costs of failure.

The performance and safety of structural systems is affected by uncertainties, or natural randomness,
in the resistance of structural materials and in loading conditions. Uncertainty implies risk, or the
possibility of undesirable structural response.

In monetary terms, risk (or the expected cost of failure) is given as the product of the cost of
failure by a failure probability. Failure probabilities, in their turn, are directly affected by the level of
safety adopted in the design, construction and operation of a given facility. This includes the safety
coeflicients adopted in design, safety and quality assurance measures adopted during construction and
the levels of inspection and maintenance practiced during operation.

In structural engineering design, economy and safety are competing goals. Generally, increasing
safety implies greater costs, and reducing costs may require a compromise in safety. Hence, designing
a structural system involves a tradeoff between safety and economy. In common engineering practice,
this tradeoff is addressed subjectively. In codified design, the issue is decided by a code committee,
which defines safety coefficients to be used in design, and basic safety measures to be adopted in
construction and operation. In general, the tradeoff between economy and safety in structural design
can be addressed by structural optimization.

In this paper, the effects of uncertainty on optimum structural design are investigated by comparing
three distinct formulations of the structural optimization problem. Deterministic Design Optimization
(DDO) grossly neglects the effects of parameter uncertainty and failure consequences, but it allows one
to find the shape or configuration of a structure that is optimum in terms of mechanics. As a general
rule, the result of DDO is a structure with more failure modes designed against the limit: hence,
the optimum structure compromises safety, in comparison to the original (non-optimal) structure.
Reliability-Based Design Optimization (RBDO) has emerged as an alternative to properly model the
safety-under-uncertainty part of the problem [1-8]. With RBDO one can ensure that a minimum (and
measurable) level of safety is achieved by the optimum structure. However, RBDO does not account for
the economical consequences of failure, since the safety level is a constraint, and not an optimization
variable. DDO and RBDO can both be used to achieve mechanical structural efficiency, but they do
not address the safety-economy tradeoff.

Risk Optimization (RO) increases the scope of the problem, by including the (expected) cost of
failure in the economic balance [9-15]. Hence, RO allows one to find the optimum tradeoff point
between the competing goals of economy and safety [15]. RO aims at finding the optimum level of
safety to be achieved in a given structural system, in order to minimize the total expected cost or
maximize the expected profit. It is as a tool for decision making in the presence of uncertainty. RO is
complementary to DDO or RBDO, in the sense that the most economic structural design also requires
mechanical efficiency.
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2 Failure probability and expected cost of failure

Let X and z be vectors of structural system parameters. Vector X represents all random system param-
eters, and includes geometric characteristics, resistance properties of materials or structural members,
and loads. Some of these parameters are random in nature; others cannot be defined deterministically
due to uncertainty. Typically, resistance parameters can be represented as random variables and loads
are modeled as random processes of time. Vector z contains all deterministic system parameters to
be optimized, like nominal member dimensions, partial safety factors, design life, parameters of the
inspection and maintenance programs, etc. Vector z may also include some parameters of random
variables in X.

The existence of uncertainty implies risk, that is, the possibility of undesirable structural responses.
The boundary between desirable and undesirable structural responses is given by limit state functions
g(z,x)=0, such that:

Dy ={z,x|g(z,x) <0} is the failure domain (1)

D, = {z,x|g(z,x) > 0} is the safety domain

Each limit state describes one possible failure mode of the structure, either in terms of performance
(serviceability) or ultimate capacity. The probability of undesirable structural response, or probability
of failure, is given by:

Py(z) = Plg(z,X) < 0] (2)

where P[] stands for probability. The probabilities of failure for individual limit states and for system
failure are evaluated using traditional structural reliability methods such as FORM and SORM [16, 17].

The life-cycle cost of a structural system subject to risk can be decomposed in an initial or construc-
tion cost, cost of operation, cost of inspections and maintenance, cost of disposal and expected costs
of failure (Je*Pected). The expected cost of failure, or failure risk, is given by the product of failure
cost (J/aure) by failure probability [9-15]:

Jewpeeted(z)y —  jlailure(zy pi(g) (3)

Failure costs include the costs of repairing or replacing damaged structural members, removing a
collapsed structure, rebuilding it, cost of unavailability, cost of compensation for injury or death of
employees or general users, penalties for environmental damage, etc. All failure consequences have to be
expressed in terms of monetary units, which can be a problem when dealing with human injury, human
death or environmental damage. Evaluation of such failure consequences in terms of the amount of
compensation payoffs allows the problem to be formulated, without directly addressing matters about
the value of human life [18,19].

For each structural component or system failure mode, there is a corresponding failure cost term.
The total (life-cycle) expected cost of a structural system becomes:
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Jtotal(z) :Jinitial or construction (Z)

4 Joperation (Z)

+ Jznspectwn and mazntenance(z)
+ szsposal (Z)

+ Z Jfailure (Z)Pf (Z)

failure modes

The initial or construction cost increases with the safety coefficients used in design and with the
practiced level of quality assurance. More safety in operation involves more safety equipment, more
redundancy and more conservatism in structural operation. Inspection cost depends on intervals,
quality of equipment and choice of inspection method. Maintenance costs depend on maintenance
plan, frequency of preventive maintenance, etc. When the overall level of safety is increased, most cost
terms increase, but the expected costs of failure are reduced.

Any change in z that affects cost terms is likely to affect the expected cost of failure. Changes in
z which reduce costs may result in increased failure probabilities, hence increased expected costs of
failure. Reduction in expected failure costs can be achieved by targeted changes in z, which generally
increase costs. This compromise between safety and costs is typical of structural systems.

3 Structural optimization formulations

3.1 Deterministic Design Optimization (DDO)

In deterministic design optimization, uncertainties and consequences (cost) of failure are not explicitly
taken into account. A typical formulation of DDO reads:

find: z*
which minimizes: cost(z) or volume(z) (5)

subject to:  deterministic failure criteria(o(z) < oyic1d/M)

In Eq. (5), A is a safety coefficient, given by some design code and not an optimization variable.
The cost function only includes cost (or volume) of structural materials, and sometimes life-cycle
and/or manufacturing costs. The formulation allows finding a structure which is optimal in terms of
mechanics but, due to lack of a quantitative measure of safety, expected costs of failure cannot be
considered. Since safety is not quantified, the resulting optimal structure may compromise safety, in
comparison to the original (non-optimal) structure.

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonca & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



A comparison of deterministic, reliability-based and risk-based structural optimization under uncertainty 45

3.2 Reliability-Based Design Optimization (RBDO)

One formulation which allows uncertainty to be taken explicitly into account is known as reliability-
based design optimization. A typical formulation of RBDO reads [1-8]:

find: z*
which minimizes: manufacturing cost(z) or volume(z) (6)

SUbjeCt to: Pf (Z) < Pfadmissible

Generally, the cost term in this formulation is the same as for DDO, that is, it does not include
expected costs of failure. RBDO allows finding a structure which is optimal in mechanical sense,
and which does not compromise safety. However, results depend on the admissible failure probability
used as constraint. The balance between safety and economy cannot be addressed, because failure
probability is not an optimization variable.

3.3 Risk Optimization (RO)

When expected costs of failure are included in the analysis, it is possible to find the best point of
compromise between safety and economy. Risk optimization (reliability-based) will also look for the
optimum failure probabilities [9-15]:

find: z*,\* and P;(z",\")
! ™)

which minimizes: J*"(z)

where Jt°*(z) is the total expected cost given by Eq. (4). Partial safety factors A are included as
design variables in the risk optimization formulation (Eq. 7). Hence, the formulation yields optimum
partial safety factors A*, which are associated to optimum failure probabilities, P;* . In comparison
to RBDO, risk optimization is an unconstrained optimization problem, since all failure probability
“constraints” now appear in the cost function (Eq. 4). Multiple reliability constraints [20] are also
“automatically” included in the RO formulation, as Eq. 4 admits one cost term for each failure mode.
Considering the solution of a constrained optimization problem like Eq. (6) via penalty methods, one
observes that, in the RO formulation, the cost of failure terms (Eq. 4) are equivalent to the “penalties”
for exceeding failure probability constraints in RBDO. However, these are no artificial penalties; they
are the actual costs of designing away from the optimum. Hence, the RO formulation yields a smoother
problem which is, nevertheless, not easier to solve.

Risk optimization can be achieved by controlling failure probabilities and /or the cost of failure. Risk
mitigation through preparation, education, training, and so on, is out of scope of this investigation.
Although failure costs are constants in the present formulation, it is important to note that it does
allow for a trade-off between different costs for different failure modes. Hence, service and ultimate
limit states, with their intrinsically different costs of failure, are readily accounted for in the present
formulation.
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If social or non-monetary consequences of failure are involved (like death or environmental damage),
failure probabilities constraints can be included in the RO formulation:

find: z*,\" and Pf(z",\", X)
which minimizes: J(z) (8)
SUbjeCt to: Pf (z7 X) < Pfadnlissible

The revenue to be obtained with a structural system is generally independent of z or X, that is, it
only depends on the facility been available. Hence, an alternative risk optimization problem can be
formulated as:

find: 2", \* and P;(z", \*, X) )
which maximizes: profit = revenue - J(z)

Figure 1 illustrates the scope of the three formulations just presented. It is clear that the formulations
are not equivalent, but complementary, each addressing a different part of the problem. The RO
formulation is complementary to DDO or RBDO, since the most economic structure also needs to be
mechanically efficient. In fact, the RO formulation increases the scope of the problem, by considering
the costs of failure. It is noted that DDO, in comparison to RO, does not account for the effects of
uncertainty. RBDO considers uncertainty, but it neglects one of the main consequences of uncertainty:
the expected costs of failure.

It should be noted that the nomenclature used in this paper is not necessarily in accordance with
the literature: in many cases, the name RBDO is used for problems where expected costs of failure
are also considered [9-15]. In the present paper, it is convenient to refer to RBDO and RO as two
different formulations due to the objective of exposing the difference in the results obtained using
each formulation. Another common approach to structural optimization in presence of uncertainties,
robust optimization [21,22], is not considered in the present paper because results are not directly
comparable to DDO, RBDO or RO.

In the literature, there are a number of approaches which simplify the RBDO problem by replacing
it by an equivalent DDO problem [23-25]. The conditions under which this simplification is possible
are not comprehensively investigated in these papers. For example, Qu and Hafta [23] use a single
safety factor to make the conversion from reliability to deterministic constraints. In the present paper,
it will be shown that this is not always possible. It is also not known whether the RO problem can be
replaced by equivalent DDO or RBDO formulations. These issues are addressed in the present paper,
by means of comparative optimization analyses.

4 Comparative optimization analyses

In sections 2 and 3, optimization formulations were presented in very general terms. In order to study
the effects of uncertainty in optimum structural design, these formulations are used in this paper in
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RBDO

STRUCTURAL
MECHANICS
$$$ of manufacture

Failure Probability

RISK = P, x C;
$$8$ of failure

DDO

RO

Figure 1: Scope of structural optimization formulations.

a number of different ways [26]. This section explains how these formulations are applied to some
example problems in the sequence.

It is clear that the three formulations are not directly comparable, because their scope is different.
Results of DDO clearly depend on the safety coefficient(s) used as constraint(s). Similarly, results of
RBDO of course depend on failure probabilities used as constraints. Now suppose that optimum safety
coefficients and optimum failure probabilities are first obtained from a (greater scope) risk optimization
analysis and then used as constraints in DDO and RBDO, respectively. One could expect that, by
using optimum constraints in DDO and RBDO, one would obtain the same optimum structure obtained
in risk optimization (RO). This is not always so, as will be shown in the sequence.

In the numerical examples that follow, the RO solution is found first. Since the scope of RO is larger,
and includes the scopes of DDO and RBDO, this general RO solution is used as reference. In order
to compare results, total expected costs (Eq. 4) are evaluated for the optimum structures resulting
from each formulation. Hence, following DDO or RBDO analyses, failure probabilities and costs of
failure are computed. In order to understand the differences between the results, (manufacturing) cost
functions used in DDO and RBDO analyses are also computed for RO for comparison.

In real world problems, one does not know optimal failure probabilities or optimal safety coefficients
before designing a structure. Hence, a “natural” order of solution for real problems would be a DDO (or
RBDO) analysis, followed (or not) by a risk optimization (RO) analysis. In this paper, the implications
of performing a DDO analysis first, followed by a RO analysis, are studied. In this case, the optimum
structural configuration is found in the DDO analysis. The risk optimization that follows maintains
aspect ratios, but scales the structure in order to find its optimum failure probability (or optimal safety
coefficients). Table 1 summarizes the different optimizations considered in this paper, and presents
the keywords that identify each solution.
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Table 1: Summary of comparative optimization analysis.

Keyword Description Result
Complete RO, used as reference for other ~ optimum configuration (z*) and safety
RO % . +
analyses. factors (A*); hence also optimum Py
RBDO RBDO, with Ps* used as constraint optimum configuration (z*)
DDO1 DDO, with single optimum safety optimum configuration (z*)

coefficient A* used as constraint
DDO, with n optimum safety coefficients
DDOn X ¥, i=1,...,n used as constraints, for n optimum configuration (z*)
design (limit state) equations
DDO, followed by a scaled RO which
RO_esc  maintains aspect ratios but looks for the
optimum Py*

optimum config. (z*) by DDO,
optimum P¢* by RO

5 Numerical examples

5.1 Three-bar parallel system

This problem involves a parallel system composed of three bars, each made of a different material.
The mean resistance is the same for all materials, but the coefficient of variation (c.o.v.) is different
for each material, reflecting differences in manufacturing quality control. The cost of each material is
also different, as presented in Table 2.

Table 2: Summary of random variable data for three-bar parallel system.

Random Variable variant  distribution mean c.0.V. cost
Load (P) - normal kN 15% -
Elastic modulus (E) - normal 200 GPa 3% -
Material strength (f,) mater?al 1 lognormal 250 MPa 15% 1 (reference)
material 2  lognormal 250 MPa  10% 1.05
material 3 lognormal 250 MPa 5% 1.10

The optimization variables for this problem are the cross-section areas of each bar, and the number
of bars (maximum 3). If the optimization algorithm reduces the area of any bar to 0.1 cm? or below,
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the bar is considered not necessary and eliminated. Hence, z = {A;, A3, A3}. The only deterministic
design restriction for this problem is given by:

9= (fyi-A)=P-A>0 (10)

(3

where A is the safety coefficient, fy; is the strength of the ith material, and A; is the area of the ith
bar.

The stiffness of the i** bar is given by K; = EA;/L. The load factor for bar 1 is given as RSF; =
K1/Kg, where Kg is the total stiffness, given by: K¢ = K; + K2+ K3. Hence, the limit state equation
used to evaluate the probability that bar 1 fails, given that no other bar has failed before, is given by:

91(2) = fy1 - A1 — RSFy - P (11)

Failure of the first bar (be it bar 1, 2 or 3) is considered a service failure, since the remaining bars
will carry the load. Given that bar 1 has failed, the load factor for bar 2 becomes RSFy, = K»/Kg,
where Kg is now: Kg = Ko + K3. The limit state equation for failure of bar 2, given that bar 1 has
failed, is given by:

gg(Z) :ny‘Ag 7RSF2 . (P*'I]fyl Al) (12)
This is again considered a service failure, because the third bar will carry the load. In Eq. (12),
variable 7 is used to model brittle and ductile material failures, following Hendawi and Frangopol
[27]. A perfectly elastic material with brittle (fragile) failure is modeled with n=0. An elastic-perfectly
plastic material with ductile failure is modeled using with n=1. The term 7 - f,1 - A; in Eq. (12) gives
the residual strength of bar 1, which is zero when material failure is brittle.
The collapse failure probability, for failure sequence 1-2-3, is given by the probability that bar 3
fails, given that bars 1 and 2 have failed. The limit state equation is:

93(2) = fys - As = (P =1+ (fy1 - A1 + fy2 - A2)) (13)

In a similar way, all possible failure sequences are considered. Equations (11) to (13) are used to

evaluate the corresponding probabilities, with a proper change in the indexes. If the j** failure sequence
is denoted by S;, the system collapse probability is given by the union:

Prloystem (2) = P U S5 (2) (14)

The objective function for DDO and RBDO is a “manufacturing” cost function, which includes cost
of materials and workmanship. Cost of materials is given by:
Cmat = Smat - p-L- (A1 +1.05- A3 +1.10 - A3) (15)

where $,,,4; is the unit cost of material 1 (per weight), p is material density, L is length of the bars, 1.05
and 1.10 are the relative cost factors for materials 2 and 3. A fixed reference cost, C,.y, is evaluated
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from an initial, deterministic design, for a central safety factor A = 2.0. This cost is obtained as
Cref = 5.5+ 8a¢. Cost of workmanship is given by:

Cwork = Cref +0.2- Cmat + Cref -0.05 - (Nbars - 1) (16)

The first term in Eq. (16) is a fixed cost of labor, the second term is a fraction of cost of materials,
and the last term is a penalty for complexity, i.e., considering that a system with three parallel bars
is more elaborate to manufacture than a system with a single bar. The manufacturing cost function
becomes:

CM =1.2- Crnat + Creg - [1+0.05 - (Npaps — 1)] (17)

The objective function for RO is the total expected cost, which is the sum of manufacturing costs
and expected costs of failure. The cost of service failures is assumed equal to Cy¢f , and the cost of
ultimate failure is 10 - Cyy . If E; denotes the event that the i*" bar failed, then the total expected
cost is:

Npars Npars
J(2) = CET = CM + Crep - > PIE]+Crep- Y -PEJ|E]+10-Cres- Pyl 0., (2) (18)
i=1 J=1,5#i

where CET is the total expected cost, referred to in the tables and figures to follow. Solutions are
obtained for three variants of the problem, as shown in Table 3. Optimum structural configurations
are presented in Table 4. Table 5 compares manufacturing and total expected costs obtained with
alternative formulations, with respect to the reference RO solution.

Table 3: Variants of three-bar parallel system problem.

Variant brittle-ductile material (n) Cost of service failure

(1A) 0 Cref
(1B) 1 Cref
(1C) 1 0

For problem variant (1A), with brittle material and including service failure costs, the RO and
DDO solutions converge to a system of a single bar, made of the best-quality material (material 3).
Hence, manufacturing costs and total expected costs are identical for these formulations, including the
“scaled” RO__esc (DDO followed by RO) solution. Clearly, for brittle materials there is no safety (or
economical) advantage in having two or more bars, instead of a single bar of greater cross-sectional
area. Nevertheless, the RBDO formulation does converge to a different solution: two bars, made of
materials 2 and 3, and such that A3 > A2. In Table 5 it can be observed that, with this solution, the
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Table 4: Optimum results for variants of three-bar parallel system problem.

=

Variant Solution Ay Az A Py

RO 0 0  4.3575 1.4525 3.270 1073
(14) RBDO 0 0.1 38035 1.3010 3.270 1073
DDO1 0 0  4.3575 1.4525 3.270 1073
RO _esc 0 0  4.3570 1.4524 3.277 1073
RO 0 4.0740 0.1075 1.3938 6.246 10~*
(1B) RBDO 0 25220 1.5728 1.3649 6.246 10~*
DDO1 0 0 3.8472 1.2824 4.216 1072
RO _esc 0 0 4.3575 1.4525 3.270 1073
RO 0 3.0394 0.8887 1.3093 2.660 1073
(10) RBDO 0 3.0395 0.8885 1.3093 2.660 10~3
DDO1 0 0 3.6787 1.2262 8.230 1072
RO _esc 0 0 4.3575 1.4525 3.270 1073

Table 5: Optimum cost results for variants of three-bar parallel system problem.

Problem CM/CMref CET/CETref

variant RO RBDO DDOl1 RO _esc RO RBDO DDO1 RO _esc
(1A) 1.000 0.980  1.000 1.000  1.000 1.033  1.000 1.000
(1B) 1.000 0.998  0.957 1.010  1.000 1.006 1.164 1.006
(1C) 1.000 1.000  0.960 1.032  1.000 1.000  1.405 1.035

RBDO formulation is able to reduce manufacturing costs, but by compromising total expected costs.
The reasons for this behavior will be made clear in the sequence (problems 1B and 1C).

For ductile materials (problem variant 1B), the reference RO solution is a system of two bars,
made of materials 2 and 3, with A2 >> A3. The second bar is a “wire” of minimal area and made of
the best material, which provides an alternative load path in case of failure of the first bar. For the
ductile material, this two-bar solution is cheaper than the single bar solution obtained for problem
(1A). None of the alternative formulations reaches the optimum obtained by the reference risk-based
solution. DDO (and also RO _esc) yield a single-bar, made of the best material, just as for problem
(1A). Hence, it is observed that (such simple) deterministic formulation does not account for the
materials post-failure behavior, and its effect on system safety. The RBDO solution for this problem
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yields a system of two bars, but with A2 > A3. The solution is not the same as RO because the areas
of the bars are similar (no “wire bar”). In Table 5 it is observed that this RBDO solution minimally
affects manufacturing costs, but increases total expected costs. This difference in optimum solution,
and also the differences observed for problem (1A) can be explained by the cost of service failure, as
follows.

Problem variant (1C) considers ductile materials but no service failure costs. In Table 5 it is observed
that the RBDO solution now agrees with the reference RO solution, which is identical to the reference
solution obtained for problem (1B) — one bar of material 2 and a thin “wire” of material 3. Hence, it
is observed that the RBDO formulation does respect the system failure probability constraint, but it
does not account for the costs associated to service failure. For the formulations to become equivalent,
it would be necessary to specify “optimum” failure probability constraints for all service and ultimate
failure modes. It is also observed in Table 5 that DDO and RO _esc optimum solutions (single bar
of best material) yield much higher total expected costs. The DDO formulation is able to find an
optimum which reduces manufacturing costs, but which results in larger total expected costs. The
RO __esc formulation, which tries to improve on the DDO solution by finding the optimum safety
coefficient, following a DDO analysis, does reduce the total expected costs, but cannot match the
results obtained in the more general risk-based formulation.

5.2 Three-bar series system

This problem is based on the three-bar parallel system (same bars made of the same materials), but the
bars are connected as a series system. For this problem, the four formulations yielded the same results,
when 3 different (optimal) safety coeflicients were used in DDO. Using a single safety coefficient (the
largest between the 3 optimal values) resulted in slight increases in optimal DDO manufacturing and
total expected costs.

5.3 Built-up column

The column illustrated in Figure 2 is made of U-section struts (U200x75x2.65 mm), with L-section
braces and battens (L30x2.25 mm) [26]. The total length is L and the column is subject to a load
P. Optimization variables are the width b and the number of braces and battens (N = L/d), hence
z={b,N}. Random variables are the load P, the elasticity modulus and the materials yield stress, as
summarized in Table 6.

Table 6: Summary of random variable data for column problem.

Random Variable distribution = mean  c.o.v.
Load (P) normal 300 kN 15%
Elastic modulus (E) normal 210 GPa 3%
Material strength (f,) lognormal 250 MPa 10%
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7 4

Figure 2: Built-up column.

The design equations for this problem relate to local and global buckling. Ideal truss behavior and
elastic (Euler) buckling are assumed. Local buckling of the U-shaped struts is given by:

2 E-1 P
gL(x) = 55—~ M3 (19)

where Iy is the moment of inertia of the U-section. Global column buckling is given by:

w2 B
g6(z) = =5 =X P (20)

where I is the moment of inertia of the column cross-section, given by:
Ic =2 (Iy + Au - (b/2)%) (21)
The limit state equations are equivalent to Eqgs. (19) and (20), but with unitary safety factors.

One unit of braces and battens is considered as one horizontal and one diagonal L-shape. The total
length of one brace-batten unit is:

Ly, = /0> + (L/N)?2+b (22)

The basic cost of materials is given by:
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Cmat:$mat’p'(N'Lbb'AL+2'L'AU) (23)

The fixed, reference cost is Cyey = 150 - $,,,4¢. Cost of workmanship includes a fixed term, a term
proportional to cost of materials, and a term for each additional brace-batten unit, after the first:

Cwork = Crey +0.2- Cpyar + (N —1)-0.025- Cres (24)

Total manufacturing cost becomes:

CM =1.2-Cpat + Crey - [1+0.025 - (N —1)] (25)
Cost of failure is equal to 10 - Cy¢¢, for any of the possible failure modes, hence the total expected
cost is:

Jtotal(z) =CET =CM +10- Crey - Py| (26)

system (Z)

where the series-system failure probability is

() =P

Pf |5ystem

Nis2) < 0}] 2)

The problem is first solved for L=7.5m. The optimum structural configuration found in the reference
RO analysis has b=16.77 cm and 4 brace-battens units (N=4). Optimum central safety coefficients are
A1 = 1.875 and Ay = 1.676; optimum failure probabilities are Py = 2.374- 10~8 and Py =9.624- 109,
for local and global buckling, respectively, and Prsyg = 9.624- 1076 for the series system. Interestingly,
although both safety coefficients refer to the same failure mode (elastic buckling), the optimal safety
coefficient with respect to local buckling is larger than the optimal safety coefficient due to global
buckling. Correspondingly, failure probability is smaller for local in comparison to global buckling. This
can be explained by the restriction of an integer number of brace-batten units. When the number of
brace-batten units jumps from 3 to 4, column length for local buckling is reduced, hence A; is increased.
According to the analysis, increasing distance b in order to also increase Ay is not worthwhile.

The optimum configuration found in RO is also found by the RBDO and DDO2 analyses. For
this problem, the RBDO formulation yields the same result as RO because there are neither service
failures nor costs associated to it. If a single safety coefficient is used (DDO1), the optimum number
of brace-battens becomes N = 5. If this number is fixed and a scaled (RO _esc) analysis is made,
manufacturing and total expected costs cannot be reduced. Manufacturing and total expected costs
are compared in Figure 3.

The problem is solved again, varying column length L from 7.5m up to 40m. For all column configu-
rations, the RBDO result agrees with RO. For some column lengths, the DDO1 and RO _esc solutions
agree with RO: this happens when the optimum number of braces and battens is (coincidently) the
same for all solutions. Manufacturing and total expected cost ratios are evaluated by dividing optimum
costs found by the DDO1 and RO _esc formulations by the reference optimal costs found through
RO. Total expected cost ratios are shown in Figure 4, and manufacturing cost ratios are shown in
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1.03

CM/CMref CTE/CTEref

Figure 3: Comparison of optimum costs for the column problem.

Figure 5. It is verified that, for some values of column length L, the same optimal number of brace and
battens is found, hence total expected and manufacturing costs are the same for the DDO1, RO _esc
and reference RO solutions. For other values of L, however, the DDO1 and RO _esc formulations yield
different numbers of braces and battens, making both manufacturing and total expected costs larger
than those obtained in the reference RO formulation.
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Figure 4: Ratio of total expected costs obtained in DDO1 and RO _esc solutions, with respect to
reference RO solution.
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Figure 5: Ratio of manufacturing costs obtained in DDO1 and RO _esc solutions, with respect to
reference RO solution.

5.4 Cable-stayed tower

The cable-stayed tower considered in this example is illustrated in Figure 6 [26]. Considering tower,
cable and loading symmetry, only one set of three cables needs to be considered, as shown in the
figure. For simplicity, design of the vertical part of the tower is not included in the problem. The
optimization problem refers to the number of, location and depth of the foundations supporting the
cables. A horizontal wind load is assumed on the tower, with linear variation from zero to Wy in the
lower segment, and constant value Wy in the higher segments, following Figure 6. Random variable data
for this problem is presented in Table 7. Wind load and resistance of the foundations are considered
as random variables. Without loss of generality, non-dimensional units are considered throughout the
problem. Total tower height is H = 30 meters.

Table 7: Summary of random variable data for cable-stayed tower problem.

Random Variable distribution mean c.o.v.
Wind load (W) Gumbel wog  30%
Foundation resistances (Rf)  lognormal 1.0 20%

Foundation depth is assumed proportional to the vertical component of cable force (f,) and to the
safety factor for foundation design ();). Hence, the design equations are:

dyi(Xi,zi) = A+ foilzi, wo) (28)
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Figure 6: Cable-stayed tower.

where dy; is the depth of it" foundation. Foundation resistance is assumed directly proportional to
foundation depth, hence the random resistance of the i** foundation is obtained as:

Rfi()\i; a:z) = dfi()\ial'i) . Rf (29)

where Ry is a non-dimensional random (variable) foundation resistance (Table 8). Limit state functions
for this problem relate to foundation failure, hence:

9i(Rp, W) = Ai - foilws, wo) - Ry — foilxi, W) (30)

Failure of any foundation is assumed to cause collapse of the tower; hence the system limit state is:

Py =P

system

m{gi < 0}] (31)

Optimization of the cable support for the tower involves 6 optimization variables, hence
z={x1, T2, T3, A\, A2, A\3}. Moreover, if during the optimization process two foundations come closer
than one meter, they are merged into a single foundation, with depth equal to the sum of depths.
Hence, the number of foundations is also a design variable.

Objective functions for this problem involve manufacturing costs (material plus workmanship) and
expected failure costs. The cost of one square meter of land, in the location where the tower is to
be built, is assumed as reference cost (Cyrey). All other cost terms are related to this value, which is
assumed unitary. Cost of land, required to install the tower and it’s supporting cables, is given by:

Cland =T7" max(mi)Q : Cref (32)

Cost of the foundations is proportional to foundation depth:
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# foundations
Cfoundation =125 Cref . Z (dfz)ll (33)
i=1
where 125C,..s is the cost per meter of foundation. The unitary cost of cables (per meter) is assumed
as 50C,.y and total length of cables (Lcgpies) is a function of foundation positions (z1, x2, x3). The cost
of workmanship is fixed at 105C)..s. Putting all these terms together, manufacturing cost becomes:

CM = C'land + Ofoundation + 50 - Cref ' Lcables + 105 : Cref (34)

Failure costs, for tower collapse, are the cost for reconstructing the tower (CM — Ciana), plus the
cost of damage, if the tower hits third party facilities when falling. Damage to third parties will only
occur if the land bought for tower erection is less than tower height, H = 30m. In the risk optimization
problem, it will be decided whether buying this amount of land is worthwhile. The potential area for
damage is:

0
Apotential = max |0, g . (H2 - m?X(x2)2) (35)
where it is assumed that a tower collapse hits (1/8)*"* of the encircling area. Compensation payouts
to third parties is assumed proportional to the potential area:

Cdamage =2 104 : Oref . Apotential (36)

Hence, the total expected cost function becomes:

Jotl(z) = CET = CM + (CM — Ciand + Caamage - Pldamage| failure]) - Py| (37)

system

where Pldamage |failure] = 0.75 (assuming that not all area around the tower has been built up by
third parties).

For many configurations of this problem (different ratios between cost terms), the reliability-based
risk optimization (RO) yields an optimum solution where the farthest foundation is located within
the potential damage area. For these configurations, both DDO3 and RBDO yield the same optimum
solutions. In case of RBDO, this happens because no service failures are considered in this problem.
Expected failure costs are controlled by failure probabilities, which are controlled by the foundation
safety factors. Hence, DDO with three optimum safety factors as constraints also yields the same
optimum solution.

However, for the problem configuration presented here, results are quite different, as shown in Figure
7 and Table 8. For this configuration, which can be said to be of “cheap land”, the RO formulation
yields an optimum solution where the farthest foundation is located at x3 = 30m. Hence, expected
failure costs are controlled by reducing to zero the potential damage area. This configuration is not
achieved in any of the alternative formulations (DDO1, DDO3, RDBO), because expected costs of
failure are not account for. Even when optimum safety coefficients and failure probabilities are used as
constraints, the three formulations yield optimum solutions where manufacturing costs are reduced,
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but by compromising total expected costs. It is observed that the RBDO formulation leads to an
increase of nearly 4% in total expected costs. For the RO _esc solution, both manufacturing and total
expected costs are higher. This solution is obtained by performing a DDO optimization first, with
A =2, and then performing a risk optimization, with fixed values of {z1,z2,z3}.

It is also observed that, for many optimum configurations (Table 8), the distance between founda-
tions was reduced to one meter, but they were not merged together by the algorithm. This may have
happened because of the non-linear exponent (1.1) in the foundation cost function (Eq. 33).

1.05
104 RBDO DDO3
1.03
1.02
1.01 RO_esc
RO

100 RBDO DO1 DDO3 RO

B N\
0.99 / \ rrrrrrr
0.98 IAMNN\NS=S

CM/CMref CTE/CTEref

Figure 7: Comparison of optimum costs for the cable-stayed tower problem.

Table 8: Optimum cable and foundation configurations for cable-stayed tower problem.

Optimization variables

Solution Py | system
A3

x1 T2 T3 A1 A2

RO 25.00 29.00 30.00 1.9767 1.8877 1.8521 2.6428 1073

DDO1 2256 23.56 24.56 1.9767 1.9767 1.9767 1.2473 1073

DDO3 2252 2352 24.52 1.9767 1.8877 1.8521 2.6428 10~3

RBDO 23.00 25.77 26.77 2.0245 1.8174 1.9341 2.6428 1073
RO _esc 20.91 23.01 24.01 2.2505 2.1735 2.1548
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6 Concluding remarks

This paper presented a study of the effects of uncertainty on optimum structural design, by means of
comparisons of the optimum solutions obtained by different formulations of the optimization problem.
Results were presented for four example problems.

Deterministic Design Optimization (DDO) yields a structure which is optimum in terms of mechan-
ics but, since parameter uncertainty and its effects on system safety are not taken into account, safety
of the optimum structure will be compromised. Results obtained for the three bar parallel system and
for the cable-stayed column examples have shown that, even if a set of optimum safety coefficients is
provided as constraints in the DDO analysis, the formulation leads to an optimum configuration which
respects these design constraints, reduces manufacturing costs but increases total expected costs. If
a single optimum safety coeflicient is used as constraint (the largest in the optimum set), results are
even worst: the extra safety margin increases manufacturing costs much more than it reduces expected
costs of failure. When a risk optimization is performed, in order to find the optimum safety coefficient
after a DDO, but respecting the structural configuration found in this DDO, total expected costs can
be reduced, but not to a level of agreement with a more general formulation, where both structural
configuration and risk are optimized simultaneously.

Reliability-based Design Optimization (RBDO) does improve on the DDO formulation, by con-
sidering parameter uncertainty and one of its main consequences: the probability of failure. Failure
probabilities are used as design constraints in order to guarantee that the optimum structure will not
sacrifice safety. Results, of course, do depend on the values of failure probabilities used as constraints.
Using the optimum system failure probability as constraint in an RBDO analysis may not be suffi-
cient, when failure modes with different costs are present. Results presented in this paper have shown
that, when service failure is considered, the RBDO formulation may (also) find an optimum which
reduces manufacturing costs but increases total expected costs. Equivalence to risk optimization is
only obtained if multiple, optimum reliability constraints are used, one for each failure mode.

Most RBDO formulations encountered in the literature pretend to be minimizing costs but, in fact,
minimize volume of structural materials or manufacturing costs. It is not possible to get more than
what one bargains for: if one optimizes for volume, one gets a slim, slender structure. In order to
minimize costs, the monetary consequences of failure, or expected costs of failure, have to be taken
into account.

Results obtained for the three bar parallel system and for the cable-stayed column examples have
shown that it is not always possible to establish an equivalence between the risk optimization and DDO
or RBDO formulations. In both examples, it was observed that the risk-based optimum structural
design is not controlled by failure probabilities nor safety coefficients, but by the actual structural
configuration. In this situation, safety coefficients or failure probabilities used as constraints cannot
reproduce the risk-based optimum structural design. In consideration of uncertainty and the monetary
consequences of failure, the optimum structure can only be found by a risk optimization formulation,
where structural configuration and safety margins are optimized simultaneously, and which yields a
structure optimum in terms of mechanics and in terms of the compromise between costs and safety.

The risk optimization formulation presented herein leads to a challenging optimization problem,
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which cannot be solved by simple, first or second order mathematical optimization methods. Due
to the presence of multiple local minima, heuristic evolutionary algorithms are required. A hybrid,
auto-regulated Particle Swarm - Simplex - Powel algorithm [26] was employed in the solution of the 4
risk optimization problems presented herein, and good performance and high reliability were observed.
Improvements of this hybrid algorithm are still under investigation.
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Abstract

This paper presents a least square algorithm based on the eigenvalue decomposition of the elemental mass and
stiffness matrices, which may be used for nodal and modal high-order finite element methods. For meshes of
line elements, straight squares and hexahedra and straight triangles and tetrahedra, the jacobian is constant
and works as a scaling factor to the eigenvalues of the local mass matrix. For meshes of quadrilaterals and hex-
ahedra, the eigenvalues of the mass matrix are calculated after the Schur complement. The solution procedure
is performed for each element of the mesh and the results are smoothed on the boundary of the elements using
a least square approach. This approach is used to implement an elementwise version of the explicit central
difference method. Results are presented for three-dimensional projection and linear elastic problems.

Keywords: Finite Element Method, high-order methods, projection problem, Explicit Central Difference Method.

1 Introduction

The high-order FEM has been applied to many transient problems including Fluid Mechanics, Elec-
tromagnetism, Structural Analysis and Powder Metallurgy [1-4]. The time discretization is solved
by implicit and explicit methods, which require the solution of systems of equations which involve
the mass matrix. For the Lagrange nodal bases and meshes of quadrilaterals, the lumped or spec-
tral diagonal mass matrix is generally used with explicit methods, which corresponds to applying
the Gauss-Legendre-Lobatto (GLL) coordinates as integration and collocation points [5]. Due to the
missed points, the numerical integration is not exact for polynomial functions, which may affect the
convergence rate of the approximated solutions. For the generalized Jacobi polynomial basis, the mass
matrix is not diagonal and multilevel substructuring procedures have been used [1].

In [6, 7], nodal and modal tensor-based bases were analyzed for many element shapes in terms of
condititioning and sparsity. The high-order mass and stiffness matrices are denser and require more
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multiplications for the solution of systems of equations by iterative methods. This paper presents an
elementwise least square procedure for the solution of interpolation and time dependent problems by
the explicit central difference method, which is based on the eigenvalue decomposition of the elemental
mass matrix. In this case, due to the eigenvalue decomposition, the element mass matrices are diagonal
and the cost for the solution of the systems of equations is trivial. The procedure may be applied for
meshes of any element shape and nodal or modal bases.

The solutions obtained for each element must be combined to achieve a global continuous solution.
Due to the eigenvalue decomposition, the connectivity information may not be used to assemble a
global mass matrix, as the i — th eigenpar is not necessarily related to the i — th element degree of
freedom (DOF). In addition, the eigenvector bases for the element mass matrices are not the same as
the eigenvector basis for the global mass matrix. To overcome this problem, a smoothing procedure
applied to the element boundary DOFs, based on the least square method, is presented to obtain
a global continuous solution in Section 2. This procedure is also extended to the explicit central
difference time integration method in Section 3.

While for quadrilaterals meshes, the GLL points make possible to obtain a diagonal mass matrix,
for unstructured meshes the nodal points may be taken from [8,9]. But they do not work well as
general integration points for any polinomial order [10-12]. In [13], it was shown that it is not possible
to construct a similar set of GLL quadrilateral points for triangles. Another possibility is the use of
simultaneous diagonalization of the Laplace mass and stiffness matrices as presented in [14]. As the
procedure presented here may be used for any element shape, it is also possible to obtain diagonal
mass matrices for triangles and tetrahedra.

This paper is organized as follows. First, the least square smoothing procedure and the elementwise
explicit method are considered. Results for interpolation and time dependent problems are presented.
Finally, the main conclusions are addressed.

2 Least square approach to the global continuity

Given a function u and a finite element basis [N], an approximated function @ to w is given by [1]
u = [NHa},

where {a} is the vector of the global approximation coefficients which are obtained using the Galerkin

method in the domain 2 as [1]
( / [N]T[N]d§2> {a} = / [N ud€.
Q Q
In matrix notation, the projection or interpolation problem is
[M{a} = {f}
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and [M] is the global mass matrix and {f} is the body load vector. They can be obtained by the
assembling procedure of the elemental mass matrices [M,] and load vectors {f.} as [1]

Nel Nel
(M) = JIMe] and {f}=J{f},

where Nel is the number of elements. It should be observed that, in the case of an interpolation
problem, {f} does not represent a physical load vector.

In this paper, the global mass matrix and load vector are not assembled. Instead, the eigenvalue
decomposition of the mass matrix for each element e is calculated and the load vectors are transformed
to the eigenvector bases. The system of equations for element e is expressed as

[Mc]{ac} = {fe}-

In the eigenvector basis,
O] [M][U{ae} = [0 {fe} = { e}

where [U,] is the matrix of eigenvectors of the elemental mass matrix. This results in the following
decoupled diagonal system for each element

[Ae]{de} = {fe}
The modal coefficients {a.} are transformed back to the physical space coefficients {a.} using
{ae} = [UE]{&e}-
The approximated elemental solutions
tue = [NoJ{a.} e=1,...,Nel (1)

are not continuous on the element boundaries. A smooth procedure based on the least square method
is presented below to achieve a continuous global solution.

Figure 1: Patch of elements for node i.
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Consider the following least square functional which gives the square of the error between the global
(2) and element (u.) solutions for the patch of elements associated to node i as illustrated in Figure 1

Nelp

SG%%=£{A;W—MJILWQw:Q (2)

where Nelp is the number of elements of the patch.
On each element e, the global solution is approximated as

= [Nc[{a}. (3)

Replacing the previous equation in (2), the minimum condition of functional § results in

Nelp

Nelp
(HAﬂJWMWJM:HAﬂJMWW

Assuming a nodal spectral Lagrange basis and using (1), the previous equation reduces to

Nelp Nelp
( U / Je|dQe> {a= | </ |Je|dQe{ae}) .
e=1 /8 e=1 Qe
For the global coefficient a;, the previous expression gives
Nelp Nelp
J|dQe | a; = (/ | Je deé)
(U [ )= Y (] e

where a! is the solution obtained for node i using the local solution of the element e. The term in
parenthesis in the left hand side is the patch measure (length, area or volume), while the right hand
side term in parenthesis is the measure of each element multiplied by the element solution for node 1.
Therefore,

Soy? meas(Qe)al 30" Seal

a; = = — . 4
o meas(Q) Sp W

Although the previous presentation considered a nodal basis, it may be also applied to modal bases
using Jacobi polynomials, as both bases span the same approximation space. Once the local coefficients
{a.} for a modal expansion are calculated, equation (1) is used to obtain the solution on the collocation
points, which corresponds to the coefficients of the nodal expansion due to the collocation property
of the Lagrange polynomials. A simpler approach is to use the smooth procedure (4) directly to the
modal coefficients.
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3 Elementwise explicit method

Consider the time-dependent discrete linear equation of motion for an undamped structure given by
[MI{U*} + [K{U"} = {R'}, (5)

where [M] and [K] are the global mass and stiffness matrices; {U*} and {U?} are the acceleration and
displacement vectors for the degrees of freedom (DOFs) in time ¢; { R'} is the vector of the equivalent
loads applied to the DOFs at time ¢. The purpose here is to integrate (5) in the time interval [to, ]
with n time steps of size At.

Given the displacement vectors for times t — At, t and t + At, the central difference explicit method
uses, respectively, the following approximations for the acceleration and velocity vectors in time ¢ [15]

({7} = @({U“N} Ut} + (U, (6)
[0 = o (U2 4 U+29), 7)

Substituting (6) in equation (5), the approximation for the displacement vector at t+ At is obtained
by the solution of a system of equations in terms of the mass matrix as

[M{UTH21} = (R}, (8)
where )
[M] = ao[M] (9)
and X
{R'} = {R'} = [KH{U'} + [M](a2{U"} — ao{U'~2}). (10)

The constants are given, respectively, by ag = ﬁﬁ’ a; = %At, as = 2ag and az = é For a lumped
mass matrix, the computational cost for the solution of (8) is trivial. However, as the explicit method
is conditionally stable, a small time step should be used to achieve convergence in time.

Given the initial displacement vector {U°}, the initial acceleration is obtained using equation (5)
as

{U%) = [M]7Y{R%) — [K{U"}). (11)

Expression (10) requires the displacement vector {U~2t} for ¢t = to, which it is obtained using
equations (6) and (7). Therefore,

—At 0 0y, (A1)? g

U ={U"} = AU} + ——{U"}. (12)
One of the main difficulties to develop an elementwise explicit procedure is related to the way the

Dircihlet boundary conditions are handled, as they influence the problem solution globally. For that

purpose, the external loads are considered in the respective elements where they are applied, as in the
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global assembling procedure. The homogeneous boundary conditions are replaced by the respective
reaction loads and assembled in the load vectors of the elements that share the DOFs where the
boundary conditions are applied. The values of the reactions loads are determined along the iterations
as explained below.

Given the initial displacement and acceleration vectors, equation (5) may be partitioned in terms
of the free (f) DOFs and those ones with homogeneous Dirichlet boundary conditions (d) as

{{R?-}}:lwff] [Myd] {{U}?}}+ K] (Kl {{U?}}.
{R3} [Maf]  [Mad {0} (K] [Kad] {0}
The reaction forces are calculated as
{RG} = My ] {UP} + [Kas] {U}. (13)

Observe that the vector {R?c} represents the external load vector {R°} for the initial time to.
For any time step ¢, the external load vector {R.} for the element e is obtained from the external
global load vector {R'} using the element DOF numbers and the smoothing procedure (4) as

(R} « {Rt};j. (14)

The previous equation means that the coefficients of the global load vector {R'}, which correspond
to the element DOFs, are multiplied by g—; and assigned to the element load vector {R.}.

The global initial condition vectors may be assigned to the element vectors using again the DOF
numbering by

(U} < (U°), {02}« {U° and {02} + {U°}. (15)
Based on that, the displacement vector {U; 2t} may be calculated for each element e as
(U2} = {02} — AU} + as{U7}. (16)
Using the smooth procedure, the global vector is calculated by

Nel

= = Ut (17)
e=1 p
and Nel is the number of elements.
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For each time step, the following system of equations, similar to (8), is solved for each element e
[MJ{UEFA) = {RL). (18)
The effective load vector for element e is
(R} = {RL} — (KU + M) (a2 {UL} = ao[{UZ21)). (19)

The mass matrix written in its eigenvector basis [X.] reduces to the eigenvalue matrix [A.] and the
solution of (18) in the physical space is given by

(UFB1) = [X,] (= [AJ L XT{RE)). (20)

ao

The velocity and acceleration vectors on each element are calculated, respectively, as
(U} = ao({U 2} = 2{UL} + {U21Y), (21)

{U8} = an(—{U 2 +{UEF2)). (22)

From the element solution vectors, the global displacement, velocity and acceleration vectors are
obtained by the assembling procedure smoothed using the element and patch measures. Therefore,

Nel
Se
e = o g (23)
p

e=1

Nel
S,

= Jwn g (24)
e=1 p

Nel

(i) = U{Uz}f;;. (25)

The coefficients of the previous global vectors which correspond to the homogeneous boundary con-
ditions are assigned zero values. Once the global vectors are obtained, the displacement, velocity and
acceleration load vectors {U!T2!}, {U!} and {U!} for each element e are obtained analogously to
equation (15).

The equivalent nodal force vector for element e is calculated as

{R.} = [MJ{U!} + [K U2} (26)

It can be observed that acceleration vector {Ué} is available for time step ¢, while the displacement
vector {U!At} is calculated for time ¢ 4+ At. This delay in time for the acceleration vector does not
affect the reaction forces for time ¢t + At. However, the forces for the free DOFs are not equal to the
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values for the external loads for the same time step. To solve this problem, a global load vector is
assembled from the element load vectors {R.} as

Nel

{Ry} = [J{R:}. (27)

The global external load vector { R**4*} is calculated for time ¢ + At and the following difference is
calculated

{AR} = {R""2} — {Ry}. (28)

This global difference vector is assigned back to the free DOFs of each element and used in the next
time step ¢t + At. Therefore,

(RS o (ARY . (29)

Observe that beginning from the second time step, only the residual force represented {AR} is con-
sidered. This procedure is repeated until the final time ¢; is reached.

4 Results

4.1 Interpolation problem

Consider the two meshes of hexahedra given in Figures 2(a) and 2(b). The function to be interpolated
is u(z,y, 2) = 23(z — 2)3y*(y — 4) in the domain [z,y, 2] € [0,2] x [0,4] x [0, 2]. Figure 3 plots the error
behavior for the given meshes and the eigenvalue based Lagrange and Jacobi mass matrices and the
spectral Lagrange mass matrix. It may be observed that the convergence rate for the approximations
using the spectral mass matrix depends on the mesh refinement.

The CPU times to solve the considered projection problem on the coarsest mesh with P = 6 were
3.0 seconds using the eigenvalue decomposition with Jacobi and Lagrange polynomials, 1.7 seconds
for the nodal spectral Lagrange mass matrix and 267.4 seconds for the global consistent mass matrix
calculated using Jacobi polynomials. In the case of the nodal spectral matrix, the relative error norm
was 7.11 x 1078, while for the other mass matrices, the relative error norms were about 10~°. To
achieve a similar relative error norm for the nodal spectral mass matrix, it was necessary to consider
P =8 and the CPU time was 2.1 seconds. For the mesh with 27 elements and P = 6, the CPU times
were 12.6 and 13.1 seconds for the nodal spectral and eigenvalue based Jacobi matrices, respectively.
To improve the accuracy of the solution obtained with the nodal spectral mass matrix from 1.74x 107!
t0 6.48 x 1071°, P = 8 was required and the CPU time increased to 16.1 seconds. These results depend
on the code implementation, the considered optimizations, mesh size and element order. The purpose
here was to give a qualitative behavior of the proposed least square procedure in terms of the CPU
time when compared to the spectral mass matrix.

Figure 2(c) illustrates a distorted mesh with 27 elements. In this case, the eigenvalue problem must
be solved for each element. The relative error norms of the approximations obtained for the Lagrange
consistent eigenvalue based and lumped mass matrices are given in Figure 3(c). It may observed that
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the solutions obtained with the two considered mass matrices achieve spectral convergence rates, but
again the convergence rate for the approximations with the lumped mass matrix is worse. The CPU
times for P = 6 were 15.0 and 2.0 seconds for the proposed algorithm and the lumped mass matrix,
respectively. The respective relative error norms were 4.89 x 107!° and 2.64 x 10~!4. However, 11.0
seconds were consumed for the calculation of the consistent mass matrices and only 2.5 seconds for
the eigenvalue decomposition for all elements. For P = 8, the relative error norm for the approximated
solution obtained with the lumped mass matrix was 1.32 x 10~'® and the CPU time 11.0s. Therefore,
for similar convergence rates, both procedures have also similar computational performance.

(c) 27 elements; 64 nodes.

Figure 2: Hexahedron meshes.

4.2 Time dependent cases

In this section, the explicit elementwise procedure is applied to a time dependent linear elastic solid
problem. The time interval [t,;t] = [0;0.25] with At = 0.0025s (100 time steps) and the mesh of four
hexahedra illustrated in Figure 4 are considered. Unity values are taken for the Young modulus (E)
and density (p) and the Poisson ratio is ¥ = 0.25. The consistent mass matrices are calculated using
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Figure 3: Error behavior for the projection problem in the hexahedron meshes.

Lagrange polynomials. The purpose here is to compare the convergence error for the explicit method
using the lumped and eigenvalue-based mass matrices.
The analytical solution for the displacement components is given by

1

ug(x,y,2) = mx4y4z4 sin(27t),
1

uy (@, y, 2) = mx‘*y‘lz4 sin(27t), (30)
1

uy(x,y,2) = mx‘ly‘lz4 sin(2mt).

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonca & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



An elementwise least square approach for explicit integration methods applied to elasticity 73

AV
NN

Figure 4: Mesh of four hexahedra used in the explicit method.

After the substitution of the analytical solution (30) in the Navier equations, the components of the
body force are

sin(27t)

fa= 5000 [—207r2:t4y4z4 — 24?9?22 (2% + 222%) — 64233 (y + 2) — 72x2y4z4] ,
in(27t

fy= % [—207r2x4y4z4 — 2429?22 (22y? + y?2?) — 64x3y3 3 (2 + 2) — 72x4y2z4] , (31)
in(2mt

[ = % [—20m?atyt 2t — 24a?y?22 (272 + y?2%) — 64a®y®23 (2 + y) — T220y* 27

The faces with coordinates x = y = z = 0 are clamped. For the other element faces on the domain
boundary, the traction field t = (¢,t,,t,) with the following components are applied:

in(27t
= % [42%y° 23 ((zy + 22)X + y2(A + 20))ng + 4uay® 2 (z + y)ny + dpay* 2% (z + 2)n.] ,
sin (27t
ty = % [4p2°y° 2 (@ + y)ne + 42°y°2° (M(yz + 2y) + (A + 2p)32)n, + 4pay®2 (y + 2)n.]
t, = M AuxPy 23 (2 + 2)ne + 4> 23 (v + 2)n,, + 423322 (Mxz + y2) + (O + 2u0)zy)n, | .
oo L4’y paty® 23 (y y y y pw)zy

(32)

where n = (n,,ny, n,) is the normal vector on the element faces. The previous expressions are obtained
using the Neumann boundary conditions given by Tn = t, where T is the Cauchy stress tensor.
For an isotropic linear elastic material, T is written in terms of the infinitesimal strain tensor E =
1(Vu+ Vu”) using the Hooke’s law as

T =CE
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and C is the fourth-order linear elasticity tensor. Its components are written in terms of the Lamé
coefficients A and p related to the Young modulus and Poisson ratio as

_ vE
S (1+v)(1-2v)’ (33)
)
F=sa+0)
The components of the initial displacement and velocity are:
uz = 0, uy = 0, u, =0, (34)
Uy = 1%%z‘iy‘lz‘l, Uy = %x‘ly‘lz‘l, Uy = %m‘ly‘lz‘i.

Figure 5 illustrates the relative error norms for the u, component at the final time ¢ of the explicit
method using the eigenvalue and spectral mass matrices and polynomial orders P = 2 to P = 5. It
may be observed that both results show spectral convergence, but the lumped mass matrix has a lower
convergence rate. Similar results were obtained for the u, and u, components. The under-integration
of the spectral mass matrix may be also observed for this fourth-order analytical solution for P = 2
to P =4. For P = 5, this fact can not be observed and both schemes have close error norms.

10 : :
-©-Lagrange eigenvalue
& -6-Spectral Lagrange
107
10°¢
T

10
107t

-8 L L L L L
10 2 25 3 35 4 45 5

Figure 5: Relative error for explicit method using the spectral and eigenvalue based mass matrices.
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5 Conclusions

This work presented elementwise interpolation and explicit methods based on the eigenvalue decompo-
sition of the element mass matrices and a least square smoothing procedure. The convergence rates of
these methods are still exponential and better when compared to the results for the lumped Lagrange
mass matrices.

In addition, the methods may be applied for any element shape and finite element bases. Due to the
local feature of the presented procedures, they seem to be very suitable in parallel and GPU based
architectures.
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Abstract

We deal with numerical analysis of inverse problems for plane anisotropic solids when measured data are
given only on the boundary of the domain. In this paper we have elaborated an iterative procedure to the
solution of inverse problems for plane anisotropic solids when input data measured from suitable states are
sufficient for determination of unknown material parameters. We derive the number of measured input states
and conditions for these measured input states which secure determinability of the numerical solution. We
deal with numerical experiments. We study influence of measured input data on stability of the numerical
solutions.

Keywords: inverse problems, anisotropic solids, PDE, FDM.

1 Introduction

Inverse problems are very important from a practical point of view and interesting from a theoretical
point of view as they are improperly posed problems. An important class of inverse problems is a class
of identification problems. These problems are important, for example, in the non-destructive testing
of materials, the identification of material parameters, the study of aquifer problems as well as for
electrical impedance tomography, etc.

We deal with analysis of inverse problems for anisotropic solids when measured data is given only
on the boundary of the domain. The inverse problems for anisotropic solids have special features
in comparison with those for isotropic solids. In order to solve anisotropic problems, more unknown
material parameters of governing differential equations than the total number of equations must be
determined and therefore, in order to determine them, we need input data measured from more than
one field state. These input states as we show cannot be chosen arbitrarily. This fact leads to new
theoretical problems in the analysis of inverse problems for anisotropic solids and also complicates
numerical analysis.
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For numerical analysis of such problems we apply discrete methods. These are very convenient
because in the case of practical problems we have to measure input states in discrete points. In this
paper, we have elaborated an iterative procedure to the numerical solution of plane anisotropic bound-
ary inverse problem when the input data measured from suitable states are sufficient to determine
the unknown material parameters. We derive the number of measured input states and conditions for
these measured input states which secure determinability of the numerical solution. We also deal with
numerical experiments. Since input data is measured in the case of practical problems, we also study
its influence on the stability of the numerical solutions. This approach is generalization of the methods
derived in Brilla [1]. Another approaches are derived in Grebennikov 2] and Grebennikov [3].

2 Problem formulation
Governing equations of plane anisotropic solids have the following form

(Cijkluk,l)’j + fi=0n9Q,4,75,k1=12, (1)

where c;;i; are elastic coefficients, u; are displacements and f; are volume forces. We assume that €
is a two dimensional Lipschitz domain. We apply the summation and differentiation rule with respect
to indices. The elastic coefficients are symmetric. It holds ¢;ju = criij = Cjini = cijik -

The equation (1) can be written in the following forms in

(Elug o + Bdug y + EBduy o + E3uy,)  +
(Bduy 5 + E2uy  + E2uy 5 + E5uy7y)’y + fe =0,
(Pdug » + E2uy ,y + E2u,y . + E5uy7y))z +
(E3uqe + Ebugy + Ebuye + Ebuyy)  + fy =0, (2)

where we use following notations ci1111 = E1, c1212 = F2, c1190 = E3, c1112 = F4, c1200 = E5,
C29229 = EG.

In the case of the inverse problems we have to determine the elastic coefficients we need for their
determination boundary conditions

E1(s)
EA4(s)

a1(8),E2(s) = a2(s),E3(s) = as(s),
a4(s),E5(s) = as(s),E6(s) = ag(s),
s € 0. (3)

In the case of the boundary inverse problems we have also to determine the displacements u, and
uy using measured values of the displacements u, and u, on the boundary 0€2. We consider for the
displacements u, and wu, Dirichlet boundary conditions
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uz(s) = g1(s), uy(s) = g2(s), s €0Q (4)

and over specified Neumann boundary conditions

Uz n(8) = g3(8), uyn(s) = ga(s), s€0Q, (5)

where (.),,, denotes the differentiation in direction of the outer normal.
In our approach we consider Neumann’s boundary problem (2), (5) in the following way. We consider
Hooke’s law

Tij = Cijkl€k,l,

where 7 is stress tensor and ¢ is strain tensor. Hooke’s law can be written for our 2D anisotropic
problem in the following forms

“Tox = Elug o + B (Ugy + Uy o) + Euy,y,
“Toy = Edug 5 + B2 (Ugy + Uy ) + EBuy 4, (6)
“Tyy = E3Ug 5 + Eb (Ugy + Uy z) + Ebuy 4.

Using (6) relations (2) and (5) can be written in the forms

u u _ u u — y
Toz,x + “Tayy + f2 =0, Toye + Tyyy + fy =0 inQ,

“Tea(8) = "1(8), Ty (s) = “J2(8), Ty (5) = “a(s), s € 9D (7)

However, in the case of 2D anisotropic problem, the system of equations (2) - (4), (6), (7) does not
form a complete system of equations and is not sufficient for determination of the unknown elastic
coeflicients. We show that for determination of the unknown elastic coefficients, it is necessary to add
input data measured from next two state of the displacements v, , vy, and w, , w,. For these next
states of input data we consider the equations and boundary conditions analogical to (2) and (4)

(Elvg 5 + Edv,  + Edvy, , + E3"Uy7y)’w +
(Bdvg 5 + E2v,  + B2y, + E5vy7y)vy + p. =0,
(Edvy oz + E20g y + E20y 5 + Ebvy ) | +
(E3vz,0 + Ebvg,y + Ebvy s + Ebvy,y)  + py = 0; (8)

Uav(S) = 95(3)7 ’UU(S) = 96(8)? s € 897 (9)
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(Elwg p + Bdwy y + Fdwy o + E3wy,,) , +
(Bwy o + E2wg ) + E2wy 4 + E5wy.,) | + 0 =0,
(Pdwy o + E2w, , + E2w, . + E5wy7y)ym +
(B3wy, 5 + ESwy  + Ebwy ,» + Eﬁwy,y)hy +q,=0;

we(s) = g7(s), wy(s) =gs(s), se€N

corresponding equations of Hooke’s law

Tow = Elvg o + E4 (Vg + vy ») + E3vy ),
Ty = B4y o + E2 (Vg + Uy 2) + Ebvy .
“Tyy = B30y o + E5 (v + vy,z) + E6vy 3

CTpe = Elwg o + B4 (wy  + Wy 5) + E3w, 4,
Tpy = Bdwy p + B2 (Wyy + wy) + ESwy y,
YTy = E3wg p + E5 (Wey + wy,.) + Ebwy,y

and corresponding equations and boundary conditions for stresses

v v — v v — o
Tz T Tayy +Pe =0, "Taya +Tyyy + 0y =0 in 2,

"Tox(s) = "G1(s), “myy(s) = "h2(s), Tay(s) = "is(s), s €

w w _ w w — >
Tewe + Tayy + e =0, Toye + Tyyw + @y =0 in €,

T (8) = wj1(5)7 wTyy(S) = "j2(s), szy(s) = wj3(3>7 s € 00.

I. Brilla

(15)

Now the question of whether the states u,, u, and v, v, and w,, w, can be chosen arbitrarily

arises. We show that these states cannot be chosen arbitrarily.

3 Problem solution

For solving boundary inverse problem (2) — (4), (6) — (15) we can use the following iterative procedure
which is generalization of the method for the solution of 2D orthotropic boundary inverse problems

derived in Brilla [1]:
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e determination of an initial approximation of the elastic coefficients E1°, E2°, E3°, E4°, E5°, E6°
as the linear interpolation of the boundary conditions (3);
e determination of the displacements u, u ; v, v and wQ, wy from (2), (8), (10);
u0 u,0

e determination of the stresses “7,, "7, . “Tg?y from (7) rewritten in the following forms

e = —fo— [E4%u) , + E2° (ul , + 0l ) + E5%u) ],

w 0 _ 0,0 0(,0 0 0,0
Toyy = —fo — [E1 Uy, + B4 (ury + uyT) + B3 uyy] )
u, 0 _ u,0 -
Tyy,y = —fy — Toy,o ing2
v-0 v.0 v.0 w0 w0 w0 ; M3 : 3 :
and "7y, TRy Uy U Taws U Tays Ty, USing similar equations which we obtain from (14) and (15).

All these equations we can consider as ordinary differential equations of the first order;
e determination of new state of the elastic coefficients F1', E2!, E3', F4'| E5! E6! from (6), (12)
and (13) using following formulas

08y Bl b
dOd — d9d9’ d2dY — d0d9’
Oy —diy o B 0
Bty — By B — 5y’
149 — by 1045 — b3y

E5' = 25 S5t F6' = 00—l
d3dy — dgdy dydiy — diodty

E1t

E3l = (16)

where
df = Ug,xwg,y - ug,ng,m dy = (ugx + ugy) wg,y - ug,y (wgﬂc + wgy) )
dg = ’Ug,mwg,y - ’Ug,ng,x’ dg = (Ugalﬂ + Ug,y) wgﬁl/ - Ug,y (wlohw + wgﬁl/) ’
dg = (ug,w + ug,y) wg,a: - ug,z (Ug,a: + v:(v),y) ) dO = ;(L)/,ng,w - ug,wwg,y’
dg = (Ug,x + Ug,y) w(a):,:n - vg,a: (wg,z + wg,y) ’ dg = Ug,ng,x - vg,zwg,yv
do - 2@ (wg,x + wg,y) - (ug,m + ug,y wg,zv
dyy = Ug,y (wg,x + wg,y) - (ug,x + ug,y) wgw’
d(l)l = vg@ (wg,w + wg,y) - (Ug,w + Ug,y) wg,aﬁ
diy = vy, (wy, +wy ) = (v, +05,) wy,,
B0 = “Tgxwg v ngmugﬁw bg ”Tgmwg’y — “’Tngg e
b = “Tf)ng _— wTBy g@, bS ngngT — ngyvg -
b = uTz?y (wgﬂf + wg,y) - sz?y (ug,w + u%y) )
bg = "Tyy (W +wiy) =7y (V)0 +03,) 5
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e we can continue with determination of u?, u;, vl v;, wl, w;, url “Ta}y, “T;y, vrl ”7';y, UT;y,

wrl,, vrk  wrl B2 B2 B3%, B4%, B52, E6, and etc.

X FATR) y
From (16) we can see that the iterative procedure can be used only if

did — didl # 0, didi — didt # 0,
dydiy — digdiy # 0,
i=0.1,.... inqQ,

it means that the displacements u,, u,; v,, v, and w,, w, cannot be chosen arbitrarily.

For determination of new states of the elastic coefficients we use the system of equations (6), (12)
and (13). If we consider only the system of equations (6) and (12) we have six equations with six
unknown elastic coefficients. However the determinant of the system (6) and (12) is equal zero, it
means that this system is not sufficient for determination of six unknown elastic coefficients. It is the

reason why we add input data measured from the third state of the displacements w,, w, .

4 Numerical analysis

For numerical analysis we can apply discrete methods. They are very convenient because in the case
of practical problems we have to measure input states in discrete points. We assume that the domain
Q) is rectangle. Using central differences we can rewrite the iterative procedure from previous part to
discrete form.

We deal with numerical experiments from mathematical point of view. This means that we construct
the problem with the exact solution, afterwards we compute the numerical solution of this problem
using discrete form of the iterative procedure and in the end we compare the computed solution with
the exact one.

We use discrete form of the iterative procedure with stopping condition such that the difference of
two computed consecutive states of the elastic coefficients is less than 10~7. We consider the following
domain 2 = (0,2) x (0, 1). For example for the following constant elastic coefficients

El1=10, E2=5 E3=2,
E4=1, E5=3, E6=38 (17)

the displacements

Uy = (@+1)>+@y+1), u,=(@y+1),
vy = (x+ 1), vy:(x+1)+(y+1)2,
wy, =(+1)+2y+1), wy,=3x+1)+(y+1) (18)

and corresponding stresses and volume forces
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“Tpe =20(x + 1)+ 3, “7py =2(x+1)+8, “ryy =4(zx+1)+11,
e = 4y + 1) + 11, oy =6(y+1)+6, Ty = 16(y + 1) + 5,

Yo =17, “Tpy =29, Y1y = 25;

fm:_207 fy:_2,
Pz = 763 Dy = 7167
gz =0, qy = 0

83

(19)

(20)

using (20) and the boundary conditions constructed from (17) - (19), using discrete form of the iterative
procedure we obtain on all meshes results at once with the error about 10=7% . Similar situation is

also for the linear material parameters.
Different situation is for the nonlinear material parameters. For example for

Fl=(z+1)(y+1)? E2=(z+1)(y+1), E3=(z+1)+y+1),
Ei=(y+1), E5=(x+1), E6=(z+1)>*y+1)

the displacements given by (18) and corresponding stresses and volume forces

“Tow = 2@+ 1+ 1)’ + @+ D) +20y+1), “my=3x+1)y+1)+(@=+1),
Uy = (@ + 1)+ (z+ D2y +1) +2(x + 1)+ 2(x + 1) (y + 1),
e =+ Dy + D2 +2y+ D2+ 2@+ Dy +1) + (y+1),
ey =3+ D)y + 1)+ (y+1), "y =2+ (y+1)2+2(x+1)+ (y+1),
Ure = (x+ D) (y+ 12+ (2 +1) +6(y + 1),
“Toy =5+ Dy + 1)+ @+1)+(y+1),
“Tyy = (x+ 1)y + 1) +6(z +1) + (y + 1);

fo=—4@+ D)y +1)?-3@x+1)—1, f,=—(r+1)>=2x+1)-3@y+1) -1,
pe=—(+1)°=3@+1)-20y+1) -1, py=-4z+1)>*y+1)-3@y+1) -1,
G=—(y+1)*=5(z+1)-2, ¢ =—(r+1)*-5(y+1)—-2

(23)

in the Table 1 we are able to see the percentage of errors in the computed solutions in the second
column with respect to the exact solutions of the meshes given in the first column. In the third column
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we report the numbers of iterations after which we obtain the numerical solution with the specific
stopping condition on the given mesh. We can see from the results that we obtain very small errors
for a course mesh and when the number of grid points increases, errors also increase slightly but are
still small.

Table 1: Results for the problem (18), (21)-(23).

Mesh Errors Number of

(%) iterations
8x4 2710°° 111
12x6 82107° 258
16x8 1.610°¢ 465

If we change the displacements

up = (+1)+2(y+1), uy=(y+1),
vy = (r+1),v, =3 +1)+ (y+1),
wy,=(x+1)+(y+1), wy=2x+1)+3y+1) (24)

for corresponding stresses and volume forces

"o = (¢ + 1)y + 1)+ (z+1) +3(y + 1),
Yoy =2+ 1D)(y+ 1)+ (z+ 1)+ (y+ 1),
Yy = (@ + 1) (y+ 1) +3(x+1) + (y + 1),
“Tee = (x+ 1)y +1)% + (z +1) +3(y + 1),
"oy = 3@+ D) (y+ 1)+ (z+1) + (y+ 1),
Ty = (e + D2y +1) + 4@+ 1)+ (y+ 1),
UTpe = (x4 1) (y + 1) +3(x + 1) +6(y + 1),
Uiy =3+ ) (y+ 1)+ 3+ 1)+ (y+ 1),
YTy =3+ D2y + 1)+ 4@+ 1)+ (y + 1); (25)
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fo=—@W+1)2=2x+1)-2, f,=—(z+1)?-2(y+1) -2,
pe=—(y+1)?=3x+1)-2, p,=—(z+1)*=3(y+1) -2,
Gz=—-(y+1)*=-3@x+1)—4, g=—(r+1)>-3@y+1)—4 (26)

we obtain similar results for the same elastic coefficients as it is shown in the Table 2.

Table 2: Results for the problem (21), (24)-(26).

Errors Number of

Mesh (%) iterations
8x4 191075 88
12x6 6.5107° 198
16x8 131074 356

For another elastic coeflicients

Bl=(z+1)>%(y+1), E2=(z+1)(y+1), E3=(z+1)+(y+1)
Ei=(y+1), E5=(x+1), E6=(z+1)(y+1)° (27)

the displacements given by (18) and for their corresponding stresses and volume forces

"o =2+ 1)+ D)+ (E+ D)+ 2y +1), Ty =3+ D(y+ 1)+ (z+1),
“ryy = (1) + @+ D)y + 1)+ 22+ 1)+ 2+ 1) (y + 1),
"Taw = (e + Dy + 1?2y + 1) + 20z + Dy +1) + (y + 1),
"oy =3+ Dy + 1)+ (y+1), “myy =20+ )y + 1> +2@+1)+ (y+1),
Ut = (x+ 12y + 1)+ (x4 1) +6(y + 1),
Uy =5+ D)y + 1)+ (z+ 1)+ (y+1),
Ul = (@ + 1)y +1)2 +6(x 4+ 1) + (y + 1); (28)
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fo=—6(z+1*y+1)-3@x+1)—-1, f,=-2@+D)(y+1)—-2x+1)-3@y+1) -1,
Pr=—-2+1)(y+1)—3x+1)—-2(y+1) -1,
py=-6(x+1)(y+1)*=3y+1) -1,
o =2+ (y+1)=5(x+1)—2, ¢ =-2(+1)y+1)—-5y+1)—2 (29)

as it is obvious from the Table 3 the accuracy of computation is not so good. This fact is caused by
the discretization error, which is in this case rather greater than in previous cases.

Table 3: Results for the problem (18), (27)-(29).

Moesh Errors Number of

(%) iterations
8x4 3.6 123
12x 6 4.7 277
16 x 8 6.1 975

However using the displacements given by (24) we obtain for the same elastic coefficients and
corresponding stresses and volume forces very good results as we can see from the Table 4 because

now the finite approximation of our problem has improved.

rm—(x+1>2(y+1> +(z+1)+3(y+1),
=@+ y+ 1)+ (@+1)+3y+1),
=@+ Dy+1D?*+3@+1)+(y+1)
“rm=<x+1)2(y+1) +(z+1)+4(y +1),
"oy =3@+ D)y + D)+ (@+1)+ (y+1),
Ty = (@ + D)y + 1) + 4+ 1)+ (y + 1),
Urpe = (@ + 1)2(y+ 1) +3(x +1) +6(y + 1),
Uiy =3+ 1) (y+ 1)+ 3+ 1)+ (y+ 1),
Ty = 3@+ Dy +1)? +4(x + 1)+ (y + 1); (30)

)
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fo=—"2@+Dy+1) —2(x+1)—
pe=-2@+(y+1) —3x+1)—
Gz =—2(x+1)(y+1)—-3x+1)—

2, fy="2@+)y+1)-2(y+1) -2
2, py=-2@+)(y+1)-3@y+1) -2,
4, q=-6(@+1)(y+1)-3(@y+1) -4 (31)

Table 4: Results for the problem (24), (27), (30), (31).

Mesh Errors Number of

(%) iterations
8 x4 871076 108
12x6 23107° 225
16 x 8 1.410°° 594

Until now we considered that all input data are exact numbers but when measured they turn
out to have numerous errors in measurement. We determine condition number only by numerical
experiments. The dependence of the condition number on the number of grid points is shown in Table
5. This means that the iterative procedure is stable.

Table 5: Range of the condition number.

Condition
number

8x4 22-99
12x6 39-17.7
16x8 6.4-29.1

Mesh

5 Conclusion

In this paper we have elaborated iterative procedure to the numerical solution of plane anisotropic
boundary inverse problems when the input data measured from three suitable states are sufficient for
determination of six unknown elastic coefficients.
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From computed examples we can see that the errors of computed solutions depend on the discretiza-
tion errors. If we want to obtain better results we have to use better discretization scheme. We also
study influence of measured input data on stability of the numerical solutions and we obtain that the
iterative procedure is stable.

This work was supported by the grant VEGA 1/0687/09 of the Grant Agency of Slovakia.
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Postbuckling analysis of aeronautical panels
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Abstract

Flat and curved panel elements constitute a major portion of the aircraft structure. They are found in the
aircraft components as primary load carrying structures (such as wing surfaces), horizontal and vertical sta-
bilizers, and fuselage sections. With the advent of the new joining techniques such as Friction Stir Welding
(FSW) and their incorporation in the aircraft structures there is an imperative need for a better understanding
of their behavior. To this end, more adequate methods of analysis, taking into account their specific features,
have to be developed and implemented in order to exploit the considerable load bearing capacity of these
panels in the postbuckling regime.

Within this context, this paper presents a numerical model for postbuckling analysis of aeronautical panels
manufactured using friction stir welding joining technology (FSW). The proposed model takes into account
material and geometric nonlinearties, geometric imperfections, failure as well as the mechanical interaction
between skin and stiffener in the welding zone. The predicted postbuckling performance of the FSW panels
was compared with numerical results obtained for similar riveted panels. The simulations indicated that the
FSW panel has a better postbuckling performance with respect to the riveted panel. It was also found that
theoretical predictions significantly underestimate the buckling load of aeronautical stiffened panels.

Keywords: FSW, stiffened panels, postbuckling, finite elements.

1 Introduction

Stiffened panels are widely used in fuselages and wings to build structurally optimized and lightweight
airplanes. Buckling and post-buckling are major concerns for those parts. In most applications it is
required that those panels resist buckling and support loads in the range of post-buckling in order
to save some structural weight. Thus, the understanding of buckling and post-buckling is essential in
aircraft design.

Panels are composed by a board member (skin) and stiffeners. They are very simple to manufacture
and can endure a high load-to-weight rate. Therefore they are very attractive for aerospace and
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shipbuilding industries. Although they represent only a small fraction of the total structural weight,
they contribute substantially to the stability and load bearing. Stiffeners are used for both to increase
the buckling tension of the plate, so as to bear some of the compression loads. The stiffeners are sized
to buckle at approximately the same tension that the skin. In that way, structures are more efficient
and keep the aerodynamic softness until higher levels of loading.

Four forms of instability may occur if the stiffened panels are subjected to compression loading:
plate induced overall buckling (PI), stiffener induced overall buckling (SI), stiffener tripping (ST) and
plate buckling (PB). According to Wang et al. [1], it is common for the panel to start buckling with a
local buckling of the skin. When tensions reach very high values the local buckling evolves into global
buckling. The most critical condition for the panel takes place precisely in this passage from local to
global buckling. At this time, the panel completely loses strength and that’s when final failure occurs.
The presence of rivets or the material characteristics of the joint may reduce the panels resistance and
change the failure modes [2].

There is no theoretical solution for the local failure tension. The constraints in the boundary between
flange and plate elements are unknown and it is not precisely understood how the tension increases in
the regions of the corners [3]. Therefore, solving the problem using the finite element code is more than
welcome. The correct modeling of the problem and the numerical solution allow us to solve problems
which would only be possible experimentally.

Since the mechanical properties of FSW joints were superior to those of the rivets, the FSW joint is
able to replace without change the rivets in a wide range of applications. However, for the aerospace
industry, it is not only important that the FSW joints are mechanically superior to the rivets. It is
as important that the joints are equally or more efficient than rivets in buckling and post-buckling
loading in order to guarantee lighter structures. This work aims to study the replacement of rivets by
FSW in aeronautical stiffened panels. It intends to benchmark the performance of two similar boards
- a riveted and welded by FSW — in buckling and post-buckling because these are the most critical
situations for these structures. In this work the finite element method has been used for this purpose.
The finite element method is available in several commercial software. Here we opted for the use of
ABAQUS which has shown satisfactory results in similar studies [4].

To simplify the simulations, plate and stiffeners were modeled as Reissner-Mindlin plate elements.
The FSW joint was modeled as solid element with the properties proposed by Marques [5] and Fio-
ravanti [6] and the rivets were modeled as beam elements. We proved that these simplifications can
consistently represent the actual panels and provide good estimates on the behavior of both panels
under buckling and post-buckling.

2 Finite element modeling

2.1 Skin/stiffener interface model

The proposed skin/stiffener interface model was developed based on pull-out tests for the two repre-
sentative samples of the panels to be studied — one using FSW joint and the other rivets for comparison
purposes. The first step in the finite element modeling was to recreate such pull-out tests in Abaqus
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and verify if the simulation results provided by the software were consistent with the experimental data
available in the literature. The dimensions of the specimens used for the pull-out tests and simulations
are represented in Figure 1.

PE1105-F1

PE11054-F1

127 | MS14218AF4-4
/" (2 PLACES)

120

F55.0L27
I 125 ; /_<P -
snIn s | ° l g
l 1 ° S(i.lb

130.0 130.0

(a) Riveted junction (b) FSW junction

Figure 1: Specimen dimensions for pull-out tests.

The skin and the stiffeners are the major tangential load carriers. Therefore they could be modeled
as plate elements in Abaqus. Rivets were modeled as beam elements and the FSW joint as a solid
element. It was firstly intended to model the rivets as fasteners — a property that is available on
Abaqus. The fasteners determine a kinematic connection between two nodes and allow the definition
of boundary conditions for the six degrees of freedom for each node. However, it is not possible to add
models of plasticity and failure which made the use of this feature impossible. Instead we used beam
element with constraints in its outer nodes. This works exactly as the fasteners, with the advantage
that it is possible to impose models of plasticity and failure. The setting of the rivets to the skin and
the stiffeners is represented by Abaqus constraint * TIE*, as we can see in Figure 2. The TIE constraint
restricts movement of the nodes in the six degrees of freedom, working similarly to the rivet’s head.
The skin of the panels is constructed in AA-2024 and the stiffeners are in AA-7075. The properties of
both alloys can be found in |7, 8]. The rivets used in the studied panels are MS14218 AD4-4 rivets. This
means that they are AA-2117 rivets with 4 mm diameter and 4 mm length. The properties of AA-2117
alloy were also extracted of [7,8]. Marques [5] modeled the mechanical properties of FSW joints in
aluminum alloys. In the present paper, the mechanical properties of the joint’s ZAT region studied
in the aforementioned work are used to model the solid element that represents the FSW joint in the
panels. Fioravanti [6] obtained the mechanical properties of FSW joints welded in aluminum alloys
with different tools and provided important information about the failure of the joint. To represent the
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failure behavior of the FSW joint of this work, we found appropriate to assume use of tools with 12 mm
shoulder, 1250 rpm, 10 mm/min feed rate, according to Fioravanti’s work [6]. It was also important
to model the contact between the stiffener and the skin to avoid penetration of the stiffeners in the
skin during the simulation. The modeling of contact in Abaqus is done by applying the iteration of
contact between surfaces (surface-to-surface contact) one desires to establish contact. In this work, it
was sufficient to define property contact as tangential and frictionless, but Abaqus has several options
for more complex needs.

surfaces surfaces

~—_ contact X . B
/ L ~ =
contact ~ X i I

contact

ik 5 57mm contact
] e
D joint material
1.27 mm 0.77 mm
| | AA2024
i |
—a AA7075
I 1mm
3 mm |
| | |
] \
1.27 mm 0.77 mm 1.27 mm

Figure 2: Skin/stiffener mechanical interaction.

The modeling of the specimens includes plastic behavior of materials, failure models and iterations
of contact. However, not all methods of analysis for Abaqus are able to deal with these peculiarities.
To represent nonlinear problems like these, we chose to use the method of analysis ¥ DYNAMIC
EXPLICIT. The * DYNAMIC option was chosen precisely because it is capable of dealing with
nonlinear problems. EXPLICIT refers to the method of solution. In this case, ABAQUS uses small
increments of time that allow the solution to proceed without iterations and therefore without the need
to recalculate the tangent stiffness matrix at each iteration. The DYNAMIC EXPLICIT * procedure
was designed for the analysis of dynamic events, but also applies to quasi-static processes, as happened
here.
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The analyses were carried out under displacement control by using the dynamic relaxation method.
This method consists in loading the structure quasi-statically in a way that the dynamic effects are
minimized. To minimize the dynamic oscillations, a Rayleigh proportional damping is defined as a
linear combination between the tangential stiffness matrix and mass matrix [9].

The pull-out problem boundary condition is the restriction of all six degree of freedom of the skin.
At the upper end of the stiffener, a displacement of 2.5 mm was prescribed, so to have as output of
the simulation the load of that same end.

2.2 Stiffened panel model

The panels studied in this work are represented in Figure 3 and their dimensions are shown in Figure
4 and Table 1.

Figure 3: FE model of the pull-out specimens.

In the second round of simulations, the whole panels were compressed by imposing longitudinal
(y direction) uniform displacement in one of its transverse edges (y = L). In y = 0, the condition
of support is assumed to be simply supported. The longitudinal edges are free. In the central panel,
rotation in Z is restricted in order to force symmetric displacements with respect to the free edges.
Figure 5 illustrates those boundary conditions.

One of the panels has its stiffeners attached by rivets using the same spacing between the rivets
as in the pull-out model. The second panel has the stiffeners attached to the skin by the FSW joint
with the same characteristics as the FSW joint of its respective pull-out model. ABAQUS assumes
that the geometry of the panels is perfect. Therefore, the direction of buckling which develops in
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Figure 4: Typical fuselage panel and stiffeners.

Table 1: Panel dimensions.

Skin Stiffener
AA2024 AAT057
L (mm) 224 L (mm) 224
bs (mm) 163 t, (mm) 18

by (mm) 70 by, (mm) 1.2
b

ts (mm) 1.00 by (mm) 17
tpea (mm) 0,27 ¢, (mm) 1,2
bpaa (mm) 23 by (mm) 5

ty (mm) 3

the nonlinear analysis is arbitrary, and small changes in the numerical formulation of the problem
can cause the buckling direction to change. The only way to prescribe the direction of buckling is
to insert imperfections into the models. For each of the panels, this was done using the result of a
previous analysis of linear buckling. The linear buckling analysis is performed using the method of
analysis * LINEAR BUCKLE available in Abaqus. The loads and their buckling modes were obtained
by solving the eigenvalue buckling problem [9]. The determination of eigenvalues and eigenvectors was
numerically solved using algorithms of subspace iterations available in the software. The post-buckling
simulations were performed similarly to the pull-out simulations. Materials, constraints and contact
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Figure 5: FE model of a typical fuselage panel and stiffeners.

surfaces were modeled as previously. The method chosen was also * DYNAMIC EXPLICIT applied
quasi-statically. The meshes allocated to the various elements were the same. In the input file we
added the command line * Imperfection, FILE = linear buckling, le-6. This adds to the panel an
imperfection with the shape of the first linear buckling mode (available on our linear buckling output
file) and maximum amplitude le-6 mm.

Abaqus uses the Updated Lagrangian formulation to create the mesh. It divides the domain into
nodes and elements which deform and move with the deformation of the material. For the skin, rivets
and stiffeners, a square structured mesh was chosen. For the solid representing the FSW joint, it was
chosen a solid hexahedral structured mesh.

3 Numerical simulations

3.1 Pull-out tests

The results of the pull-out simulations are shown in Figure 6 and Figure 7. We can see that the
adopted models provide a good match with the experimental test, confirming that they are sufficiently
representative of the real scenario.
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Figure 6: Comparison between numerical predictions and experimental results for the riveted junction.
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Figure 7: Comparison between numerical predictions and experimental results for the FSW junction.

3.2 Postbuckling and collapse analyses

The postbuckling analyses were performed using a two-step procedure. Firstly, we obtained the results
for the linear buckling analysis. As said before, the important issue here was not to determine the
buckling load, but get the buckling mode to serve as imperfection for nonlinear analysis. Table 2 and
Figure 8 show the results of linear buckling analysis of the two panels.

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonca & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



Postbuckling analysis of aeronautical panels manufactured using friction stir welding technology 97

Table 2: Eigenvalues comparison.

Eigenvalues
Riveted panel 12.79
FSW panel 14.17

(a) Riveted junction (b) FSW junction

Figure 8: Buckling modes.

The riveted panel’s eigenvalue is slightly smaller than the one for the FSW panel, indicating that in
the linear analysis the second one resists a little more loading before losing its stiffness. The panels have
approximately the same stiffness module until the failure. The stiffness module decreases drastically
when buckling starts — at a load of approximately 40 kN for both panels. The initial buckling mode is
local, so buckling occurs only in skin members between rivets. The collapse of the panels occurs when
the buckling mode changes from local to global — then, the stiffeners also buckle. The FSW panel
requires a load slightly higher than the riveted panel for the inversion and the consequent collapse to
occur. Figure 9 and Figure 10 show the evolution of buckling until failure of riveted panel and FSW
panel, respectively.

In both panels, the failure starts with the skin’s local buckling and evolves onto global buckling
along the post-buckling range, finally crashing when the weld or rivet yield. We can see that less stable
members (skin) suffer elastic buckling and the most stable portions of the panel section (stiffeners)
suffer an axial inelastic compression.

The most critical condition for the panel buckling occurs in the transition from local buckling to
global buckling. At this point, the panels loose all resistance, failing. This happens immediately after
the inversion, approximately 153 kN to FSW panel and 149 kN to the riveted panel. This values are
summarized in Table 3.

The riveted panel is the first to loose stiffness, enter plastic deformation mode, global buckling, and

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonca & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



98 I. Cavallante, M.V. Donadon, A.R. de Faria, P. Rizzi, S.F.M. de Almeida

Load =45000 N Load =55000 N

Load = 65000 N Load =120000 N

Load =140000 N Local failure

Figure 9: Predicted buckling evolution for riveted panels.
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Load = 50000 N Load = 87000 N

Load =130000 N

Load =110000 N

Load =150000 N Local failure

Figure 10: Predicted buckling evolution for panels manufactured using FSW.
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therefore failing. Its failure loading is very close to the theoretical failure load of 150kN, predicted
according the methods of reference [2|. The FSW panel failure loading is 3% higher than the failure
loading of the riveted panel. When buckling occurs, the stiffness moduli decrease, and tensions grow
slowly with respect to the increase in the displacements. This indicates that the panels have lost
stiffness, but still are capable of sustaining the loading. The structural performance of both panels in
the post-buckling regime was evaluated based on the Global Stiffness Degradation Parameter (DG) [10],
which is defined as Dg = 1 — Kg/ Ky where Ky is the initial stiffness defined by the linear portion of
the load-displacement curve and K is the secant stiffness extracted from the load-displacement curve
in the post-buckling regime. Figure 11 shows a comparison in terms of load-displacement and global
stiffness degradation parameter between riveted and FSW panels.

Table 3: Failure load comparison.

Theoretical [2] Abaqus riveted Abaqus FSW
Failure load (kN) 133 149 153
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Figure 11: Structural performance comparison between riveted and FSW panels: (a) Load-
displacement curve, (b) Global stiffness degradation parameter.

The failure of the riveted panel is abrupt. When the first rivet fails, the panel loses completely its
stiffness, and it is not able to bear any more loading. FSW panel fails more smoothly. Only a small
portion of the joint breaks, and the panel does not fail immediately. It is only when a larger share of
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the joint breaks that the panel fails completely. Thus, a larger load is required to trigger the failure
of the FSW panel. Besides, the FSW panel behaves much better after failure than the riveted panel
does, because it supports some load after the initial rivet failure.

4 Conclusions

The development of FSW joint promises a technology that can replace the rivets in aircraft appli-
cations. This study aimed to evaluate the buckling behavior of an aircraft stiffened panel with FSW
joints compared to the equivalent riveted panel to prove the benefits of using FSW instead of rivets.
Two flat stiffened panels, typical of the fuselage structure were modeled and simulated in the finite
element software Abaqus. The skin and the stiffeners were modeled as plate elements. The rivets were
modeled as beam elements, and the FSW joint as a solid. The mechanical properties of FSW joint
were modeled as suggested in [2] and [3]. The first step of the study was to validate the junction model.
This was done by comparing pullout tests simulated in ABAQUS with experimental values available
for both panels. The simulation results were close to the available experimental data, proving to be
possible to adopt the proposed simplifications in the buckling analysis. Once validated, the full panel
models were simulated for nonlinear buckling. This was done using the *EXPLICIT DYNAMIC mode
of Abaqus. The panels were simply supported at y = 0. A 2.5 mm displacement was prescribed at
y = L, which was responsible for the buckling and failure of the panel. The edges + = 0 and x = L
were free. The plasticity and failure modes of materials were included in this modeling strategy. The
simulation results showed that the FSW panel has a higher buckling load with respect to the riveted
panel. The FSW panel failure load was 27% greater than the theoretical value provided by the Boeing
method of [2], and 3% higher than the simulated riveted panel. In addition to collapsing at a higher
load, the FSW panel did not immediately lose all of its ability to bear loading after initial failure.
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Abstract

In this work, the mechanical response of a composite material based on glass fiber reinforced polymer (GFRP)
was analytically predicted as a function of strain rate and temperature and subsequently compared with
experimental data. It was shown that for the temperature range from 20 to 80 °C at varying strain rates,
the predicted elastic properties of the composite agreed closer. The agreements between the analytically
predicted and experimentally determined stress—strain curves of the composite were found to be dependent on
temperature and strain rate. The experimental and analytical research data and the approaches presented in
this work should significantly extend our knowledge of the effect of elevated temperatures on the mechanical
behavior of high temperature polymer matrix composites.

Keywords: mechanical response, GFRP, strain rate effect, temperature effect, experiments, modeling.

1 Introduction

Over the last decade, composite materials have been used to repair damaged gas and liquid trans-
mission pipelines. Mechanical damage involving dents with gouges is one of the leading causes of
transmission pipeline failures in terms of both static and cyclic pressure loading. Because of the
severity of this defect type, pipeline companies are required to respond to these anomalies by either
removing damaged sections or repair using welded sleeves. Since in some fields repair work cannot be
performed using heat, composite materials gain a significant importance. Composite materials have
been used to repair corroded pipelines and their use has gained wide acceptance across the pipeline
industry. However, the mechanical responses of fiber-reinforced polymeric composites are sensitive to
the rate at which they are loading and temperature operation. In many technological applications,
under dynamic loading conditions, the response of a structure designed with static properties might
be too conservative. The main reason is that mechanical properties of composites vary significantly

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonca & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



104 J.L.V. Coelho, J.M.L. Reis and H.S. da Costa-Mattos

with changing the strain rate and temperature. Unlike metals, which have been studied extensively
over a wide range of strain rates and temperatures, only limited amount of information is available
on the effects of strain rate and temperature on the response of fibrous composites.

Many researchers studied composite materials at different strain rate and others have studied their
behavior at different temperature but few combined both.

The work performed by Rotem and Lifshitz [1] investigated the tensile behavior of unidirectional
glass fiber/epoxy composites over a wide range of strain rates from 1076 to 30s~! and found that
the dynamic strength is three times higher than the static strength and the dynamic modulus is 50%
higher than the static modulus. However, while investigating angle ply glass/epoxy laminates, Lifshitz
[2] found that the elastic modulus and failure strain were independent on the strain rate and the
dynamic failure stress was only 20-30% higher than the static failure stress.

Tensile tests were performed on a glass epoxy laminate at different rates (1.7 10~2-2000 mm/s) by
Okoli and Smith [3,4] to determine the effects of strain rate on Poisson’s ratio (ratio of transverse
strain to the corresponding axial strain below the proportional limit) of the material. Poisson’s ratio
was found to be rate insensitive. It was suggested that the rate insensitivity in Poisson’s ratio of the
laminates tested is due to the presence of fibers in the composites. The effect of strain rate on the
tensile properties of a glass/epoxy composite was investigated by Okoli and Smith [5] strain rate was
attributed to the increased strength of the glass fibers with strain rate. In other studies the effects of
strain rate on the tensile, shear, and flexural properties of glass/epoxy laminate was investigated by
Okoli and Smith [3-6].

Tensile modulus increased by 1.82%, tensile strength increased by 9.3%, shear strength increased
by 7.06%, and shear modulus increased by 11.06% per decade increase in log of strain rate. The above
observation was in agreement with the results of the investigation conducted by Armenakas and
Sciamarella [7] that suggested a linear variation of the tensile modulus of elasticity of unidirectional
glass/epoxy composites with the log of strain rate.

A systematic study ofthe strain rate effects on the mechanical behavior ofglass/epoxy angle ply
laminates was done by Staaband and Gilat [8, 9] using a direction tension split Hopkinson bar appa-
ratus for the high strain rate tests and aservo hydraulic testing machine for the quasi-statictests. The
tensile tests at higher strain rates (in theorder of 1000 s~!) showed a marked increase in the maximum
normal stress and strain when compared to the values obtained in the quasi-static tests. Although
both fibers and matrix are strain rate sensitive, the fibers were thought to influence laminate rate
sensitivity more than the matrix.

To achieve the high performance required in the material’s projected applications, a good under-
standing of the dynamic deformation of GFRP under different temperatures is essential.

The aim of this paper is first to present experimental results illustrating the effect of strain rate and
temperature on the mechanical response for GFRP under a wide range of strain rates and temperatures
and then compare to analytical models.
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2 Experimental work

The apparatus and procedure used to obtain the tensile properties in the GFRP laminates are
described below.

The tensile tests were performed according to the method prescribed in ASTM D3039 [10]. The
test specimens were cut from hand lay-up sheets. The glass was a cross-ply plain weave e-glass [0/90]
fabric with 326 g/cm? weight. The composite had a fiber weight fraction of 70% with 8 layers of glass.
The epoxy resin system used was RR515 from SILAEX§based on a diglycidyl ether bisphenol A and
an aliphatic amine hardener, being processed with a maximum mix ratio of 4:1 (with low viscosity).
The resin systems properties provided by the manufacturers are presented in Table 1.

Table 1: Properties of the epoxy resin.

Property Epoxy

Viscosity at 25°C p (cP) 12000-13000
Density p (g/cm?) 1.16
Heat Distortion Temperature HDT (°C) 50
Modulus of Elasticity E (GPa) 5.0
Flexural Strength (MPa) 60
Tensile Strength (MPa) 73

Maximum Elongation (%) 4

The specimens were cut 250 mm by 25 mm, leaving a gauge section of 200 mm. The tensile tests
were performed on a Shimadzu AG-X tensile testing machine at 3 different strain rates, 1.6 1072,
1.6 1074, 1.6 10~ 3s~!. Attached to the testing machine a thermostatic chamber was used to set the
temperature test environment. The test temperature used was, 20°C, 40°C, 60°C and 80°C. These
temperatures were chosen since heat distortion temperature is 50°C, so tests were performed at HDT+
30°C.For each temperature the GFRP specimens were tested at all strain rates.

3 Results and discussion

3.1 Experimental results

Experimental data determining the dynamic response of a composite structure loaded at different
strain rates is limited by the range of strain rates, which can practically be applied for a particular
test method. It is desirable to obtain information about strain rates outside the range that can be
achieved experimentally, in order to predict the behavior of materials over very long loading times.

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonca & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



106 J.L.V. Coelho, J.M.L. Reis and H.S. da Costa-Mattos

Figure 1 presents the typical stress vs. strain results of GFRP at 20°C, 40°C, 60°C and 80°C and
at all strain rates used (1.6 1075, 1.6 1074, 1.6 107357 1).
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Figure 1: Stress vs. strain curves for GFRP at 20°C, 40°C, 60°C and 80°C at 1.6 1075, 1.6 1074, 1.6
1073 s! strain rates.

Analyzing the stress-strain curves presented in figure 1 it is clear that only the temperature affects
the modulus of elasticity. Increasing temperature, modulus of elasticity decreases making GFRP less
stiff. The modulus of elasticity, F, measured at 20°C, 40°C, 60°C and 80°C were 70.3 GPa, 66.5 GPa,
45.2 GPa and 32.11 GPa, respectively.

Figure 2 displays the stress vs. strain curves for GFRP at 20°C, 40°C, 60°C and 80°C at all strain
rates used in the research where 1, 2 and 3 means 1.6 1075, 1.6 1074, 1.6 1073 s~! strain rates,
respectively.

Analyzing the stress vs. strain curves presented in figure 2 at all temperatures tested the ultimate
tensile strength are significantly affected by the strain rates, i.e. high strain rates, elevated ultimate
tensile strength and lower strain rate contributes to lowering the ultimate strength. Also, at 80°C,
softer failure occurs, GFRP becomes less brittle as temperature increases. Table 2 presents the ultimate
strength in MPa of GFRP at different temperatures at 1.6 1075, 1.6 10™4, 1.6 1073 s~! strain rates.

From table 2 it can be seen that at higher loading rate leads to high ultimate strength. At 20°C,
laboratory temperature, a decrease of 15.5% is observed when loading rate decreases 10 times compared
to standard strain rate. Also an increase of 5.8% is computed for 10 times higher strain rate. This
behavior follows all tested temperatures, i.e., increasing loading rate, higher ultimate strength and the
opposite occurs for strain rate decrement.
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Figure 2: Stress vs. strain curves at 20°C, 40°C, 60°C and 80°C at all strain rates.

Table 2: Ultimate Tensile Strength (MPa) at different temperatures at 1.6 107°, 1.6 1074, 1.6 1073
s~! strain rates.

Strain Test Temperature (°C)

rate (s~) 20 40 60 80

1.6 x 1075  227.46 + 12.46 214.92 & 12.73 113.44 + 11.87  72.61 + 7.06
1.6x 1074  269.23 &£ 15.98 240.44 & 14.32 141.85 + 4.96 86.21 + 11.23
1.6x 1073  284.95+£5.1 27324 £ 583 153.61 + 3.36 101.61 & 10.39
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3.2 Temperature dependency

According to the test results, see figure 2, the modulus of elasticity decrease substantially with tem-
perature, lowering GFRP stiffness. Figure 3 displays the modulus of elasticity as function of test
temperature. This behavior can be predicted following a polynomial function of the third degree
displayed in equation 1.

E = 0.0046% — 0.006070° + 2.42186 + 42.677 (1)

where F is the modulus of elasticity in GPa and 6 represents the test temperature in °C.
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Figure 3: GFRP modulus of elasticity at different temperatures.

3.3 Ultimate Tensile Strength dependency of strain rate at different temperature.

The experimental results showed that the modulus of elasticity are not affected by strain rate, €, in a
tensile test. However, the ultimate tensile strength are highly sensible to strain rate variations. The
main objective of this section is to propose a simple analytical model which describe the strain rate
influence in the ultimate tensile strength, o,, at different temperatures, 6.

For the ultimate tensile strength o, is proposed

o0 () = K(6)eN (2)

where K () is a function of the test temperature and N is a constant in which both can be exper-
imentally determined using the least square method from the o x ¢ or, in a simple form, from
the log(oy) vs. log(é) supposing oy is equal to oy obtained in a test at é = 1.6 x 10~%. Under
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this approach the experimental curve is approximated to a straight line in a log vs. log where
N is the slope of this straight line and log (K (6)) the vertical axis cross point, since log(oy) vs.
log(é) = log(K (0)éN) = log K () + N log(é).

Figure 3 presents the experimental results (oy,€) at different test temperature.
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Figure 4: Ultimate strength vs. strain rate. Experimental and model.

The values used for K () followed equation 3 and N was 0.06.

K (6) = 0.0066> — 0.94056° + 38.970 — 26.696 (3)

The comparison between the proposed model with experimental results are presented in table 3.

According to table 3 we can evaluate that the experimental results are within or close to the ana-
lytically predicted ranges for the entire temperature and strain rate range considered.The maximum
variation observed was 7.9% at 60°C at 1.6 x 10~ 4s™1.

4 Conclusions

The mechanical response of a cross-ply glass fiber reinforced plastic (GFRP) composite was exper-
imentally measured for temperatures ranging from 20 to 80 °C at three different strain rates (1.6
107°, 1.6 107%, 1.6 1072 s~!) and predicted based on the fundamental properties of its constituents
using an analytical and approach. These results showed that GFRP is strongly affected by strain rate
and temperature. In particular the ultimate tensile strength is only dependent from strain rate and
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Table 3: Comparison between proposed model and experimental test results.

Strain

Temperature Rate o, EXP oc.MOD %
(°C) (1) (MPa) (MPa)  variation
20 1'06,’5‘ 227.46  230.02 +1.1
1'0671{ 269.23  264.09 1.9
166_2( 284.95  303.22 +6.4
40 1'06,§ 214.92 212,53 1.1
166,1( 240.44  244.02 +1.5
%ﬁj 273.24  280.17 +2.5
60 1'06_’5‘ 11344  114.43 +0.9
166,1‘ 131.38  141.85 +7.9
1'06_}3{ 150.85  153.61 +1.8
80 1'06_’5‘ 72.61 73.90 +1.8
16671‘ 86.21 84.85 -1.6
1'06_}3{ 97.42 101.61 4.3

temperature affects the GFRP stiffness. Good agreements were observed between the predictions of
the elastic properties and the experiment. The predict model represented an excellent possibility to
estimate the stress vs. strain curves of any constant strain rate ranging from 0 to 1.6 1073 s=1.
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Abstract

The present work is concerned with the analysis of special hydrostatic tests performed in metallic pipelines
used to convey produced water in offshore oil and gas platforms. Burst and long-term hydrostatic tests are
generally recommended for assessing the structural integrity of theses pipelines. Nevertheless, since a real
pipeline is not a closed-ended cylinder, misleading conclusions can be made if the perturbations caused by
the closed ends of the specimen are neglected in the analysis. Elastoplasticity theory and thermodynamics
are used in the modelling of these tests. Model predictions are compared with experimental results showing a
good agreement.

Keywords: produced water pipelines, burst tests, long-term hydrostatic tests, elasto-plasticity, epoxy repair
systems, failure analysis.

1 Introduction

In a recent paper [1] it was presented a new methodology to repair localized corrosion damage in
metallic pipelines with epoxy resins. The main motivation for the use of such kind of repair system
is corrosion defects in produced water pipelines used in offshore oil exploitation [2]. Since offshore
platforms are hydrocarbon atmospheres, any repair method using equipment that may produce heat
and/or sparkling is forbidden. Although the operation pressure of these pipelines is not very high,
the water temperature is between 60°C to 90°C, which can be a major shortcoming for the use of
polymeric material as repair systems.

The petroleum as found in the nature is actually a mixture, basically composed of oil, gas and
water. Oil reservoirs frequently contain large volumes of water, while gas reservoirs tend to produce
only small quantities. At the surface, produced water is separated from the hydrocarbons, treated to
remove as much oil as possible, and then either discharged into the sea or injected back into the wells. In
addition, some installations are able to inject produced water into other suitable geological formations.
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After treatment, produced water still contains traces of oil and, thus, discharge into the sea is strictly
controlled by legislation. Produced water contains various chemicals such as heavy metals, polynuclear
aromatic hydrocarbon, and radionuclides, is one of the most significant wastewater discharges in the
offshore oil industry.

The present paper is concerned with the analysis of some special tests developed for analysing the
structural integrity of metallic pipelines used convey produced water in offshore oil and gas platforms:
(i) yield and burst test performed to check the strength of undamaged specimens, and (ii) long-term
tests performed at constant pressure (generally above 3 MPa) with water temperature between 60°C
to 90°C in damaged specimens to check the durability some kind of epoxy repair system.

Hydrostatic tests are normally conducted under industry and/or customer requirements or speci-
fications. They are usually performed taking as specimen cylindrical vessels closed at the ends and
are often used to assess information about the mechanical strength of a given pipeline (or about the
effectiveness of a given repair or reinforcement system in a damaged pipeline). The material, diameter
and wall thickness of the specimen are normally the same than the pipeline. The cylinder is closed at
the extremities using a welded cap or a bolted pressure flange. Nevertheless, since the real pipeline is
not a closed vessel, mistaken conclusions can be made if the perturbation caused by the closed ends
of the specimen is not taken into account.

In order to identify and eventually “correct” or even eliminate the perturbation caused by the closed
ends of the specimen on experimental results, a theoretical analysis is performed making use of a
particular set of elasto-plastic constitutive equations and also a special state law for liquid water at
high pressures.

In the case of yield and burst tests, the axial stress induced by the pressure applied at the extremities
of the specimen can be important. In the present work the problem is modelled in the context of elasto-
plasticity as a thin-walled cylinder closed at the extremities under pressure. An analytical solution is
obtained and it is shown that both yield and burst pressures obtained experimentally for the specimen
is approximately 2/4/3 (1.155) higher than the one obtained in a long pipeline. The particular nature of
the specimens may lead to mistaken conclusions. Real pipelines are long and the effect of axial stresses
in straight lines is almost negligible, what is not the case of the specimens for hydrostatic testing.
Hence, such a difference must be taken into account or the strength of the pipeline is overestimated.
The predictions of burst pressures of different specimens using the elasto-plastic model are in good
agreement with experimental results. The predicted results are closer to the experimental results that
the obtained using the ASME Boiler and Pressure Vessel Code [3].

In the case of long-term tests (over 1000 hours) under higher fluid temperatures, wrong predictions
may occur depending on how the testing system is prepared. In these tests, specimens with through-
wall corrosion defects repaired with some epoxy system are submitted to a constant pressure (generally
above 3 MPa) under temperatures between 60 °C and 90 °C. The idea is to check the durability of
the repair. Experimentally it is verified that, in a closed pressure vessel with water under similar if
a pressure relief valve is not used (hence, the specimen is completely closed and the mass of fluid is
constant inside it), a very small temperature variation (even 1 K) may induce a huge pressure variation,
eventually leading the repair to failure. In the present study, a simple constitutive equation is proposed
for water at very high pressures. It is a very simple state law that extends the Tait equation of state
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for barotropic fluids (or called the Murnaghan equation of state in the context of an elastic solid [4-6])
to account for small temperature variations. The predictions of pressure variations caused by small
temperature variations using the proposed state law are in agreement with experimental results. With
this state law, it is also possible to verify the pressure peak induced by a small temperature variation.
Therefore, long-term hydrostatic tests must be performed with the use of a pressure relief system.
Without a relief valve, the durability and effectiveness of the repair system may be underestimated
due to failure caused by undesirable and unexpected pressure peaks induced by very small temperature
variations admitted by the temperature control system.

2 Modelling the burst pressure of elasto-plastic cylinders

The axial stress induced by the pressure applied at the extremities of the specimen can be important in
the case of burst tests of pressurized cylinders. Although a variety of papers concerned with this subject
have been developed within the framework of modern continuum plasticity [7-10], the goal of this
section is to propose a theoretical analysis restricted to thin-walled pipes and considering a particular
set of elasto-plastic constitutive equations in order to obtain a simple expression useful for failure
pressure estimates. Curiously, one of the main motivations for carrying experimental investigations on
the burst tests of pressurized cylinders is the evaluation of the failure behaviour of steel rocket motor
cases under internal pressure [11,12].

2.1 Summary of the elasto-plastic constitutive equations

The following set of elasto-plastic constitutive equations is a particular case of the constitutive equa-
tions discussed in [13] but restricted to isotropic hardening. These equations are adequate to model
the monotonic inelastic behaviour of metallic material at room temperature.

In the framework of small deformations and isothermal processes, besides de stress tensor ¢ and
the strain tensor £ = £[Vu + (Vu)”] (u is the displacement at a given material point), in this theory
it is considered the following auxiliary variables: the plastic strain tensor £P, the cumulated plastic
strain p and another variable Y, related to the isotropic hardening. A com})lete set of elasto-plastic
constitutive equations is given by:

e L e e e e e T
P = %ii) (2)

Y =0y +v1[1 — exp(—vap)] (3)

p>0; F=(J—Y)>0; pF =0 (4)

with
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Plastic yielding

5 S.

Figure 1: Elasticity domain in the space of the principal directions of the deviatoric stress tensor.

Where F is the Young modulus, v the Poisson’s ratio and oy, vi, v2 are positive constants that
characterize the plastic behaviour of the material. 1 is the identity tensor, and tr(e) is the trace of a
tensor (e). g is the stress tensor and S is the deviatoric stress tensor given by

e (o

J is the von Mises equivalent stress. Y is an auxiliary variable related with the isotropic hardening.
Noting the eingenvalues of S by {S1, S2, S3}, the elastic domain can be represented in the space of the

Jie>)

principal directions of the deviatoric stress as a sphere centred at the origin with radius R = \/2/73Y
(see Fig. 1).

p is usually called the accumulated plastic strain and p can be interpreted as Lagrange multiplier
associated to the constraint F' < 0. Function F' characterizes the elasticity domain and the plastic
yielding surface. From eq. (2) it is possible to verify that

t
—pt=0)+ [ ( 2e(0) ~é”(<)> & @

If FF < 0, from the second relation in (4) it follows that J < Y. Hence, from relation pF = 0, it
is possible to conclude that p = 0. If p # 0, from condition pF = 0 it comes that necessarily F' = 0.
Besides, from eqgs. (2) and (3) it is possible to verify that, in this case ¥ # 0 and Y # 0, Therefore, the
elasto-plastic material is characterized by an elastic domain in the stress sgace where yielding doesn’t
occur (,p =Y =0 if F < 0). Generally the following initial conditions are used for a “virgin” material
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p(t=0)=0,g(t=0)=0 (8)

From now on, initial conditions (8) are assumed to hold in the analysis. It is also important to
remark that the evolution law (2) with boundary condition (9) and definition (6) imply that the
principal directions the stress tensor, of the deviatoric stress tensor and of the plastic strain tensor
are the same. From evolution law (2) and considering initial conditions (8), it is possible to verify that
the following relation always holds

V(i,j =1,2, or 3) (9)

LS

Si
Sj

With S;(i = 1,2 or 3) and € (i = 1, 2 or 3) being the principal components (eigenvalues) respectively
of § and g”.

2.2 Thin-walled elasto-plastic cylinder under internal pressure

This section it is considered an elasto-plastic cylinder with internal radius r;, thickness e submitted
to an internal pressure P. The internal radius r; and the thickness e are such that

T
—>10 10
- (10)

The components of the stress tensor ¢ in cylindrical coordinates for a thin-walled cylinder are
classically approximated in the framework of membranes theory by the following expressions:

o 0 0
Pr; 0, for open — ended cylinders
o= 0 o9 O with o, =0; g9 = 74; 0, = P P yi
- € Sa = %, for closed — ended cylinders
0 0 o,

(11)

o, is the radial stress component, oy the circumferential stress component and o, the axial stress
component. All other components are considered to be equal to zero. Since the circumferential and
axial components are not independent in the case of closed-ended pipes (0, = 0y/2), additional
simplifications can be obtained. The trace of the stress tensor is then given by

%, for open — ended cylinders

étr(g) = %(UT +op+o0.)= { (12)

%, for closed — ended cylinders

Introducing egs. (11), (12) in eq. (6), it is possible to conclude that the radial, circumferential
and axial components S;., Sp, S, of the deviatoric stress tensor S are its only non-zero components:

Sp= (0, —%)=—-%; S =(0p — %) =222, 5, = (0, — %) = —% for open-ended cylinders and
S, =0-F =% S =09 % =%;5. =% — % =0, for closed-ended cylinders. Hence
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S,=-% 0 0
0 So=% 0 (13)
0 0 S8.=0

closed-ended cylinders

It is important to observe that the principal components of the deviatoric stress and of the plastic
deformation are not independent, what allows introducing additional simplifications in the equations.

From eq. (9), it comes that

(14)

In particular, from egs. (13) and (14), it is possible to verify that the following relations always hold

P _ p_ p
& =&, = 2597
_ _p _
el = —g,, =0,

for open-ended cylinders (15a)

for closed-ended cylinders (15b)

Therefore, using eq. (2) and the initial conditions (8), it is possible to conclude that the plastic

strain tensor is given by

p— _1.p
el =—-5e 0 0
el = 0 b 0
_ 1
0 0 ef=-—3

open-ended cylinders

e =—ef 0 0
e = 0 &0 (16)
0 0 e£=0

closed-ended cylinders

Using the definition (5) and eq. (13) it is possible to obtain the von Mises equivalent stress

\/g zﬁPri'

2 e

for open-ended cylinders (17a)

for closed-ended cylinders (17b)

Introducing eqs (11), (16), (17) in (1) — (4), it is possible to obtain the following set of constitutive

equations for thin-walled cylinders
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1
(€9 —eh) = EPW, for open-ended cylinders (18a)
9 _
(eg — ) = ( Yo V) Pr;, for closed-ended cylinders (18b)
e
el =p, for open-ended cylinders (19a)
3
eb = gp, for closed-ended cylinders (19b)
p>0; F<0; pF =0 with (20)
P?”i .
F= — Y <0, for open-ended cylinders (21a)
3 Pr; .
F= g er —Y <0, for closed-ended cylinders (21b)
Y =0, + vi[l — exp(—v2p)] (22)

The set of equations (18), (19), (20), (21), (22) models the behaviour of an elasto-plastic cylinder
(close-ended or open-ended). The radial and axial strains are not independent and can be obtained
from the circumferential strains as follows

p p

(er + %9) = (e, + %0) = —v(eg —€}), for open-ended cylinders (23a)
3 1-2
(er+€5) = —Fyy)(sg —eb); e, = ((Z_VV))(E@ —¢h), for closed-ended cylinders (23b)

For a monotonic loading (i.e. P = at, o> 0), the behaviour of the cylinder is elastic (¢ = 0) while
F < 0. From condition pF = 0 in (20) , it is possible to conclude that F' = 0 when p > 0 (and hence
when yielding occurs: €5 > 0). Using the definition of F in egs. (21a) and (21b), it comes that

P’I"i

-Y=0=P= i [0y 4+ v1[1 — exp(—v2e})]], for open-ended cylinders

?

F=0=

2
Y =0=P=—o [0y + v1[1 — exp(—vq2eh)]], for closed-ended cylinders

V3r;

As a consequence, since the load is monotonic, pressure P is related with the circumferential plastic

F=0=

V3 Pri
2

strain component €5 by the following relation

ri

P= i [0y +v1[l —exp(—wvoel)]], if > o, — for open-ended cylinders (24a)
2 Pr; .
p=—< [0y + v1[1 — exp(—veel)]], if @ s oy — for closed-ended cylinders (24b)
\/gT'i 2 &

The yield pressure P, is obtained taking ef, = 0
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P, = ayg, for open-ended cylinders (25a)

ayg, for closed-ended cylinders (25b)

The rupture pressure is the maximum pressure P,y is obtained taking the limit of P as &) — oc.
Hence

Puax = lim {e [0+ v1[1 — exp(—vgsg)]]} —

gg—oo LT , (for open-ended cylinders) (26a)
= 20y +01) = —(Trnx)
T Y 1 r; max
. 2e
Pos = Jim [ 220y + lt — exp(vachll]| =
€7 T (for closed-ended cylinders) (26b)

ii( + )_ii( ) ’
\/gn Oy V1) = \/g’f’i Omax

It is possible to show [13] that oyax = (0, +v1) is the rupture stress obtained in a tensile test. Since
o = [oy + v1[1 — exp(—vq2e})]], if 0 > o, then

Omax = lim [0y, +v1[1 — exp(—v2ep)]] = (o + v1) (27)
69—>OO

Egs. (25a), (25b) and (26a), (26b) show that, in order to determine both yield pressure and burst
pressure for a given cylinder with internal radius r; and wall thickness e (with r; > 10e), it is only
necessary to know the yield stress o, and the rupture stress omax (also named the ultimate stress)
obtained experimentally in a tensile test of the pipe material. Besides, eqs. (25a), (25b) and (26a),
(26b) show that both the yield pressure and burst pressure in a close-ended cylinder are % times
higher (1.155 times — 15.5 %) than in an open-ended cylinder.

Long straight thin-walled pipelines are reasonably modelled by the open-ended cylinder model.
Hydrostatic specimens are better modelled by the closed-ended cylinder model. Hence, both yield
pressure and burst pressure of a metallic specimen measured in a laboratory test tend to be higher than
the ones of a long straight thin-walled pipeline with same material, diameter and wall thickness. This
means that the results of burst tests may be used with care since they may lead to an overestimation

of the strength of a real line.

3 Modelling the effect of small temperature variations of the water in long-term hydrostatic tests

The rehabilitation of corroded pipelines with epoxy repair systems is becoming a well accepted engi-
neering practice and an interesting alternative to the classical repair methods for metallic pipes, mainly
in the oil industry, saving time and allowing safer operations.
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In these repair systems, a piping or vessel segment is reinforced by wrapping it with concentric coils
of composite material after the application of epoxy filler in the corrosion defect. Corroded pipelines
with through-walls defects can also be repaired with different epoxy systems (see [1], for instance). In
this case, the challenge is to assure a satisfactory level of structural integrity and to assure that the
pipe won'’t leak after repair.

In the case of through-walls corrosion defects in produced water pipelines used in offshore oil
exploitation, the water temperature is a major shortcoming for the use of polymeric material as
repair systems. In this case, it is usual to perform long—term hydrostatic tests (between 1000 to 2000
hours) with constant internal pressure and temperature (between 60 °C to 90 °C) to check the repair
effectiveness to avoid leaking.

Long-term hydrostatic tests at this temperature range (between 60 °C to 90 °C) may be performed
whether using a pool with hot water in which the specimen in immersed or a system especially designed
for this procedure (see [1]) in which the whole system (including the electrical resistance) is threaded
at one extremity of the specimen.

No matter the long-term hydrostatic test apparatus adopted, to accurately control temperature
without extensive operator involvement, a temperature control system relies upon a controller, which
accepts a temperature sensor such as a thermocouple or RTD as input. It compares the actual tem-
perature to the desired control temperature, or set point, and provides an output to a control element.
The controller is one part of the entire control system, and the whole system should be analyzed in
selecting the proper controller. There are a few different types of controllers but the simplest and most
usual in this kind of testing is the “on-off” controller. Generally the temperature oscillations are small
compared to the control temperature (set point). Nevertheless, in a closed vessel with liquid water at
high pressure, a small variation of the temperature above the desired control temperature may cause
a huge pressure variation. In the case of a long-term test in a damaged pipe repaired with an epoxy
system, very small variations of temperature due to the control systems may cause a pressure peak
leading to failure. Generally this kind of the pressure peak is very fast and eventually is not recorded,
what may cause mistaken conclusions about the durability of the epoxy repair system. The failure
of the repair may be caused by pressure variation and not because of the temperature effect on the
polymer behaviour.

3.1 Summary of the equation of state for liquid water at high pressures

The goal of this section is to present an equation of state for liquid water at high pressures. The
proposed equation is a generalization of Tait equation of state to include very small temperature
variations. Tait equation of state for compressible liquids (or called the Murnaghan equation of state
in the context of an elastic solid [4,6]) models a liquid such as water as a compressible, barotropic
liquid whose bulk modulus is an affine function of pressure. Hence, this equation of state involves only
the density and pressure variables. However, it is a highly non-linear equation of the form

¥ 1/7)
p P+B
P:(PO+B)<) _B:>P:Po[P+B] (28)
o
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where P and p denote the pressure and the density, respectively. P, and p, are the pressure and
density at a reference state. B and -y are positive parameters.

Two alternative constitutive equations are suggested to extend the state law (28) in order to account
very small temperature variations from a reference temperature 6,

P |:P_,’_B:|(1/"/)

= s @0 =P=(P+D) (;’ [1—77(9—90)]1>7—B (292)

o

or

Po

=555 —77(9—90):>P=(P0+B)(pi—H7(9—90)) - B (29b)

With 7 being a positive pressure dependent parameter.

4 Results and discussion

4.1 Burst tests

This section aims at comparing the model prediction of the burst pressure of close-ended cylindri-
cal pressure vessels with some experimental results. The following expression to compute the burst
pressure is found at the ASME Boiler and Pressure Vessel Code [3]

we
Pmax = max 30
r; + 0.6e (Tmax) (30)

Where 0.y is the rupture stress obtained in a tensile test; w (0 < w < 1) is the efficiency of the
welded joint = 1 (for seamless pipe); r; is the internal radius (in) and e the wall thickness (in). From

now on, the burst pressure of a specimen will be approximated by using two different approaches:

(1) multiply the rupture stress obtained in tensile test by a factor ;=55 (ASME standard) or (ii)
multiply the rupture stress obtained in tensile test by a factor f“\’/‘% (elasto-plasticity model).

Hydrostatic tests performed by Loureiro in [14] in seamless pipes were chosen as a preliminary step
to evaluate the adequacy of the model prediction of the burst pressure. The internal radius and wall
thickness of the pipe were, respectively, r; = 2.52” (64.01 mm) and e = 0.258” (6.55 mm) and pipe
material was an aluminium alloy SB — 241 6063 —T5 whose composition is shown in table 1

Table 1: Aluminium alloy chemical composition [14].

Al Si Fe Cu Mn Mg Zn Ti
98.83 0.41 0.07 0.003 0.004 0.19 0.006 0.003
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The average value for oyax was 25762 psi (177.62 MPa), obtained after 5 tensile tests performed
according to ASTM B557 standard [15]. In these burst tests, pressure was gradually raised until rup-
ture. Table 2 presents the experimental and predicted burst pressures. The burst pressure for this
seamless pipe predicted using ASME standard eq (26) is ~82.5% of the pressure measured experimen-
tally (respectively 17.13 MPa and 20.76 MPa). The burst pressure predicted using the elasto-plasticity
model was 20.99 MPa (=1.0% above than experimental). The ASME code prediction is more conser-
vative, while the elasto-plastic theory result is closer to reality. Predictions using expression provided
by the ASME code are more adequate for long lines which can be modelled as open-ended pipes. In
the case of closed-ended pipes, the estimate burst pressure from ASME code and from elasto-plasticity
can be used respectively as lower and upper limits for designers.

Table 2: Predicted burst pressures.

Experimental burst pressure [13] 3011 psi (20.76 MPa)
ASME burst pressure prediction 2485 psi (17.13 MPa)
Model burst pressure prediction 3044 psi (20.99 MPa)

Burst tests of rocket motor cases made performed by Beena et al [11] were also used to check the
adequacy of the model prediction. The internal radius wall thickness of the pipe were r; = 103.3
mm and e = 2.6 mm and pipe material was a 15CDV6 steel with o, = 1010.0 MPa. The name
15CDV6 is a French designation in which the first number is equal to 100 times the concentration
of carbon. The letters which follow indicate the other elements present, in the decreasing order of
concentration. The last digit is equal to four times the concentration of chromium. In this French
notation, C stands for chromium, D for molybdenum, and V for vanadium. It therefore follows that,
in 15CDV6 steel, the concentration of carbon is 0.15%, while that of chromium is 1.5%, and the
concentrations of molybdenum and vanadium are less than 1.5% each. Hence, it is a low-alloy steel,
in which the proportion by weight of all the alloying elements combined is less than 5%.

The experimental burst pressures obtained in two tests were 28.86 MPa and 29.23 MPa (average
29.05 MPa). The burst pressure predicted using eq. (28) is 25.48 MPa. The predicted burst pressure
using the elasto-plasticity model is 29.39 MPa (1.15 times the ASME standard) which is in good
agreement with the two burst test results of the rocket motor cases. The experimental 0.2% yield
stress measured in a tensile test was 915.27 MPa. The experimental yield pressure was 26.49 MPa.
The predicted yield pressure using the elasto-plasticity theory is 26.63 MPa.

As it can be verified, once again ASME predictions of the burst pressures are closer to the ones
obtained using the elasto-plasticity theory for open-ended pipes (the burst pressure for a close-ended
pipe is 15.5% times higher than in an open-ended pipe). Therefore ASME predictions are more ade-
quate for long lines that can better be modelled as open-ended cylinders.

In the results presented in table 3 it was adopted and efficiency w = 1, but the cases are not seamless
pipes and the authors in [11] affirm that the weld efficiency is 93.5-98% (0.935 < w < 0.98). With this
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correction, the burst pressure predicted using the elasto-plastic model is even closer than the obtained
experimentally.

Table 3: Predicted burst pressures.

Experimental burst pressure [11] 29.05 MPa
ASME burst pressure prediction 25.48 MPa
Model burst pressure prediction 29.39 MPa

Finally, results of burst tests in maraging steel rocket motor cases performed in [16] and presented
in [12] were considered. The internal radius of the pipe was r; = 45 mm and the maximum strength
Omax = 2155 MPa. The tests results for 5 different values of the wall thickness are presented in table
4 (each column corresponds to a different test)

Table 4: Predicted burst pressures for different values of the wall thickness.

Wall thickness (mm) 1.630 1.735 1.756 1.763 1.793
Experimental burst pressure (MPa) [12] 86.62 92.30 94.50 94.00 94.00
ASME burst pressure prediction (MPa) 76.72 81.28 82.23 82.56 83.93
Model burst pressure prediction (MPa) 90.13 95.94 97.10 97.49 99.14

The difference between the predicted results from elasto-plasticity theory and experimental is higher.
However it is important to explain that the steel pipes used to perform those tests were not seamless
and the efficiency w of the welded joint is lower than 1. In this specific case it is recommended, in
analogy with the ASME code, a correction factor due to the welded joint

2we

Rnxzi max 31
a Ti\/g(aa) (31)

In the previous case this factor would be approximately w =0.96 (efficiency of 96%).

4.2 Long-term hydrostatic tests

Long-term hydrostatic tests were performed with a constant internal pressure P, = 1500 psi (= 10.34
MPa) at 80°C. An experimental set up was conceived to check the effectiveness of the methodology,
trying to approximate a real repair operation. 2” (50.8 mm) diameter schedule 80 API 5L grade B
steel pipes, normally used in offshore platform for produced water, with a circular hole of 10 mm were
used to build the specimens for hydrostatic tests. The epoxy repair system is described in details in
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[1]. A commercial fast curing polymer-based system (called System II in [1]) consisting of a mixture of
epoxy resin and aluminium powder was used to perform the repair of the through-thickness damage
in each specimen. The whole system to control water temperature (including the electrical resistance)
is threaded at one extremity of the specimen. Fig. 2 and 3 shows the basic set-up apparatus and
temperature control system. The control system allows a + 1 °C temperature variation.

Pressure 3 Pressure relief
transducer B valve

Figure 2: Basic test set-up apparatus.

Figure 3: Temperature control system. 1 is the pressure water machine connection, 2 is the temperature
control thermostat and 3 is the electrical resistance.
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Fig 4 shows a curve pressure versus time in a typical test without an automatic system that relieves
liquid pressure above a pre-set limit (a pressure relief valve). It can be verified peaks of pressure even
with such a limited temperature variation. Rupture has occurred after 6 days, when a pressure peak
much above the static strength of the repair occurred. The pressure peaks can be explained using
constitutive eqs (29a) or (29b) that are proposed for small variations of temperature of liquid water
at high pressures. Considering the initial state: P, = 1054604 Kg.m~2 (~1500 psi ~10.34 MPa); p,=
958 Kg.m™3; #,= 353.15 K, a reasonable approximation for the parameters B and ~ that appear in
Tait equation [15] is B = 2.9 x 108 Kgm~!.s72 and v = 7.15. In order to identify the additional
parameter n that appears in eqs (29a) and (29b) it is interesting to observe Fig. 5, that shows how
density varies with pressure for a constant pressure of 1 atm (/0.1 MPa).

3000

2500

2000 P I |

1500

Pressure (Psi)

1000

500

0 1 2 3 4 5 6 7
Time (days)
Figure 4: Typical pressure versus time curve at average pressure of 1500 psi (= 10.34 MPa) and

temperature of 80 °C. The temperature control system allows a + 1 °C variation. Test performed
without a pressure relief valve.

Although curve p x € shown in Fig. 5 presents a non-linear behaviour, it can be approximated by
a linear function in the neighbourhood of the reference temperature 6, (see Fig. 6). n is a pressure
dependent parameter. Nevertheless, from Fig. 6, assuming small temperature variations from the
reference temperature 6, it is reasonable to assume a constant value n = 6.5 x 1074 K1,

In the case of a vessel without a pressure relief valve, the density p tends to increase when a higher

pressure is applied: (pﬁ) > 1. Table 5 presents the pressure variation obtained using egs. (29a) and

(29b), the material parameters presented in Table 6 and assuming (p%) =~ 1. The pressure predicted
using egs. (29a) and (29b) are very close, what means that, for a very small temperature variation from
the reference temperature, it is almost indifferent to consider any of them. For very small temperature
variation, the pressure variation (P — P,) increases almost linearly with (6 — 6,) as shown in Fig. 7.
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Figure 5: Curve p x 6. Water at a constant pressure of 1 atm.
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Figure 6: Detail of the curve p x 0 presented in Fig. 5. theta, = 80 °C.

Table 5: Pressure variation with temperature from the reference state, using eqgs (29).

Temperature Pressure Pressure
°C Eq. (29a) Eq.(29b)
80.0 1500.00 psi (10.34 MPa) 1500.00 psi (10.34 MPa)
80.5 2463.25 psi (16.98 MPa) 2462.94 psi (16.98 MPa)
81.0 3429.06 psi (23.64 MPa) 3427.81 psi (23.63 MPa)
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Table 6: Water. Material parameters.

B(Kgm~'s7?) ~y (K
2.9 x 108 7.15 6.5 x 10~*

6 //
& s ~
=
- 4
A 3
-
(. 7
D:, ) //
0
0.0 0.1 0.2 0.3 0.4 0.5
(6 —8,)K

Figure 7: Curve (P — P,) x (8 — 0,) obtained using eq. (28.1).

The mean failure pressure measured in hydrostatic tests in which a monotonically increasing load
is applied until the failure of the repair is Py = 1465 psi (=17 MPa). As it can be verified in the
test shown in Fig. 4, the internal pressure in the specimen reached the limit pressure P, due to the
temperature oscillation admitted by the control system (always smaller than 1 °C). Therefore, the
prediction of a strong pressure variation made in table 5 is confirmed experimentally what indicates
that a very small temperature variation (around 0.5 °C) can eventually lead the repair to failure and
that the use of a pressure relief valve is essential in order to avoid big pressure oscillations during the
testing. All specimens repaired with the same epoxy system and tested under the same pressure and
temperature conditions (5 specimens) but using the relief valve did not fail after 2000 hours.

5 Concluding remarks

Hydrostatic tests are normally conducted under industry and/or customer requirements or specifi-
cations. They are usually performed taking as specimen cylindrical vessels closed at the ends and
are often used to assess information about the mechanical strength of a given pipeline (or about the
effectiveness of a given repair or reinforcement system in a damaged pipeline). The material, diameter
and wall thickness of the specimen are normally the same than the pipeline. The cylinder is closed at
the extremities using a welded cap or a bolted pressure flange. Nevertheless, since the real pipeline is
not a closed cylinder, mistaken conclusions can be made if the perturbation caused by the closed ends

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonca & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



Analysis of special hydrostatic tests performed in produced water pipelines 129

of the specimen is not taken into account.

The present paper uses elasto-plastic constitutive equations and also a thermodynamic framework
to correct special hydrostatic tests developed for analysing the structural integrity of produced water
pipelines used in offshore oil exploitation and to propose adequate test procedures to eventually
“correct” the perturbation caused by the closed ends of the specimen on experimental results. The
proposed theory allows a better understanding the differences between the strength of specimens used
in hydrostatic tests (better modelled as closed-ended cylinders) and of long pipelines (better modelled
as open-ended cylinders).

An interesting result is that burst and yield pressure in a pipe can be predicted through the knowl-
edge of the one-dimensional stress-strain curve and both burst pressure and yield pressures measured
in a typical hydrostatic test specimen are about % times higher (15.5%) than the burst and yield
pressure of a long line.

It is also important to remark that wrong conclusions can be made if a pressure relief valve is not
used in long-term hydrostatic tests performed at temperatures between 60 °C and 90 °C. In these
cases, no matter the long-term hydrostatic test apparatus adopted, the temperature control system
relies upon a controller, which accepts a temperature sensor that compares the actual temperature
to the desired control temperature, or set point, and provides an output to a control element. It is
shown both experimentally and theoretically that, without a pressure relief valve, a small variation of
temperature above the desired control temperature may cause a huge pressure variation in a closed
vessel with liquid water at high pressure. In the case of a long-term test in a damaged pipe repaired
with an epoxy system, very small variations of temperature due to the control systems cause a pressure
variation that may lead the repair to failure. Generally this kind of the pressure peak is very fast and
eventually is not recorded, what may cause mistaken conclusions about the durability of the epoxy
repair system.
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Abstract

The objective of the work is to propose a dual visco-hypoelasticity model and a numerical procedure for
the analysis of Polymeric materials subjected to large displacements and rotations. In the proposed dual
approach, the Hencky’s logarithm strain measure is a function of the rotated Kirchhoff stress history in terms
of a convolution equation. The material is assumed to be isotropic and the kernel functions, associated with the
shear and bulk compliance moduli, are represented in Prony series. The problem is formulated within a Total
Lagrangian framework and employs the Galerkin finite element method in the discretization process. Finally
some numerical examples are presented in order to attest the proposed model and to verify the robustness
and performance of the proposed numerical scheme.

Keywords: dual visco-hypoelasticity model, total lagragian, finite element.

1 Introduction

Viscoelastic behavior is typical of a number of materials such as polymers and plastics. These materials
have memory, i.e., the stress depends on the entire history of the deformation and typically this memory
fades with time. In a dual formulation the strain can be represented as a functional of the stress history.
This hereditary constitutive equation, in order to be consistent, must satisfy the principle of material
frame indifference. This requirement leads to reasonably complex relations, even in the “simplest’ of
constitutive relations.

The objective of this paper is to propose a dual finite visco-hypoelastic model based on the logarithm
Hencky strain and the rotated Kirchhoff stress measures, which may be employed in the viscoelastic
analysis of components undergoing large displacement and rotations. This paper is a continuation
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of the work presented in [1] where we present the fully implicit algorithm in detail and derive the
consistent tangent operator associated with the proposed implicit scheme.

1.1 Linear visco-hypoelastic constitutive model

Let’s consider, initially, linear viscoelastic materials. These materials have memory, i.e., the stress
depends on the entire history of the motion, and typically this memory fades with time. There are
a number of approaches for constructing constitutive models describing the viscoelastic behavior
of materials. Mathematical relations which describes how stress can depend on the history of the
deformation are either given in integral form or in differential form. In integral form the stress at time
t is given in terms of an expression which involves an integral over previous times. The integral in
such an expression is known as a history integral. In contrast, in the differential form of constitutive
model, the history of the deformation is taken into account by certain ordinary differential equations
which describe how certain quantities known as internal variables evolve in time. For a more detailed
presentation of both ways of representing viscoelastic constitutive responses see, [2-5].

To describe the linear viscoelastic response of components, one applies the Boltzmann superposition
principle, which follows by that in each strain step the stress evolution is given by Hooke’s law. In
this sense, the evolution in each strain step component is approximated with a piecewise continuous
step function. For sufficiently smooth fields, the general linear constitutive equation for the linear
viscoelastic (small deformation) solid is given by

o(x,t) = D(t) e(x, 0) + [E D(t — 5) e(a(x, s))ds. (1)

Considering now a viscoelastic isotropic material

D=2G I, +K (I®1) (2)

in which I, = {IIS - %(I ® I)} , (IIS)ijkl = % (0051 + 84105%) and I is the identity tensor.
The kernel functions are represented in terms of Prony series and given by:

G(t) = G + Z:;Gl G, exp (77%) and K(t) = Ky + ZLKI K exp (* TfK) (3)

in which Gand G; are shear elastic moduli, K., and K; are bulk elastic moduli and T,LG and TZ»K are
the relaxation times for each Prony component.

An a alternative formulation for the quasi-static rate model is the constitutive equation given, see
[6], as

e(t) = C(t — to)a(to) + [1, C(t — )5 (£)dE (4)
where
B J
C= 5(1 ®I) + §IIdev. (5)

The kernel functions are also represented in terms of Prony series [7], as follows:
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004 3 (e (-5)) et 5= S (e () @

in which Jy and J; are shear compliance moduli, By and B; are bulk compliance moduli and Ti‘] and
78 are the relaxation times for each Prony component.

The objective of this paper is to extend the alternative formulation to large displacement and rota-
tion problems, defined in a Total Lagrangian framework. The motivation of using the total Lagrangian
description is due to its adequacy for the consideration of reinforced plastics resulting in anisotropic
viscoelastic responses.

In order to preserve objectivity of the integration process, in the hereditary constitutive equation,
one employs adequate stress and strain measures, defined here at the unrotated configuration of the
body, as will be properly defined. Here, one proposes a consistent extended hereditary constitutive
equation and develop an implicit algorithm, using the Galerkin Finite Element method, for the solution
of viscoelastic problems subjected to large displacements and rotations. The determination of the
consistent tangent operator, associated with the proposed implicit method, is also presented together
with the validation of the numerical scheme and proposed model.

2 Finite visco-hypoelasticity model

2.1 Motion and deformation of a body B

Let P, be a particle of B that occupies a position x, in the reference configuration 2,. The motion of
a body B is described by the position vector x = ¢ (X, t) of the point x,, occupied by each particle
P, of B, at each time instant z.

X = ¢ (Xo,t) = ¢ (%) and  x, =y ' (x). (7)
The gradient of the deformation function is given as F (x,,t) = Vi, (X,), whose polar decomposition
is given by F = RU. The displacement field is defined as
U (Xo,t) =X — X0 = ¢ (Xo) — Xo. (8)
The gradient of the displacement field, Vu = Vx — Vx,, leads to F = Vu + 1.

2.2 Weak formulation of the problem: Reference configuration

Let €, defined at t,, be a bounded domain with a Lipschitz boundary 02, subjected to a prescribed
body force b, a prescribed surface traction t, defined on I' and a prescribed displacement defined on
I'Y, where 99, = T'» UT? with T N T, = (). The weak formulation of the problem, may be stated as:
Determine u (z,,t) € Kin!, for each ¢ € [0, ¢/], such that
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S(w; V) = [, P-VVdQ, — [q, pob - vdQ, — [1i t,.¥dQ% =0 VYV € Varg. (9)
Here, p, is the density at the reference configuration, P is the first Piola-Kirchhoff stress tensor,
P = JoF T =7F~ T, with J = det[F], o is the Cauchy stress and 7 the Kirchhoff stress tensor.
2.3 Work conjugation and stress measures

According to Hill, a stress-strain pair, (3,7), defined at the reference configuration, is conjugate if the
rate of stress work per unit of mass is invariant, i.e.,

W= (0-D) = - (3 4). (10)

where p is the current mass density, with Jp = p,. Moreover, see [1, 8|, one has

W:i(z.fy):i(rm:i(f’r):i(m), (11)

in which D is the symmetric part of L, L = FF-!, 7 is the rotated Kirchhoff stress tensor, given by
7 =R"7R and E is the Hencky’s logarithm strain measure, E = In (U).
2.4 Rotational-neutralized form of the constitutive model
Let us define the rotation tensor A (t), as the solution to the following initial value problem: Given
Q (), Find A (¢) that solves

A)=Q(t) A1) . (12)
with A (0) = I. Considering here, 2 = RRT, where R is determined from the polar decomposition of
F, F = RU, one derives by inspection that A (t) = R (¢).

Definition Here, one defines the pull back transformation of v, A, and B as

v =AM v (),
Aty=A)" A A(®), (13)

From continuum mechanics, one has F (t) = A ()" F () and D (t) = A (t)” D (£) A (¢). These pull
back (rotation neutralized) quantities with A (¢) are used to define a convenient framework in which
the integration of the constitutive model is performed.

By applying the pull back operator to the conjugate stress-strain pair, (%,y), one may extend the
hereditary constitutive equation as
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5(t) = C(E)B(0) + [} C(t — &) S(€)de, (14)

in which £ (t) = A#®)" 2 (t) A (t) and 5(t) = A ()" 7 (£) A (2).
In the particular case where A (t) = R (¢) the pull back of the Kirchhoff stress leads to the rotated
Kirchhoff stress, defined as 7 (t) = R.(t)” 7 (t) R (t). Also, one can show that 7 (£) = A (t)" 7 7 T (t) A (1),

where 7 (t) is the Green-Naghdi rate of the Kirchhoff stress. Moreover, D = E, see [8], where D (t) =
R ()" D (t)R(t). As a result, the extended hereditary constitutive equation, may be written as

E(t) = C()7(0) + 5 C(t — )7(€)de. (15)

Considering the material to be isotropic, one has C = C, which yields

B —_ 2o+ L0700+ 1 {2 Lo 78 o a o)

in which 7P (t) = I, 7 ( ) and p

) = itr [ } are the deviator and hydrostatic part of 7(t). Now,
decomposing the strain tensor as E(t) =

e(t) I+ EP(t) gives

B(1)

B(t) ¢ Bl =¢)
3

e(t) = 3

p(0) + /o p(&)dg (17)

and

B2 = 20200) 1y U85 (yae (18)

Now, introducing the Prony series for J(t) and B(t) finally gives

ED(t):_‘;OTD(t)JrZ‘;i (1—exp (—L)) +2/0{21 (1—exp( _5>)}T (€)de¢

Z (19)

and

e =20+ Y 2 (1-ew (-5 ) ) s+ i {3 (1-ew (-5F) ) iterte. 20

i=1

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonca & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



136 H.P.A. de Deus and M.K. Alves

3 Discretization of the visco-hypoelasticity model

3.1 Incremental weak formulation of the problem

Let upy1 = u(Xoytnt1), Up = U (X, tn), Fnp1 = I+ Vu,y; and F,, = I+ Vu,. Assume now that
the configuration €2, and the state variables are known at ¢, and enforce the equilibrium equations
at Q,41. As a result, one can determine the incremental weak formulation of the problem, between
t, and t,41, stated by: Determine u,4; € Kinl so that

S (Wi 139) = [, P (uni1) - VA — [o pobvdQ — [ t,.¥dA, =0 ¥ € Vark  (21)

with u,+1 = u, + Au,.

Since the problem is non-linear, one applies Newton’s method leading to the solution of a sequence of
linearized problems, described as follows: Let u® 11 be the estimator at the k-th iteration and consider
that u® 11 = U, at k = 0. For the k-th iteration of the solution procedure, one has

k+1 _ ..k k
un+1 - un+1 + Aun-i—l (22)

The determination of Auf, , is obtained by assuming 3 (o) to be Gateaux differentiable and by
enforcing § (uf, + Auf, ;w) =0 Vw € V,,. As a result, one derives

DS (uﬁﬂ; w) [Auﬁﬂ] =-g (uZH; w) (23)
where
d
DS (uﬁﬂ;w) [Auﬁﬂ] =Jc (S (u’fLH—i- € Auflﬂ;w)] co" (24)

Now, since 2, is fixed and the prescribed loading are assumed to be independent of the displacement
field, one derives

. d .
R (ufbﬂ—i— € Aufﬁl;v)} ‘ = Ja, e [P (u§+1—|— € AquJrl)] ’e:o Vv dQ, (25)

ae | .

However, P =P (F (quJrl—i— € Auflﬂ)) which leads to

DS (ufl_H; 0) [AufH_l] = [, A (ufl_H) v (Aqu_H) : Vo dQ, (26)

with [A <u2+1)]ijkl = g?;’;

“§+1
3.2 Determination of the consistent tangent modulus

: T _. T T :
Now, since P, = 7,1 F, [, one derives
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or;
[A (uZJrl)] ijkl 3F:l Fjpl TZPijlF ! (27)

However, 7,41 = Rn+17_'n+1RZ+1, which leads to

aTn+1 a]Rn+1 _ T a T _ 3R£+1
OF,1  OF, 41 Tnr1Rogg F RoniDoiRo gy + RosiToss OF 11

~ _ OTnt1 ORpq1 _ OF,q1 -1 OUp 41 -1 OUpq1 :
where D, 1 = T R = oF (Upt1) R, o (Upg1)” and TE s determined
from the relation C,, 1 = FZ+1Fn+1 = U721+1-

(28)

The determination of D,, 11 requires the computation of E, 11, in which E,,; 1 = e, 111 +E£+1 with
ent1 and ED '+ 1 denoting respectively the volumetric and deviator part of E, ;. In fact,

D(0) D(i . DO Jo
Er?Jrl n~(H + ZEnJ(rl) with EnJ(rl) - 2 nDJrl (29)

and

pe) _Ji (1 tnr1\\ oD Ny e tny1 — & orP
B2 =5 (1-e (<251 ) ) P04 s {5 (1- e (<2 (€
J; tap1 — & orP
tht1 Ji . _ n+1
ety (1o (2Rt )
Defining t,,+1 = _t, + At, t 1= =t, + At and 70 ol = T + AT one derives
+3
D(1 J J t At
Enil)_Q(P_er( Ti>eXp( 7'{]>de
tn iaT S i =€ g _At
Hil g e @de— (I Few (-~ ) G ©dgpewn (-2 (31)

2

J; orP 1 Ji o7 =
120 g e e~ {1 o (-5€) G e exw ().

(2

Now, applying Euler’s method leads to the following approximation

D) , Ji =D 5D (i At Ji x_D At
En+1 — 5 n+1 En( )exp <_T,LJ - EATn exp _ﬁ (32)
in which EY @ may be approximated by applying FEuler’s method as
o D ; At Ji At
EPO) = EPO) oxp ( — > + ZATP  exp < 27’-‘]> (33)

Moreover,
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0 . 0 0.
Ent1 = 6£L+)1 + ;71 efﬁrl with eﬁlll = 3 Pn (34)

and

i B; ty _ +1 B; b1 — 9p
B e (oo ) B o

Now, defining p,+1 = _pn + Ap, yields
@ _Bi_ B tn ALY _
€ni1 :gpo 3 €Xp B €Xp ~ B Po
" B; 0p " B; t, — &\ Op At
1 G opee = |1 e (<25t P e (55 (36)

i

1 B; op i1 B; ty, — on At
I s | e (- i ) L] o (-5

)

Applying Euler’s method one derives the following approximation

@ . Bi_ (i At\ By, _ At 1
€n+1 >~ __?pn—&-l — 675) exp (_TlB — ? (Apn) exp —W 5 (37)
in which égf ) is approximated as
o(d) (4) At B,  _ At
eg) = e ,exp <_TiB) + ?Apn_l exp _ﬁ ) (38)
N : = _ = =D a _ OTnt1 . OPnt1 afr?+1 .
ow, since Tpy1 = Ppi1l + 754 one has D,y = ) el 8Fn+11 + OF, 1 However, since

ent1=€n+1 (Pnt1,71) and ER |\ = ED | (pn41,72,,) one may differentiate both equations with
respect to F,, 1, apply the chain rule of differentiations and derive a set of equations that is solved

_ =D
OPnt1 0T,
for ) and )

4 Problem cases and conclusion

4.1 Example 1

Consider here a rectangular domain, as depicted in Fig. 1.

The body is submitted to a prescribed displacement condition, under a plane strain state, given
by wu(l,y, t) = @ *t, with @ = 0.lin. The numerical solution is compared with an analytical
solution derived as follows: Let _x(t) = A1(t)z, and _y( t) = Aa(t)y,. By a simple computation from
the boundary condition and considering _ J( t) = 3.2386 * 1073(1 — exp(—g53s5g¢) + 5.8578 * 107
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1,0

Y

YYYYYYVYYYYY
1

Figure 1: Description of the problem.

psi~tand supposing the block is composed by a polymer with B( t) = 4.7279x 10_8(1—eXp(—mt)+
8.7867 % 10~7 psi~! one may compute the exact solution for this homogeneous deformation problem
and compare it with the numerical solution derived by the proposed numerical scheme.

Figure 2 shows a comparison of the exact and numerical values regarding the evolution of the o,
Cauchy stress component.

Sxx (psi)
3.736e+05 —

3.269e+05 —

2.802e+05 —

2.335e+05 —

1.868e+05 —
= Numerical Solution

1.401e+05 |

— Exact Solution

93400 —

46700 —

0 =1

02 03 04 05 06 07 08 09 1 )

0
TIME_ANALYSIS

Figure 2: Evolution of the 0., Cauchy stress component (psi) versus time (days).

4.2 Example 2

Consider the problem depicted in Fig. 3, subjected to a plane strain condition. The dimensions in Fig.
3 are given all in inches.

The body is submitted to a prescribed displacement condition on the right side, as shown. The
remaining boundary conditions are stress free conditions. The prescribed displacement is applied by
a linear ramp and given by _u,(t) = @ * ¢, with @=-0.3 in. The polymer is the same as in example 1
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Figure 3: Description of the problem.

I3

x
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Vo

Figure 4: Description of the finite element mesh

Tri 6 element.

and the time scale is taken in days. The mesh employed 337 elements and has 755 nodes as shown in

Fig. 4.

Figure 5 shows the distribution of the o,, Cauchy stress component.
Figure 6 shows the distribution of the o, Cauchy stress component.
Figure 7 shows the distribution of the oy, Cauchy stress component.

Figure 5: Distribution of the 0., Cauchy stress
component at t=1 day.

Sixy (psi)
55339€+05

' 420046405
28115405
1.4226e+05

3368
+1.3552e405
27441e+05
-4.133e+05

-5.5219e+05
-6.9107e+05

A.

Figure 6: Distribution of the o, Cauchy stress
component at t=1 day.
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Figure 7: Distribution of the oy, Cauchy stress component at t=1 day.

5 Conclusion

A viscoelastic model for large displacement and rotations has been proposed. The hereditary consti-
tutive equation is defined in terms of a stress and a strain measure defined both at the unrotated
configuration of the body. An implicit algorithm was also proposed and the consistent tangent oper-
ator associated with the implicit algorithm was determined. The proposed algorithm was tested and
compared with an exact analytical solution. The integration of the hereditary relation preserves objec-
tivity so may be used to properly simulate the viscoelastic behavior of components subjected to large
displacements and rotations.
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A variational boundary element method based on
generalized Westergaard stress functions
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Abstract

A particular implementation of the hybrid boundary element method is presented for the two-dimensional anal-
ysis of potential and elasticity problems, which, although general in concept, is suited for fracture mechanics
applications. Generalized Westergaard stress functions, as proposed by Tada et al in 1993, are used as the
problem’s fundamental solution. Problems of general topology, such as in case of unbounded and multiply-
connected domains, may be modeled. The formulation, which is directly applicable to notches and generally
curved, internal or external cracks, is specially suited for the description of the stress field in the vicinity of
crack tips and is an easy means of evaluating stress intensity factors and of checking some basic concepts laid
down by Rice in 1968. The paper focuses on the mathematical fundamentals of the formulation. One validating
numerical example is presented.

Keywords: Westergaard stress functions, Hellinger-Reissner potential, variational methods, hybrid boundary
element.

1 Introduction

Tada et al [1] proposed a simple and efficient method of developing Westergaard stress functions for
the analysis of displacement-prescribed and stress-prescribed crack problems. Their intervention was
restricted to the mathematical means of arriving at the stress functions and the illustration of several
forms of crack openings — always in terms of analytical developments.

The present paper makes use of Tada et al’s method and shows that such stress functions may be
implemented as fundamental solutions of a generalized, two-dimensional boundary element method,
and applied to problems that can be completely unrelated to fracture mechanics. On the other hand,
the formulation can be directly and advantageously applied to fracture mechanics [2, 3].

Tada et al’s basic idea is extremely simple [1], as shown in Section 3. Although there is no claim
of originality in the developments of the next Sections [4], they highlight some relevant mathematical
aspects that Westergaard-like potential functions must satisfy to be applicable in the framework of an
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integral statement. Next, a fundamental solution for potential problems is constructed and singularity
issues are discussed.

In the present outline, Tada et al’s method is used to define a non-dimensional potential function ®
that may have an in principle arbitrary configuration, depending on the local geometrical assumptions
that are made, with all developments obtained in terms of ® and its derivatives. Several configuration
possibilities of ® have been previously studied for the modeling of potential problems in a variational
framework [4]. In an extended manuscript [5], the potential function corresponds to the superposition of
two elliptical half cracks, for a homogeneous slab of constant thickness under plane strain. The locally
generated stresses and displacements (the latter ones evaluated except for rigid body displacements)
tend to zero at a point that goes increasingly farther from the crack (oo, = 0). In this paper, the
developments of interest are particularized to potential problems, which present exactly the same
mathematical issues as in elasticity.

This paper starts with a very brief outline of the hybrid boundary element method, as a representa-
tive formulation that can make use of the generalized Westergaard stress functions. Then, Tada et al’s
proposition is briefly presented and developed for a general, rotated (semi-)crack configuration, which
includes the assessment of all possible singularities. The formulation is applied to the solution of the
Laplace equation, which is per se relevant, but turns out to be the simplest framework for the outline
of all mathematical aspects and issues related to a code implementation of the more general problem
of elasticity. One numerical example is shown in order to validate the proposed developments.

2 Problem solution with the hybrid boundary element method

The hybrid boundary element method (HBEM) was introduced in 1987 on the basis of the Hellinger-
Reissner potential and as a generalization of Pian’s hybrid finite element method [6, 7]. The formulation
requires evaluation of integrals only along the boundary and makes use of fundamental solutions
(Green’s functions) to interpolate fields in the domain. Accordingly, an elastic body of arbitrary shape
may be treated as a single finite macro-element with as many boundary degrees of freedom as desired.
In the meantime, the formulation has evolved to several application possibilities, including time-

dependent problems, fracture mechanics, non-homogeneous materials and strain gradient elasticity [2,
8-10].

2.1 Problem formulation

Let an elastic body be submitted to tractions ¢; on part 'y, of the boundary I' and to displacements
@; on the complementary part T',,. For the sake of brevity, body forces are not included [11]. One is
attempting to find the best approximation for stresses and displacements, ;; and u;, such that

0jij =0 in the domain €, (1)

w; =1u; along T, and t;=o0;n;=1t; along I, (2)
in which n; is the outward unit normal to the boundary. Indicial notation is used.
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2.2 Stress and displacement assumptions

Two independent trial fields are assumed [6, 7]. The displacement field is explicitly approximated along
the boundary by u, where ()¢ means displacement assumption, in terms of polynomial functions w;,,
. . nd d .
with compact support and nodal displacement parameters d = [d,,] € R™ , for n® displacement
degrees of freedom of the discretized model. An independent stress field o7;, where ()*® stands for
stress assumption, is given in the domain in terms of a series of fundamental solutions o7;,, with
global support, multiplied by force parameters p* = [p},] € R™" applied at the same boundary nodal
points m to which the nodal displacements d,,, are attached (n* = n?).! Displacements u$ are obtained

from o7;. Then,

uf = Ujm d;y, on I’ such that uf =u; on [y (3)
0}j = 0limPm, suchthat o7, =0 in Q (4)
=} =uly P+ uh Compl, in Q) (5)

where v, are displacement fundamental solutions corresponding to o7;,,. Rigid body motion is
included in terms of functions u}, multiplied by in principle arbitrary constants Cs,, [11,12].

2.3 Governing matrix equations

The Hellinger-Reissner potential, based on the two-field assumptions of the latter section, as imple-
mented by Pian [6] and generalized by Dumont [7], leads to two matrix equations that express nodal
equilibrium and compatibility requirements. Dumont [11] shows that the simplest, and still mathe-
matically consistent, means of laying out these equations is in terms of two separately virtual work
principles.

One obtains from a displacement virtual-work statement the matrix equilibrium equation

Hypnply =pn or HT'p*=p (6)

in which H = [H,,,,] € R™ X" is the same double layer potential matrix of the collocation boundary
clement method [13], and p = [p,] € R"* are equivalent nodal forces obtained as in the displacement
finite element method.

Moreover, a stress virtual-work statement leads to

Er . vy =Hpnd, or Fp* = Hd (7)

where H, which already appeared in Eq. (6), is recognized as performing a kinematic transformation,
and F* = [F*, ] € R %" is a symmetric, flexibility matrix. The matrices H and F* may be compactly

1For Kelvin fundamental solutions, as in the conventional boundary element method and in the basic version of the
HBEM, pj;, are point forces. In the present outline, p};,, are the resultants of forces applied at crack faces. The problem
has the same mathematical format, although with different singularity issues. In a more generalized formulation, pJ,
may be just parameters with no special mechanical meaning [11].
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defined as
Hon ] = / oty i ) dT (8)

Solving for p* in Egs. (6) and (7), one arrives at the matrix system
H'F*YHd =p (9)

where HTF*("VH = K is a stiffness matrix. The inverse F*(~1 must be evaluated in terms of
generalized inverses, as F* is singular for a finite domain €2 [11]. Results at internal points are expressed
in terms of Eqgs. (4) and (5) after evaluation of p* in either Eq. (6) or (7).

3 Dislocation-based formulation by Tada et al

Tada et al [1] show that, for a prescribed crack opening of the shape f(x) in the interval [z1, z2] along
the = axis and symmetric with respect to this axis in the Cartesian coordinate system (x,y), one can
define a potential function ®(z) of the complex argument z = x + iy,

1" f(=)

2 J,, z—w

D(2) =

dz (10)

and then obtain the corresponding stress and displacement functions, as a generalization of West-
ergaard’s initial proposition in the frame of the fracture mechanics. Several crack and stress config-
urations are investigated by Tada et al [1], as translation and superposition of effects can always
be applied to compose intrincated crack patterns. Westergaard’s developments for an elliptic crack
opening of length 2a are obtained if one chooses the function

fla) = ¥ (1)

and then carries out the integration of Eq. (10) in the interval [—a, a].

4 Basics on a rotated semicrack

A very simple, although apparently original generalization of the above developments is obtained for
a semicrack of length a; along a straight line that is rotated in the counter clock direction by an angle
01, Fig. 1, with which it is possible to compose kinked cracks of any length [4], as developed in the
rest of this paper. To make calculations as simple as possible, the crack shape function of Eq. (11),
or any other shape, is initially defined for a semicrack length a = 1 and the integration of Eq. (10) is
carried out in the interval [0, 1]. Although the crack shape may be rather general, as given by Tada
et al [1] and as already explored in the present framework [4], the ensuing developments are given
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for the elliptic semicrack corresponding to Eq. (11). The corresponding expression of Eq. (10) for the

semicrack 1 is
_ I 1 / 5 1+ +/1— Z12

z +Zye—i91 = Lei(9—91

z .
already given as argument of 7, = 21} = —e 1 = ), from which the

aq aq ai
definition of the rotation and normalization term T} is inferred. The leading terms of ®; at Z; = 0

Y

0.5 0,

Xy

Figure 1: Semicrack of length a; rotated by an angle 6.

are
7T—9+91
OO g b <0<O, 47
() —1+1n(2 =0=
11n(1)Re<I>1: n(r) 2+n(a1); lin(1)1m<I>1: 27r0 )
r— T r— -
”27“ for Oy +7 <0< 6 +21
T

(13)
The first derivative of ®(Z;) with respect to Z; is

(7 1 14++/1- 22 1 1
o =02A) L (g, [ 1F L t—t = (14)
Zy V1-22  Zi 2
with corresponding real and imaginary parts of the leading terms at Z; = 0:

_cos(@—6i)ar 1 lim Tm @ — sin (0 — 61) aq
4’ r—0 L=

821 _27T

. /
71‘1_% Re ¢} = (15)

2mr 2mr

The second derivative of ®(Z;) with respect to Z; is only required for elasticity problems and is not
developed [3, 5].
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5 Developments for a potential problem

The above developments are now applied to the derivation of a fundamental solution that can be used
in the context of a hybrid boundary element method for potential problems. The developments in this
Section are per se relevant and self contained. However, they also serve as motivation to the more
involved — and less intuitive — problem of elasticity [3, 5].

5.1 Construction of a fundamental solution

u  0%u

A solution of the Laplace equation 922 + 92 = 0, say, for the steady-state heat transfer in a
€T Y

homogeneous plate of uniforme thickness ¢ with coefficient of conductivity k, can be obtained from

®4, as introduced in Eq. (12), in terms of the potential

with fluxes referred to the global Cartesian system (z,y)

ou ou
Qz, = _kai.’l,‘l =—Im (qu)ll)a Ay, = _kaiyl = —Re (qu)ll) (17)
and normal flux
Gny = =N — Qy, 1y along T (18)

Let two segments of lengths a1 and as rotated by angles 6, and 65, respectively, compose lines of
potential jumps (which correspond to lines of displacement discontinuities — cracks — in the elasticity
case) along the boundary T" of a body of domain 2, with segment 1 coming before segment 2, in such
a way that all phenomena along I" are described in terms of a local variable £ that runs in the counter
clock direction, as illustrated in Fig. 2. The combined effect of the potential field is proposed as

represents

Figure 2: Representation of two semicracks that compose the crack element # 3 related to node # 4.
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U= U] — U (19)

with mathematical justification that follows immediately. According to Eq. (13), the latter equation
leads to

6, —0
1 12 A 2 for a point outside §2
limu = — lim Im(®; — &) = T (20)
r—0 r—0 01 —0 . L.
14 for a point inside Q2
21k
1 60—06

for a point inside €2, and for 6; and 65 in any
0, — 05
27

Th tical t luate li = -
e practical way to evaluate limu = — + ok

quadrant, whenever required, is by writing liH(l) u = frac <1 +
r—

1

1
) —, observing that 0 < lim u <
k r—0

One checks that, for the superposition of effects given in Eq. (19),

e—i91 e—i@z

lim (T1 @) — TP,) = (21)

B 4a1 4a2

which is not only finite, but also single valued.
The projections of the outward unit normal 7, for I' rotated by 6;, are n, = sin6; and n, = —cos 6.
Then, for the combined effect of the potential field, as in Eq. (19), the normal flux ¢, on I is

I cos(f — 61)

}ii% In = }13(1) (—qang — qyny) = T aa along segment 1 (22)
. . 1 cos(f — 61)
}13% Gn = }5% (—@enz — qyny) = 1 da along segment 2 (23)

Observe that there is a jump in the value of ¢,, as one goes from one segment to the other. If 6, = 61+,
1

day ' day’
which means that there is no longer a jump, although ¢, varies along the segments. Additionally, if
a1 = as, gy is constant along the entire boundary segment and the integration of ¢,, along the segment
results in a source of unit intensity, Q/t = 1.

Although there are no singularities at r = 0, the expressions of the potential u and of the flux g,
must be carefully assessed around the origin and at the opposite extremities of the segments 1 and
2, as numerical integrations are to be ultimately carried out for the evaluation of the matrices that
result from a boundary element formulation [5].

that is, segments 1 and 2 constitute a straight boundary, both limits above result in 1111(1) qn =
r—

5.2 Numerical integration of the double-layer potential matrix H for potential problems

The general expression of the double-layer potential matrix H is

H=Hy = _/ (qu”x +kany) NZ|J| d§ (24)
T
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where k is the node of application of the potential source, i. e., the common node of two adjacent
boundary segments, k~k on the left (segment 1, rotated by an angle ;) and kk* on the right (segment
2, rotated by an angle 65), as described in Section 5.1. The applied boundary potential varies linearly,
according to the interpolation function N;, from node i to the adjacent nodes on the left and on
the right. Then, the integration interval indicated in the above equation comprehends, for the matrix
coefficient Hy;, the two boundary segments that have i as common node (see Fig. 3). In this particular
case, |J| is the corresponding element length, for the natural boundary variable £ € [0, 1].

The following Section consists in an algorithm for the numerical evaluation of Eq. (24) step by
step along a segment ij, for ¢ varying from 1 to nn, the total number of boundary nodes, and j
characterizing the node that succeeds ¢ when one moves counterclockwise around the domain.

When k = i or k = j, the segment 7j coincides with either kk* or k—k and there are in principle
singularities on both extremities of the segment ij. However, a simplification occurs for potential
problems (as well as for elasticity [5]). For segment 1, for instance, the projections of the outward
unit vector @ are n, = sinf; and n, = —cosf;. Then, one checks that, in Eq. (24), —gu,ns —

1
Ty = Qyy (o) = —a—Re (®}), which presents an implicit logarithmic singularity at z; = 0, but can

be approximated by a low-order polynomial as x1 = a1 is approached. The fact that no singularity
exists either at 1 = a; along the segment 1 or at x5 = ao along the segment 2 leads to the simple
algorithm to be outlined in the following for the cases that kK = j or k = 1.

In general, all functions ®(Z), ®'(Z) and ®”(Z) present In¢ singularity about Z = 0 and 1//&
singularity about Z = 1. For the purpose of numerical integration, as detailed in [5], these functions,
whether in terms of Z; or Z, are expanded about the singularity points as, illustratively for ®(7),

O(2) ~ 01 (Z)In€ + Dyey(Z) about Z =0 (25)
D(Z) = Bugrt(Z2) /€ + Brey(Z) about Z =1 (26)

In these equations, ®,.,(Z) are regular parts of the general functions that are not affected by singu-
larities, although they cannot be represented by low-order polynomials and be integrated in the frame
of a Gauss-Legendre quadrature. Two simple routines, Inproc() and sqrtproc(), have been developed
to carry out integration along an interval [0, 1] by using subintervals that increase geometrically from
& =0to ¢ =1, as referred to in the next Section [5].

5.2.1 Algorithm for the numerical integration of H

Let nn be the total number of nodes of a discretized model, which coincides with the total number of
discretized boundary segments, as illustrated in Fig. 3. A body of any topology, with reentrant corners,
holes and, after a slight modification of the basic code, also one-dimensional internal obstacles (which
correspond to cracks in an elastic medium), can be simulated. The simulation of an internal crack is
obtained as the modeling of a hole in the domain (similarly to the general numerical example of Fig.
6), then with node numbering running clockwise. However, as illustrated in Fig. 4 for a crack with
n nodes, an arbitrarily placed, fictitious node n + 3 is introduced. After the numerical evaluation of
all matrices, the rows and columns corresponding to nodes 1, n + 2 (which are only needed in the
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definition of the crack configuration) and n 4+ 3 are removed and the effect of the internal crack is
consistently taken into account.

+

Figure 3: Illustration of a body discretized with 12 linear boundary elements and the corresponding
definition of the crack segments.

Define the matrices of potential functions and the matrix IN of shape functions

o = [0y @y, = |0 @] . @l =[o) @ (27)

in sqrt

N = [Ni N]} = [1 _¢ g] (28)

The subscripts ( )i, and ()sqr+ indicate that the functions in the matrix coefficients are the ones defined
as in Egs. (25) and (26). Moreover, define the nn x nn matrix H with all coeflicients initially set as
ZErO.

For the purpose of having the following algorithm as ready as possible for code writing, the coeffi-
cients of all matrices are referred to in brackets, whereas the primary variable is given in parentheses,
such as ®'(¢)[c], where ¢ = 1,2 for the first matrix in Eq. (27).
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Figure 4: Fictitious node n 4 3 for the simulation of a curved crack with n nodes and n + 1 segments.

5.2.1.1 External loop for the potential jumps — corresponding to the source cracks in elastiticy —
with k varying from 1 to nn. Determine the adjacent nodes k=~ and kT, for the nodes numbered
counterclockwise. Next, obtain cos 1, sin 6y, cos 05, sin 65, according to Section 4.

Define the array of constants

C= [Tl sz} (29)

5.2.1.2 Internal loop for the integration segments with ¢ varying from 1 to nn. Determine the sub-
sequent node j, as integration will be carried out along the segment 7.

Evaluate z(£) and y(&) along the segment ij as well as the projections dz and dy and the Jacobian
|J|. Observe that, in Eq. (24), n,dI’ = dy and n,dI" = —dz. Next, evaluate Z; (£) and Z5(§), according
to the text after Eq. (12).

Carry out the numerical evaluation of the 2 x 2 complex array h in the following logical if structure
using the procedures Inproc() and sqrtproc() given in Reference [5]. In the loops to be presented,
¢ = 1,2 refers to either semicrack 1 or 2, and n = 1,2 refers to either extremity ¢ or j of a segment.

5.2.1.3 If ¢ = k, then there is an embedded logarithmic singularity at the extremity £ = 0 of the
segment 45 caused by the potential jumps along both segments kkT and k—k: case (a) of Fig. 5.

For ¢ and n varying from 1 to 2 in two nested loops,

Define f = ®'(£)[IN(E)[n], fin = B, (€)[IN(E)[], freg = f — fin(€) In€ and obtain hfn, ] using
the procedure Inproc(h[n, ).

End of the nested loops with control variables ¢, n.

5.2.1.4 Else if j = k, then there is an embedded logarithmic singularity at the extremity & = 1 of
the segment ij caused by the potential jumps along both segments kk* and k—k: case (b) of Fig. 5.
For ¢ and n varying from 1 to 2 in two nested loops,
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(b)

(d) i (e)

Figure 5: Illustration of the five cases to be taken into account in the numerical evaluation of the
integral of Eq. (24).

Define f = ®'(1—&)[c]N(1—&)[nl, fin = ®},,(1 =[N —)[n], freg = f — fin(§) In& and obtain
h(n, ¢] using the procedure inproc(h[n, c]).
End of the nested loops with control variables ¢, n.

5.2.1.5 Else if ¢ = k™, then there is a square-root singularity at the extremity £ = 0 of the segment
ij caused by the potential jump 1 along the segment kk+: case (c) of Fig. 5. There is no singularity
associated with the potential jump 2.

For n varying from 1 to 2,

Define f = @' (€)[IN(©)[n], fogre = By (OUNEM)/VZ1T) — 1, freg = [ — Faqre(€)/VE and
obtain h[n, 1] using the procedure sqrtproc(hn, 1]).

Define f=®’(£)[2]N(&)[n] and carry out the Gauss-Legendre quadrature h[n, 2]22?;:1 (&glig)wqglig).

End of the loop with control variable n. '

5.2.1.6 Else if j = k~, then there is a square-root singularity at the extremity £ = 1 of the segment
ij caused by the potential jump 2 along the segment k—k: case (d) of Fig. 5. There is no singularity
associated with the potential jump 1.

For n varying from 1 to 2,

Define f = /(1 — &)2IN(1 — O)[n], fogrt = Pyre(1 — 2N — E)nl//Z2(0) — 1, frug = f —
fsqrt(€)/+/€ and obtain h[n, 2] using the procedure sqrtproc(h[n, 2]).

Define f=®’(£)[1]N(&)[n] and carry out the Gauss-Legendre quadrature h[n, 1]22?_;:1 (&gligDwglig)-

End of the nested loops with control variable n.

5.2.1.7 Else there is no singularity: case (e) of Fig. 5.
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For ¢ and n varying from 1 to 2 in two nested loops,
Define f=®’(£)[c]N(¢)[n] and carry out the Gauss-Legendre quadrature h[n, c]:Z:-l::l F(&qglighwglig].
End of the nested loops with control variables ¢, n.

5.2.1.8 End if End of the structured logical if.
Define the matrix of boundary unit projections referred to the segment ij, as introduced in Eq.
(22),

n= {7% ny} (30)

The coefficient Heoey of the matrix H in Eq. (24) is obtained in the following loop, according to Eq.
(18), for nodes i and j given in the array i = [4, j].

5.2.1.9 Loop for extremities 7 and j, with n varying from 1 to 2. Evaluate the matrix expression (an
inner product, for potential problems)

Hcoef =

Z Clc, 1] Im(h[n, ]) + Clc, 2] Re(h]n, c])] nt (31)

c=1

The matrix H, whose coefficients may already have contribution from a preceding integration over an
adjacent segment, is obtained as

Hk,i[n]] = Hk,i[n]] + Heoey (32)

5.2.1.10 End of loops with control variables n, i, k.

6 A numerical example

A logarithmic potential source ® = In\/(x + 10)2 + (y — 25)2/(2n) is applied at node F of an unbounded
two-dimensional continuum, as illustrated in Figure 6. One cuts out the depicted irregular figure and
applies the generated potential and gradients to the drawn boundaries, thus creating a problem (for
the Laplace equation) of simple, known analytical solution. However, the reentrant corner and the
internal hole of the figure pose some topological difficulties to the numerical simulation of the poten-
tial problem. The figure is composed of a total of 104 nodes and linear segments, which are equally
spaced between the indicated corner nodes, whose coordinates are given in Table 1. A series of 51 point
along the line segment AB are also generated for the representation of numerical results at internal
points.

The simplest problem that can be solved in this example is for Neumann boundary conditions, when
only the matrix H of Eq. (6), as developed in Eq. (24) for potential problems, needs be evaluated.
Although H is a singular matrix for a bounded domain, the equivalent nodal gradients p of Eq. (6)
are in balance and the posed linear algebra problem admits of just one solution p*, to be obtained in
the frame of generalized inverse matrices [2, 3,5, 7]. Once p* is evaluated, gradients and potentials can
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Node |1 17 27 50 69 87 93 99 A B F
x 0 10 20 15 0 10 11 12 5 15 -10
Y 0 15 10 35 20 20 21 20 20 18 25

Table 1: Cartesian Coordinates of the nodes that constitute Fig. 6.

oM

1

Figure 6: Cut-out model for the numerical modeling of a multiply connected body.

be obtained according to Egs. (4) and (5). Figure 7 shows on the left both analytical and numerical
values of the potential, as obtained along the line segment AB. Since this is a Neumann problem,
a constant potential was added to the numerical results in order that both analytical and numerical
values best coincide. Analytical and numerical values of gradients are also shown in Fig. 7.
Comparisons with a code developed using Kelvin fundamental solution (® = Inr, for potential
problems) have been already carried out. The accuracy is matched for internal points that are far
from the boundary. However, the boundary layer effect is larger in the case of fundamental solutions
defined in terms of generalized Westergaard functions. This is expected, as the gradient singularity
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Figure 7: Comparison of some analytical and numerical results for the example of Fig. 6.

1/r for Kelvin’s solution is more pronounced and localized than the singularity \/ﬂ of the Wester-
gaard function dealt with in this paper. In spite of this more pronounced boundary layer effect, good
accuracy can be still achieved with some post-processing of the results, as done for the case of Kelvin
fundamental solutions [11].

7 Conclusions

The paper presents a novel development of fundamental solutions that are based on generalized West-
ergaard stress functions and are suited for boundary element applications. Although this outline has
used a variational framework — the hybrid boundary element method — as reference for the numerical
implementations, it is possible to use these fundamental solutions in the conventional, collocation
boundary element method, provided only that some concepts be borrowed from the hybrid bound-
ary element method to allow for the evaluation of results at internal points (in order to circumvent
resorting to the time-consuming Somigliana’s identity). The evaluation of stress intensity factors in
fracture mechanics problems — a paramount issue and the primary motivation to the present work —
can be carried out easier and more accurately in the present context than using existing finite element
and boundary element codes. The analytical nature of the singularity of the stress gradients around
a crack tip, as dealt with in terms of Westergaard functions, offers some conceptual possibilities of
better assessing the fracture mechanics problem, too.
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Abstract

The prebuckling enhancement of composite plates equipped with piezoelectric actuators is the subject of this
paper. Piezoelectric actuators are used to induce in-plane traction stiffening stresses in a composite plate,
thereby counteracting external compressive stresses that render the structure unstable. The objective is to
create in-plane piezoelectric stiffening stresses to enhance buckling loads of laminated plates. The idea is to
completely restrain in-plane displacements on its boundary and to apply voltage to piezoelectric actuators
symmetrically bonded to the top and bottom surfaces. This voltage is applied such that the piezoelectric
actuators shrink generating traction stresses in the plate plane. Therefore, if external compressive stresses
destabilize the structure the stiffening piezoelectric traction stresses will act, re-stabilizing the structure.
Analytical approximations and the finite element method are used to compute the piezoelectric stiffening
stresses whereas the finite element method is used to solve the buckling problem. The results presented consider
bifurcation buckling, although the formulation proposed is general enough to be applicable for nonlinear
analysis and critical point type of buckling.

Keywords: buckling, piezoelectric, stress stiffening, composites.

1 Introduction

Composite structures are usually thin in order to save weight, what makes them prone to buckling
caused by several types of loadings (mechanical, thermal, etc.). The incorporation of sensors and
actuators to composite structures is a way of increasing buckling loads. These systems, composed
of host structure and active elements, are then controled to achieve greater buckling capacity. The
active control may be implemented using a variety of materials. Piezoelectric materials, extensively
investigated in the last three decades [1-3], are again becoming popular. These material are applicable
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in areas such as shape control, noise suppression, mitigation of residual vibrations and maximization
of buckling loads.

One of the first studies addressing stability of laminated plates with piezoelectric sensors and actu-
ators attached was carried out by Chandrashenkhara and Bathia [4]. They developed finite element
models, based on the theory of Reissner-Mindlin, to conduct the study. In the same year Meressi
and Paden [2] obtained linearized governing equations of motion of flexible beams with piezoelectric
actuators. Their conclusion was that the beam could have its buckling load increased through the use
of electromechanical effects.

Piezoelectric stiffening effects, also used to advantage in the present work, were shown to significantly
affect the natural frequencies of composite plates as reported by Donadon et al. [5]. Electromechanical
finite elements were developed to numerically analyze composite plates with piezoelectric actuators
and sensors bonded. Several plate configurations were investigated, numerically and experimentally.

Piezoelectric stiffening was used to increase buckling loads of axially restrained composite beams
[6]. Nonzero traction forces generated by piezoelectric actuators along the beam are shown to increase
stiffness elevating the loading capacity of the structure against buckling.

Kundun et al. [7] used the theory of nonlinear large deformations to study post-buckling of piezo-
electric laminated shells with double curvature through the finite element method. Batra and Geng
[8] and Shariyat [9] present proposals to enhance dynamic buckling of flexible plates.

Recently more sophisticated plate theories that consider piezoeletric effects have been developed
[10-12]. Basically these theories adopt improved kinematic relations for the displacement and electric
fields. In the present work a thin composite plate is investigated due to its applicability in the aerospace
industry. Thus, the traditional Mindlin plate theory [13] is simple and precise enough for the purpose
of this investigation and therefore has been chosen as the basis of the finite element formulations
developed.

This work addresses buckling load improvement of composite plates equipped with piezoelectric
actuators. These actuators generate nonzero traction forces in the plate plane which, through stress
stiffening, increase the plate bending stiffness. The plate has its edges constrained in the plane and
negative voltages are applied to the piezo actuators. The actuators tend to shrink inducing traction
forces over the plate plane. Hence, if external compressive forces destabilize the plate, the stiffening
piezoelectric traction stresses will restabilize it. Piezoelectric stiffening stresses are evaluated analyti-
cally for a simple configuration and numerically through the finite element method in more complex
scenarios. The major concern is with the bifurcation type of buckling encountered in plates. However,
the present formulation is general enough to be extended to nonlinear analyses and critical point type
of buckling.

2 Problem formulation

The electromechanical behavior of a plate containing layers of the piezoelectric actuators bonded on
its top and bottom surfaces is described by differential governing equations. In these equations the
electric potential is assumed constant over the surface of the piezoelectric layers and varying linearly
along the thickness of these layers wheareas the buckling analysis of the laminated plate is based on
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the Mindlin plate theory.

A rectangular plate equipped with an arbitrary number of patches of piezoelectric actuators sym-
metrically bonded to its top and bottom surfaces is taken as the basic configuration. Three possible
configurations are shown in Fig. 1.

In the prebuckling regime only in-plane displacements u and v arise due to two mechanisms: (i)
application of in-plane forces N0, Nyyo, Nuyo or (i) application of equal and nonzero voltages to
the top and bottom piezoelectric patches. In this phase the plate has its four edges restrained such
that w = v = 0. This is a typical situation of a plate mounted on a primary structure. Moreover, if
the plate was free-free (completely unrestrained), there would be no piezoelectric stiffening stresses.

Figure 1: Basic configurations.

Assuming that the piezoelectric layers are polarized along the z direction (perpendicular to the
plate) the constitutive equations are given in Eq. (1).

o0=Qe—eTE, 7=Qgy, d=ee+¢E, (1)

where o are in-plane stresses, T are out-of-plane shear stresses, € are the in-plane strains including
nonlinear components, v are the out-of-plane shear strains, Q is the ply in-plane stiffness matrix in
the structural coordinate system, Qg is the ply out-of-plane shear stiffness matrix in the structural
coordinate system, d is the electric displacement, E is the electric field, e is the electro-mechanical
coupling matrix and £ is the permitivitty matrix. It can be seen that 7 is unaffected by piezoelectric
effects [10]. Both composite and piezoelectric materials obey Eq. (1) but the pure composite layer has
e=0.
The total potential energy of the conservative system is

1 1 1
H:f/ aTedV+f/ TTde—f/ dTEdV - W, (2)
2 14 2 \4 2 14

where the work of external forces N0, Nyy0, Nazyo is represented by W.
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The kinematic assumption for the Mindlin plate displacement reads:

a(z,y, z) = u(z,y) + 20 (z,y), 0(x,y,2) =v(z,y)+ 20y (2, y), w(z,y,2)=w,y), (3)

where u, v, w are the mid plane displacements (z = 0), ¢, ¥, are the mid plane rotations and 4,
v, w are the displacements of an arbitrary point in the plate. The strains € are composed of three
components: membrane strains €g, curvature x and nonlinear von Karman strains € such that

Uy Voo . w?,
cmarmre=t w, brel o, perdowd
Uy + Vg Yoy + Vya 2w gw,y
W o +
y=9 G L (4)
wy + 1y

Vectors N = { N, Ny, Ny WM = { M, My, My, T Q = { Qu Quy M and
F={F,. F, Fy }7 and matrices A, B, D and Ag are defined in Eq. (5) in order to facilitate
manipulation of Eq. (2).

(A,B.D) = ["7,(1,2,2°)Qdz, As=["7,Qqdz, Q=Ag7,

h/2 N €0+ €EN
F= f*}é/2 e"Edz, { } = { . }, (5)

M

where the integrals are computed over the plate total thickness h. Notice that N, F are in-plane
forces per unit length, Q are shear forces per unit length, and M are bending moments per unit
length but, consistently with usual terminology, these will be simply referred to as forces or moments,
respectively. It is important to remark that the thickness h is total, including possibly piezoelectric
layers. Therefore, piezoelectric layers make a contribution to the laminate stiffness matrices A, B,
D and Ag. However, vector F of piezoelectric force is nonzero only if there are piezoelectric layers
present in the laminate and an electric potential is applied. Instead of using the electric field E, it is
common to introduce the voltage ¢ and piezolectric layer thickness ¢ to write E, = ¢/t such that Eq.
(5d) becomes [14]

A B
B D

Fpy es1(ér + oB)
Fyy ¢ =9 es2(ér+o58) ) (6)
Fyy 0

where the voltages applied to the top and bottom surfaces of the plate are denoted respectively by
o7 and ¢p. In practice ezo = e31, what leads to Fy, = Fy,.

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonca & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



On buckling enhancement of laminated plates with piezoelectric actuators via stress stiffening ‘ 163

Considering prescribed voltages (pure actuation) Eqgs. (4) and (5) can be used in Eq. (2) to yield
the first variation of 1I:

oIl = / (NT5eg + NTden + M7 ok + QTdv — FT o€y — FT den )d2—
Q

/ (Nuwo, Nayo) - 7 Sudl’ — / (Nayos Nyyo) - 7 50dT = 0, (7)
I T

where () is the in-plane plate domain, N0, Nyyo, Nayo are membrane forces applied along the plate
edge I' (the boundary of ), 7 is the unit vector normal to I' and the term containing zF7dk was
abandoned since full symmetry (¢7 = ¢p) has been admitted. Notice that if ¢ # ¢p then the
prebuckling problem would result in nonzero out-of-plane displacements (w # 0) and no bifurcation
type buckling would occur.

Equations (4) can be substituted into Eq. (7) and, after application of Green’s theorem, allows one
to derive five governing equations

(Nm*Fzr),xﬂL(Nry*me),y:0 ) (Nzy*Fry),m+(Nyy*Fyy),y:07

Maca:,:z + M:vy,y = Qma: 5 Myy7y + Mwy,m = nya
Quz,z + Quyy T Naw — Fra)Wze + (Nyy — Fyy)w gy + 2(Nay — Foy)w,oy =0 (8)

and in-plane boundary conditions valid on the plate’s edges:

(sz - szv Nzy - Fzy) S ou = (erOaNryO) i du
(Nay = Fry, Nyy — Fyy) - 160 = (Nayo, Nyyo) - 7 6v. (9)

It must be clear that there are three additional boundary conditions associated with dw, 0v5, 61y
that, although necessary to solve the buckling problem, are not present in Eq. (9).

The piezoelectric stiffening stress resultants (Nyz — Frz), (Nay — Fy) and (N, — F),) are evident in
Egs. (8) and (9). According to Eq. (8c-e), buckling never occurs if there are no piezoelectric stiffening
stresses. Actually, there are two possibilities for buckling to occur: (i) nonzero piezoelectric stiffening
stresses must exist or (ii) external in-plane mechanical forces N0, Nyyo or Ngyo must be present,
what corresponds to the traditional buckling problem. Situation (i) is addressed in detail in the next
section.

3 Piezoelectric stiffening stresses

The distribution of piezoelectric stiffening stresses can be obtained through solution of the differential
equations (8a) and (8b) imposing the boundary conditions given in Eq. (9). A closed-form solution
does not exist specially due to the stiffness and piezoelectric force discontinuities on the plate caused
by piezoelectric patches. The addition of piezoelectric layers to the laminated plate obviously increases
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164 A.R. de Faria and M.V. Donadon

the in-plane laminate matrix A. Also, if nonzero voltages are applied to the patches, then nonzero
forces Fiy, Fyy, Fyy arise.

The purpose of this paper is to improve buckling behavior or to increase buckling loads of struc-
tures whose buckling is of bifurcation type. This can be achieved by proper tailoring of piezoelectric
stiffening stresses. Since composite plates exhibit bifurcation type of buckling they are investigated.
In the bifurcation type buckling of composite plates there is no out-of-plane displacements w in the
prebuckling regime when there is full symmetry on the actuators part (¢pr = ¢p and ¢t = tp) and
the laminate is symmetric (B = 0). Under these assumptions the linear differential equations in the
prebuckling regime can be obtained through specialization of Eq. (7):

T
7 Ain A Ass Uy Fpy
oIl = 57},1,/ A12 A22 A26 Uy - Fyy dQ = 0. (10)
Q
5U7y + (S’Ux A16 A26 AGG Uy + (o Fwy

Even after simplification a closed-form solution to Eq. (10) is not possible. However, an approxi-
mate closed-form solution can be obtained if a symmetric configuration is investigated. If only one
piezoelectric patch aligned with the plate’s edges is bonded at the center of the rectangular plate (see
Fig. 2) then symmetry and boundary conditions read:

e Edge y = 0: v(2,0) = v,5(2,0) = v42(x,0) = ... =0, uy(z,0) = 0;
o Edge 2 =0: u(0,y) = uy(0,y) =u4y(0,y) =... =0, v,(0,y) = 0;
o Edge y = Ly v(z, Ly) = v ,(z, Ly) = v pe(z,Ly) = ... =0, uy(x, L) = 0;
o Edge v = Ly: w(Ly,y) = uy(Le,y) = U yy(La,y) = ... =0, v5(Ly,y) =0
R
plate
Ly
|y
A X
—

Lx

Figure 2: Basic dimensions
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Symmetry of the problem allows one to conclude that v(z,0) = 0, u(0,y) = 0, u(z,0) = 0 and
v4(0,y) = 0. v(z,Ly) = 0 and u(L;,y) = 0 are enforced geometric boundary conditions. For a
balanced laminate (A1 = Agg = 0 in Eq. (10)) the conditions u ,(z, L,) = 0 and v 5 (L, y) = 0 result
from the requirements that Ny, (z, L,) = Nyy(Lg,y) = 0. The boundary condition in Eq. (9) also
imposes that continuity on Ny, — Fi, and Ny, — Fiy, along any line of constant y must be satisfied
as well as continuity on Ny, — F,, and N,, — Fy, along any line of constant x. Moreover, since no
fracture is assumed, continuity of displacements v and v throughout must be enforced.

The continuity conditions on Ny, — Fy, for point A and Ny, — Fy, for point B can be written,
along lines y =0, = 0, as in Eq. (11):

A (L, 0) + ATov7 (12, 0) = Frp = Apiu 2 (12, 0) + A12v 4 (12, 0),
Afu’(0,1y) + A5v7 (0,1y) — Fyy = A12u4(0,1y) + Azzv,4(0, ). (11)

where a superscript () means that point on the zy plane has both plate and piezoelectric materials.
Discontinuity on u ;(x,0) and v 4(0,y) can be inferred from Eqs. (11). Since discontinuity in the first
derivatives naturally arise in this particular problem a finite element formulation based on the classical
plate theory is not applicable since it would enforce continuity on v, and v ,. Hence, Mindlin type of
elements constitute a better option for they are able to capture discontinuities on the first derivatives
of u and v. This element will be detailed in the next section.

Approximate solutions to Eq. (10) under boundary conditions of Egs. (11) might be obtained using
the Navier method. However, the complexity introduced by the material and geometry discontinuities
would have to be properly treated. Since derivation of analytical solutions is not the main objective,
the approach adopted to find approximate closed-form solutions to Eq. (10) consists in assuming that
the plate depicted in Fig. 2 has a beam-like type of behavior along lines y = 0, = 0. Obviously this
means that Poisson effects, that may be significant in plate problems, are completely neglected. Thus,
the in-plane differential equations simplify to u z,(x,0) = 0 and v ,,,(0,y) = 0. Furthermore, Egs. (11)
become

ATIU* (lwv 0) —Fpp = Allu a;(lwa O);
A;2U (0 l ) yu = A22'U (07ly)- (12)

When the boundary conditions u(0,0) = u(L,,0) = 0 and v(0,0) = v(0,L,) = 0 and the jump
conditions of Eq. (12) are considered, u 4, (x,0) = 0 and v ,,(0,y) = 0 may be solved leading to:

o (R B (& 1) Fu
u*(z,0) = [Afl(i %> } u(z,0) = {ATl(i—%)—Allf}

O i)yF -y
)] ]
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The piezoelectric stiffening stress resultants given in Eqgs. (11) simplify to:

FZL’CE
Tow = A*{luj‘m(x,O) — Fpp = An1u 4 (2,0) = = ,
i (1- 4 -1
All ZI
* * F
Ty = A22”,y(07 y) — Fyy = A22v ,(0,y) = = . (14)

A numerical example can be solved if one adopts a few properties. Typical physical properties are
given in Tab. 1. Geometric parameters are plate semi-length L, = 0.2 m, plate semi-width L, =
0.15 m, piezoelectric actuator semi-length [, = 0.15 m and semi-width [, = 0.05 m. The cross-ply
laminate [0/90]s (which is symmetric and balanced) has four layers of 0.15 mm thickness. Piezoelectric
layers (top and bottom) are 0.05 mm thick. A voltage of ¢ = ¢ = 50 V is applied. This voltage
corresponds to the depoling field given in Tab. 1 since 50 V / 0.05 mm = 1000 V/mm.

Table 1: Physical properties

Property G1195N  T300/5208
Young modulus E;; (GPa) 63.0 154.5
Young modulus Es2 (GPa) 63.0 11.13
Poisson ratio 12 0.3 0.304
Shear modulus Gi2 = G13 (GPa) 24.2 6.98
Shear modulus Ga3 (GPa) 24.2 3.36

Piezoelectric constant esy (N/V m) 17.6 -
Piezoelectric constant esz (N/V m) 17.6 -
Depoling field Eyvax (V/mm) 1000 -

Figures 3 and 4 present a comparison between the analytical solutions given in Eq. (13) and the FE
numerical solution, where £ = 2/L, and n = y/L,,. It is clear that the analytical solution along y = 0
is a very good approximation to the actual displacements. Both u and u , agree well. However, the
same is not true for analytical solution along x = 0. It can be observed that, although the patterns
for v and v, are similar in shape, their magnitudes are completely dispair. The conclusion is that, in
this particular configuration, the plate behaves much like a beam in the x direction but not in the y
direction.

Closer observation of Eq. (14) reveals that the piezoelectric stiffening stress resultants depend
basically on two parameters: the relative stiffness a = Aj;/A;; and the nondimensional actuator
length [, /L,. In the particular example selected a = 1.14 and [, /L, = 0.75. Figure 5 shows that,
the smaller a, the greater is the efficiency to generate piezoelectric stiffening stresses. Fortunately,
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Figure 3: Comparison FEM vs. analytical solutions along y = 0
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Figure 4: Comparison FEM vs. analytical solutions along x = 0

in aerospace applications, thin piezoelectric actuators are used leading to practical situations where
1.0<a<1.2.

The stiffening stress resultants V., and Ny, are shown in Fig. 6 where the boundary of the piezo-
electric actuator is highlighted in black. Notice that N, is highly discontinuous along = = 0 and so is

Ny, along y

= 0. The discontinuities observed numerically are consistent with Eq. (12). Additionally,

the region where there is compression in the x direction (N, < 0) is mostly limited to the region

underneath

the actuators. However, the same cannot be said about N,,. This suggests that long

piezoelectric film strips with large aspect ratios are able to orient stiffening stresses more efficiently
than those with aspect ratios close to unity.
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Figure 5: Stress stiffening efficiency varying with relative stiffness
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Figure 6: Stiffening stress distribution in terms of resultant forces

4 Piezoelectric stress stiffening and buckling

Considering that the membrane prebuckling problem given in Eq. (10) is satisfied, the FEM buckling
equations can be derived from Eq. (7) to yield

o = / (M”6k 4+ QT'6~)d + / (N — F)Tdend. (15)
Q Q

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonga & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



On buckling enhancement of laminated plates with piezoelectric actuators via stress stiffening 169

The finite element method is used to solve the governing buckling problem Eq. (15). The element used
is biquadratic depicted in Fig. 7 whose interpolation functions are:

Ni(&n) = 36E—=m(n—1) Na(&,m) = 5(1=E)nn—1) Ns(&n) = 36E+n(n—1)
Ny(&m) =36 —1DA—n%) Ns&n)=01-)A—-n*) Ne&n) =3E+1)(1—n%) (16)
Ne(&m) = 36— Dn(n+1) Ns(&n) = 5(1=&)n(n+1) No(&,n) = 76(E+ Dn(n+1)
n
7 8 9
+1
4] 5 +16 ¢
-1
1 2 3

Figure 7: Biquadratic element

The interpolation functions given in Eq. (16) are used to interpolate five degrees of freedom per
node: u, v, w, ¥, and 1,. Hence the element contains a total of 45 degrees of freedom per element.
When Egs. (4), (5) and (16) are introduced into the first integral of Eq. (15) the finite element stiffness
matrix K arises. The biquadratic element is less prone to shear locking than the traditional bilinear
element. However, the reduced selective integration scheme is used to compute matrix K. The second
integral in Eq. (15) contains the membrane forces N and corresponds to a stiffening term (observe that
it involves the nonlinear strains dey ). There are two types of contributions to N: (i) the traditional
mechanical stresses Ng due to Nyzo, Nyyo, Nyyo, and (ii) piezoelectric stiffening stresses N, computed
through solution of Eq. (10), such that N = Ny + N,,. Therefore, two geometric stiffness matrices
arise: K& from [(N, — F)7dend and K¢ from [ NZdendQ. Therefore, the complete FE buckling
equation becomes

P
(K +) 6iKE; - AKG> q=0, (17)
i=1

where K is the stiffness matrix, Kgi is the piezoelectric geometric stiffness matrix that incorporates the
piezoelectric stiffening stresses and is associated with piezoelectric pair i, K¢ is the geometric stiffness
matrix, A is the buckling load and q is the buckling mode. Notice that the formulation presented in
Eq. (17) assumes that voltages of ¢; = 1 V are applied in order to form matrix Kgr
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In order to obtain numerical results for buckling in the presence of piezoelectric stiffening stresses
consider the plate used in the previous section (L, = 0.2 m and L, = 0.15 m) and one rectangular
actuator with [, = 4 cm and [, = 3 cm placed in the center of the plate whose sides are parallel to the
sides of the plate. Two types of traditional loadings are applied: (i) uniform compressive loading along
the z direction (A;z) and uniform shear (A;y). The actuator voltage is varied within the limits of the
depoling field, i.e., -50 V < ¢ < +50 V. Figure 8 presents the curves obtained for the [0/90]s and
[£45]s laminates. Points on those curves are obtained through solution of Eq. (17) for different values
of ¢. Theoretically, buckling occurs under no mechanical loading (either N,,o = 0 or Nzyo = 0) for
some value of ¢ > +50 V for both types of loading. This conclusion agrees with the expectation that,
when positive voltages are applied, compressive stiffening stresses, as those illustrated in Fig. 6, arise,
impairing buckling behavior. Certainly this would not be the case in practice since ¢ > +50 V destroys
polarization of the piezoelectric material. The first buckling modes for the [0/90]s laminate subject to
Azo are presented in Fig. 9 for different values of voltage. The differences between the mode shapes are
not significant but the buckling load dramatically changes as seen in Fig. 8. However, the peaks of the
normalized buckling modes, given in terms of transverse displacements w, become increasingly higher
as the voltage is varied from -50 V to +50 V. The maximum A, = 660 N/m and A,, = 870 N/m are
associated with ¢ = -50 V. It can be observed that the [£45]s laminate is less sensitive to variations
in ¢. This is evidence that sensitivity to ¢ is associated with the laminate lay-up. The [£45]s laminate
will suffer from buckling due to stiffening stresses only for value of ¢ substantially above 450 V.
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250
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Figure 8: Buckling load vs. voltage: one patch parallel to plate’s edges

A better understanding of Fig. 8 is gained if a perturbation analysis of the buckling eigenprob-
lem is performed. Assume that the voltage of pair i is slightly perturbed by d¢; such that the new
eigenproblem derived from Eq. (17) becomes
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Figure 9: Buckling modes: [0/90]s laminate under \,, loading

p
K+ (¢i +06:)KE — (A + 00X+ 62X+ .)Kg | (q+0q+0°q+..) =0, (18)

i=1

The zero-, first- and second-order problems derived from Eq. (18) are respectively

p
(K +> iKE — )\KG> q=0

=1
p P
<Z 5K G — 6/\Kg) a-+ (K +) 6K — >\Kg> 5q=0
i=1 i=1
p p P
(E 8% ¢iKGi — 62AKG> a+ (Z 36K — MKG) oq + (K +> 0iKGi - AKG> ’q=0.  (19)
i=1 i=1 =1
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Multiplication of Eq. (19b) by q and using Eq. (19a) yields

P TP

a'Kgqq

o= E —r 0. (20)
—~ q Kecaq

Equation (20) shows that the sign of OA\/9¢; is related to the positive-definiteness of KZ., K¢
and the buckling mode q. In the case of uniform compressive forces matrix K¢ is positive-definite.
However, the same cannot be said about K&- In fact, Fig. 6 indicates that the term N,, — F}, is
positive in some regions over the plate and negative over others. Hence, the sign of qTKgiq depends
ultimately on q. Figure 8 just confirms this finding.

Multiplication of Eq. (19¢) by q” and using Egs. (19a) and Eqgs. (19b) yields

5q" (K+ Y0 o KE, — MNKg) dq o1
- a’Kaq ' 1)

Matrix (K + Y ¢;KE, — AXK() is positive-definite provided buckling has not occurred. Therefore,
the sign of 62X given in Eq. (21) is certainly negative if K¢ is positive-definite. Notice that this may
not be the case when shear loadings are applied but it is true for the case where N, # 0 and
Ngyo = Nyyo = 0. Figure 8 confirms that the concavity of the A vs. ¢ curve is negative.

A network of piezoelectric actuators may be used to try to induce more favorable piezoelectric
stiffening stresses. Figure 1b shows a possibility where the only patch shown in Fig. 1la is split into
four smaller patches such that the total area is maintained constant. This procedure guarantees that,
provided the same voltage is applied, the electric energy required is also the same. Figure 10 presents
the A vs. ¢ curves obtained assuming that equal voltages are applied to the four patches. Comparison
to Fig. 8 leads one to conclude that the normal and shear buckling loads were decreased for both the
[0/90]s and [+45]s laminates. Therefore, this particular procedure did not bring any improvement to
the buckling loads. However, this simulation suggests that the piezoelectric actuators should be placed
as far from the boundaries as possible in order to boost the potential benefits of the piezoelectric
stiffening stresses.

Figure lc presents another possibility for placement of the actuators, i.e., patches with arbitrary
orientation. In Fig. 1c the same rectangular patch of Figure la is used but it is oriented parallel to
the plate diagonal. Figure 11 presents the A vs. ¢ curves obtained. Comparison against Figs. 8 and
10 demonstrates that this configuration is the best one for both laminates whenever ¢ < 0 V and
it has good performance for ¢ > 0 V except for extreme values of ¢ very close to +50 V. Hence, if
permitted, the best strategy is to orient the patches along the diagonals, at least for the [0/90]s and
[£45]s laminates.

82\ =

5 Conclusions

It was shown that piezoelectric actuators can be used to increase buckling loads of composite plates. A
new approach is proposed where stress stiffening effects are employed. Initially, an analytical solution
to the prebuckling in-plane differential equations is pursued. However, discontinuities inherent to the
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Figure 10: Buckling load x voltage: four Figure 11: Buckling load x voltage: one
patches parallel to plate’s edges. patch parallel to plate’s diagonal.

problem preclude derivation of closed-form expressions. This initial exercise demonstrated that the
treatment of discontinuities required Mindlin type of finite elements. A tapered patch design would
certainly smooth out discontinuities but it is not considered because of the little practicableness.

The approximate closed-form solution obtained is applicable to patches of extreme aspect ratios
(length much larger than width). Thus, a numerical solution was proposed using Mindlin type finite
elements in order to compute the piezoelectric stiffening stress distributions. Even tough the governing
differential equations (8) cannot be analytically solved they serve to prove that buckling cannot occur
if there are no stiffening stresses Nyy — Fie, Nyy — Fyy or Ngy — Fyy. In other words, for buckling
to occur, external in-plane forces (Ngzzo, Nyyo, Nzyo) must be applied or else nonzero piezoelectric
stiffening stresses must be present, which are induced by nonzero voltages and geometric boundary
constraints.

Numerical simulations considered two symmetric laminates: [0/90]s and [£45]s. These were selected
because the former is a typical lay-up in aeronautical construction and the later is the optimal lay-up
against buckling in the normal direction (A, ). All the results show that buckling behavior is improved
for negative voltages and is impaired for positive voltages. This is obviously a result of piezoelectric
stiffening stresses over the composite plate. As a practical recommendation piezoelectric actuators
should have their orientations carefully chosen, but the most important finding is that they should be
placed as far as possible from the edges in order to maximize the beneficial effects of the piezoelectric
stiffening stresses.

Acknowledgements This work was partially financed by the Brazilian agency CNPq (grants no.
300236 /2009-3 and 303287/2009-8).

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonca & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



174 A.R. de Faria and M.V. Donadon

References

[1] Crawley, E.F. & de Luis, J., Use of piezoelectric actuators as elements of intelligent structures. AIAA
Journal, 25(10), pp. 1373-1385, 1987.

[2] Meressi, T. & Paden, B., Buckling control of a flexible beam using piezoelectric actuators. Journal of
Guidance, Control and Dynamics, 16(5), pp. 977-980, 1993.

[3] Thompson, S.P. & Loughlan, J., The active buckling control of some composite column strips using
piezoelectric actuators. Composite Structures, 32(1-4), pp. 59-67, 1995.

[4] Chandrashenkhara, K. & Bathia, K., Active buckling control of smart composite plates — finite element
analysis. Smart Materials and Structures, 2(1), pp. 31-39, 1993.

[5] Donadon, M.V.; Almeida, S.F.M. & de Faria, A.R., Stiffening effects on the natural frequencies of lami-
nated plates with piezoelectric actuators. Composites Part B: Engineering, 33(5), pp. 335342, 2002.

[6] de Faria, A.R., On buckling enhancement of laminated beams with piezoeletric actuators via stress stiff-
ening. Composite Structures, 65(2), pp. 187-192, 2004.

[7] Kundun, C.K., Maiti, D.K. & Sinha, P.K., Post buckling analysis of smart laminated doubly curved shells.
Composite Structures, 81(3), pp. 314-322, 2007.

[8] Batra, R.C. & Geng, T.S., Enhancement of the dynamic buckling load for a plate by using piezoceramic
actuators. Smart Materials and Structures, 10(5), pp. 925—-933, 2001.

[9] Shariyat, M., Dynamic buckling of imperfect laminated plates with piezoelectric sensors and actuators
subjected to thermo-electro-mechanical loadings, considering the temperature-dependency of the material
properties. Composite Structures, 88(2), pp. 228-239, 2009.

[10] Kogl, M. & Bucalem, M.L., A family of piezoelectric MITC plate elements. Computers & Structures,
83(15-16), pp. 1277-1297, 2005.

[11] Carrera, E., Boscolo, M. & Robaldo, A., Hierarchic multilayered plate elements for coupled multifield
problems of piezoelectric adaptive structures: formulation and numerical assessment. Archives of Com-
putational Methods in Engineering, 14(4), pp. 383-430, 2007.

[12] Gopinathan, S.V., Varadan, V.V. & Varadan, V.K., A review and critique of theories for piezoelectric
laminates. Smart Materials and Structures, 9(1), pp. 24-48, 2000.

[13] Reddy, J.N., Mechanics of Laminated Composite Plates: Theory and Analysis. CRC Press: Boca Raton,

1997.
[14] Nye, N.Y., Physical Properties of Crystals: their representation by tensors and matrices. Oxford University
Press, 1972.

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonca & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



Topology optimization with stress constraints using
superconvergent patch recovery

Jan-Michel Colombo Farias, Eduardo Lenz Cardoso,
Pablo Andrés Mutioz-Rojas

State University of Santa Catarina, Department of Mechanical Engineering
89223-100, Joinville, SC — Brazil

Abstract

When the stress accuracy is of extra interest, as in the case of topology optimization with stress constraints,
one has to address the known limitatons of the compatible finite element formulation. In this work we study
the use of patch-based stress recovery techniques and their application to topology optimization. Also, to
address the material variation innerent to topology optimization, we propose the use of a new displacement
based superconvergent stress recovery technique. The effectiveness of the proposed formulation is shown with
the used of two examples.

Keywords: topology optimization, stress constraints, superconvergent patch recovery.

1 Introduction

Nowadays the exponentially growth of industry and the fast advance of technological tools allied
with the need for the development of extreme structures and projects have pushed the structural
optimization to a new level of importance. Economical and ecological issues can be transposed by the
use of structural optimization tools, and more specifically the topology optimization has been playing
an important role related to such topics.

A mass minimization problem with local failure criterions is among the most practical and requested
applications but its proper setting is not straightforward due to theoretical and numerical difficulties. A
constraint in some measure of the maximum stress of a mechanical component is essential to guarantee
its safety, for example. Unfortunately, the imposition of such constraints has always been a challenging
topic in structural optimization, because of two main difficulties. The first one is the singularity that
appears after the relaxation of the original 0-1 problem, since as the density continuously decreases
to zero, the discontinuity of stress shows up. This phenomena was first reported by [1] and since then
several proposals have been presented in the literature to address this problem, such as the e-relaxation
[2] and the use of smooth envelope functions [3]. The singularity associated to the continuous material
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parameterization is well understood and can be circumvented by changing the asymptotic behavior of
the stress with respect to a change in the material density [4] .

The second one is associated to the large number of local constraints. A precise control of the stress
field inside the design domain is of major concern when dealing with structural optimization. However,
due to its local nature, the stress field would have to be limited at each point of the design, and even
with a discrete domain this procedure leads to a huge number of constraints, typically as numerous as
the number of elements in the mesh. Despite of the high computational effort, some researchers have
successfully adopted this procedure and were able to generate feasible solutions [5] . On the other hand,
the use of just one constraint, or a reduced number of them, would be computationally attractive,
but one generally has to deal with a weak control of the stress level [6], as for example, the use of a
p-norm constraint of the von Mises stress field. Although it represents a stress field measure, it cannot
be related to the maximum stress unless the p parameter tends to infinity, which leads obviously to
numerical difficulties. In a recent work, [7] proposed the use of the following modified constraint

¢lloell, < oy (1)

where oy is the yield stress,

np »
el = (3% @
e=1
is the L, norm of the effective von Mises stresses over np stress points and c is given by

(k—1)
k) _ Max (oeg)
k) — = (3)

loeqll,

where (k—1) stands for the previous iteration number and the max(o.q) symbol means the maximum
value of the effective stress field. This proposal fixes a fundamental problem of the traditional norm
constraint (obtained for ¢ = 1), as it only makes sense if p — oo, and for low p values there is no
meaning in comparing the norm with the yield stress.

In addition to the previous presented approach, we propose the use of two superconvergent patch
recovery schemes to better evaluate the stress field, leading to a more reliable evaluation of the global
stress constraint.

2 Superconvergent patch recovery

The traditional compatible formulation for finite elements is commonly used to solve the equilibrium
problem in topology optimization. In this formulation, the primal variables are the node displacements,
such that strains and stresses are obtained by further differentiation of the displacement field inside
each finite element. When the quality of the stress values is of interest, as in the topology optimization
with stress constraints, one has to cope with two important aspects of the compatible finite element
formulation: the proper evaluation of stresses inside each finite element and the lack of continuity
among elements, specially on the boundary.
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Figure 1: Patch (light gray) around a central element (dark grey)

Stress evaluation in compatible finite elements has been studied by many researchers (See [8] for an
overview). Barlow [9], showed that there are specific points inside each element that give the best stress
values, known as Barlow points or superconvergent points. Although those points give the best stress
values inside a given element, there is no assessment on the quality of the stresses among elements or
on the boundary of the domain.

To overcome those difficulties, Hinton and Campbell [10] proposed a global stress smoothing. The
global smoothing has as its main drawback the increase in computational time as the number of nodes
increases, and the number of back-substitutions proportional to the number of stress components. To
avoid the global system of equations, one can use a patch recovery scheme proposed by Zienkiewicz
and Zhu [11,12] . In this kind of local smoothing, stresses evaluated in the neighborhood of a given
element (hereafter called center element) or node are used to construct a surface that best fits the
stresses in this area, known as patch. Figure 1 shows a first order patch around a center element,
obtained by selecting all the elements that share at least one node with the center element. A second
order patch is obtained if we include all the elements that share at least one node with the set of first
order neighbors, and so on.

Using a local coordinate system inside a given patch and considering a bi dimensional problem, one
can define, for each stress component i = zz, yy, xy,

ai(r,s) = p(r, S)Tai (4)
where ai’ = | ai ab .. ai ] is a set of coefficients used to adjust the i-th stress component
and p(r, s)T =[1 r s ...]isapolynomial base. In order to obtain the coefficients a’, the least

square method is used to fit a surface among every Barlow point residing inside the patch. The squared
difference between the interpolated stresses and the superconvergent stresses inside the patch is given
by

nsp

7 =5 oi(rs,s5) = Gi(rj, 5))° (5)

j=1
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where nsp is the number of superconvergent points inside each patch and i is the stress component.
The functional II¢ (5) attains its minimum value when

drg X 5 di(rj, s;)
W:Z[Ui(rj,sj)*%(?“j,sj)}#:0 (6)
k j=1 k
defining the following system of linear equations
nsp . nsp
> (psp])at = [pjoi(r,s))] (7)
j=1 j=1
or, in a more compact notation
AZal. =f7 (8)

where e is the central element. This patch is known to provide quadratic convergence with respect to
mesh refinement and results in a better description of stresses when compared to other approaches [8].
Also, the superconvergent patch recovery is less sensitive to mesh distortion, an important source of
error when dealing with stresses. Unfortunately, when considering the spatial variation of the material
parameters that arise in the topology optimization, one should not use the direct stress interpolation
provided by Eq. (4).

Recently, [13] proposed a different kind of superconvergent patch recovery, based on the interpolation
of the primal field obtained by the Finite Element Method. For elasticity problems, the displacement
inside a patch is given by

0°(r,s) = ®(r,s)A° Y _ @' (r, s)H,U (9)
=1

where

P(r,s) =

P7(r, s) [o]m]
[0lixn P (r,5) 2x2n7

is a matrix containing the polynomial evaluation of the point of interest
A l A7 [0uxn ]
—1 ’
[O]nxn A 2nx2n
is a matrix formed by the inverse of
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npp

Anvn = ZP(Th SZ)PT(Tla 3l)7
=1

and H is a mapping matrix, such that

HU — ug (11, 51) 7 (10)
wy (17, 51)
where
Hl = H2><nnodes

has 1 in the entries corresponding to the degrees of freedom of the I-th node and zero elsewhere. The
local coordinates (r, s) are related to the global (Cartesian) coordinates (x,y) by

xr — a2

r=2 -1
Ts — T

s=24" U 4 (11)
Ys — Y1

where z;, zs,y; and ys correspond to the lower and upper x , y coordinates of the patch, respectively.
The strain in a given point of a patch with central element e is given by

g(r,s) = L[a®(r,s)] (12)

where L is the differential operator that maps the displacement into the strain. Assuming that the
patch local reference system (r, s) corresponds to a scaled and translated version of the global reference
system (x,y), as shown in Eq.(11), and considering 2D elasticity, the differential operator L has the
form

d(o) d(o) dr 2 \d(o)
dr 0 “dr dz 0 (zsfzr,) dr 0
d(o d(o) ds _ d(o
Ley=| 0 Sgi=| o @& = o0  GEEE | 1
d(o)  d(o) d(o) ds  d(o) dr ( 2 )d(o) (L)d(o)
dy dx ds dy dr dz Yys—yi/ ds xrs—x;/ dr

As a given node in the mesh can be inside IV, patches, the final strain is obtained by a simple
average

N,
1 p
E(r,s) = N, ; &°(r, s) (14)
and, thus, the stress in a given point is given by
o(r,s) = C(r,s)é(r,s). (15)

The effective von Mises stress may be expressed using matricial notation [14]

Nl=

Geg = (6"M&) (16)
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where
1 =12 0
M=| —-12 1 0
0 0 3
for plane stress problems and
Oz
0= | Gyy
Oy

is a vectorial arrangement of the stress tensor, commonly used by the Finite Element Method theory.

Equation (9) has two advantages when compared to Eq. (4): the number of components to solve
for is smaller in the displacement based patch, as the number of displacements components is always
smaller than the number of stress components, and the constitutive relation C is used only when
evaluating the final stress &, allowing arbitrary spatial variation of the constitutive tensor without
imposing any additional interpolation error. Also, as shown in [13], this patch retains the convergence
ratio of the traditional stress based patch, with the same low sensitivity for mesh distortion. Thus,
this method is preferred for topology optimization with stress constraints.

3 Formulation

As our goal is to minimize the mass of a design domain and we seek to use only one kind of material,
the method may be equivalently expressed as a volume minimization problem with a von Mises stress
constraint and subjected to an equilibrium variational equation
rrhinV = [p(x)dQ?
St. 0eqg S0y
J o (u)-e(m)d = [ tdr

We adopted the SIMP material parametrization for the constitutive tensor C = p"Cqy and a SIMP-

like parametrization for the stress tensor as described by [14]

o =p""1Ce (17)

where n is the SIMP exponent, ¢ is a relaxation factor and Cy is the fourth order constitutive tensor
of the base material.

Moreover, Bruggi [15] has shown that the use of ¢ < n in Eq. (17) leads to a domain relaxation
which is smoother if compared to the e-relaxation method [2], therefore alleviating the singularity
phenomena.

Recalling the known issue realated to the number of stress constraints imposition, we basically
followed [7] methodology of using a modified von Mises stress p-norm constraint. However in order to
account for a better estimate of stresses, we propose the use of the stresses obtained by means of the
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superconvergent patch recovery scheme. This can be accomplished by using 6., instead of o4 in Eq.
(1), such that it now reads
max(e,) kY

~ k
¢ = ——— i 5ely” < ov (18)
”Uequ

This modification has two direct consequences: first, the stresses used to evaluate the constraint
are a better estimate than the direct centroidal stresses commonly used in the topology optimization
literature. Second, the stresses at different coordinates are now correlated throughout the entire patch,
making the problem even more nonlinear. This second consequence can make the computations more
involved, but have the benefit of making the recovered stresses less sensitive to the original stresses
fluctuations. Introducing the finite element method and its discrete domain in which all the calculation

is performed, the problem statement takes the following final form
nelem

m(}nV: > peVe

e=
max(&eq)(k71> pd (k) <
s.t [5eqll D ||0'eq||p = 0y

KU=F
where K is the global stiffness matrix of the finite element mesh, U is the global displacement vector
and F is the global force vector.

In order to avoid the checkerboard phenomena and to generate a well-posed problem, we have
adopted the use of filtering techniques. The use of filters in topology optimization has some advantages,
such as the elimination of the checkerboard issue, as already mentioned, the solution is no longer mesh-
dependent and its dependency is now transferred to a physical parameter: the filter radius. A good
review about filtering techniques is given by Bruns and Tortorelli [16]. One direct consequence of
setting a filtering radius is that now it is possible to control the minimum size of members [17, 18]
and/or holes [19,20] that can appear inside the design domain. We have decided to use the original
linear filter proposed by Bruns and Tortorelli due to its simplicity and efficiency, albeit other projection
methods or none filtering at all could be used. If the latter approach is chosen, the reader should be
aware of the consequences and exploit the available solutions.

4 Sensitivity analysis

In order to impose the stress constraint it is necessary to perform the sensitivity analysis with respect
to the design variables. In the following, we provide the full development of the sensitivity expres-
sions for the superconvergent displacement based patch, while in Appendix A the derivatives of the
superconvergent stress based patch are shown. Differentiating the R.H.S of Eq. (18) with respect to a
design variable x,, and adopting an adjoint approach, we obtain

~ (k) T ~
d (c(’“’ 5eqll,” + A7 (KU — F)) _wd 16 eql ¥ o (TK g dUdF (19)
Az, o dx,, dx, dr,, dx,,
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where X is the adjoint vector and ¢*) is a constant in iteration number k, since it depends of the
previous iteration.
Thus, evaluating the derivative of the p-norm we obtain

k
d||aeq|| )

’BM—‘

N LN .
(Z (ris z> lZpﬂﬁ(n#ﬂW] (20)

= i=1

which can be written as

N

St

=T
' i=1 dZm

13
gl (L e N d&eg(ri, 5:)
dl’m - ZO.P (Tz; 81) Zagq (7“,‘,81') dLUm

i=1 =1

where
17

N P
T, = (Z &gq(ri,si)> (22)

is a fixed term.
The derivative of the von Mises stress in Eq. (21) can be evaluated by means of Eq. (16), resulting
in

da—eq(r"ia 51) 1 ~T d&(’l’i, 51’)
- s M T %) 23
Az, Geq(Tiysi) o (ri; 51) dt.m, (23)
and the derivative in Eq. (23) can be evaluated by means of Eq. (15), such that
d&(’/’i, Sz) dC - dé(ri, Si)
_ - .  8i) 24
dzm, dme(Tu 5i) + C(ri, 5i) Az, (24)
Evaluating the strain derivative,
d(riys) _ 1 g~ dgy(ni,s)
E(ri,si) _ 72 ep(ri, Si (25)
dx,, N, = Az,
where
dé'p(f'i, Si) dflp(Ti, Si)
= 26
AT, dz,, (26)
we obtain
dﬁp(’l“i, Si) - T dU
— 2 = W(r;, 8;)A° A\ H,—. 2
dr., (ri, si) A @7 (ry,51) . (27)

=1

Considering Egs. (19) thru (27),
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1 ~T
5 o (ris i) > a9 (risi)M (28)
q("ﬂiﬂsi)

dU
E(ri, i) + C(r4, 8;) ZL'II T, Si A"Z\IIT r,s)H +

d

dK dU dF

A= K— — —
(dmm U+ de,, dx., >

or, splitting terms
dR dU dK dF
— =T R + Ry—— + AT (U — >

dpm dxm, dz,, Az,
where
dC
ZU (ri,si)6 (7’1‘751‘)1\/17?3(7”1‘,81')
and

=c®7 Z%m 75, 51)67 (1, 5,)MC(r, 5;) ZLlII T, 8 )AGZ\I/T(T‘Z,SZ)HZ +ATK.
1=1

The evaluation of % is avoided if Ry = 0 , leading to the following adjoint system:

K\=—c®T, ZO’ (r4,8;)0 (TI,SZ)MC Ty, Si)— ZL\II T, Si AGZ\II ry, s1)Hy (29)

where the symmetry of K has been used. Once the adjoint system has been solved for the adjoint
vector A, the sensitivity takes the following form

dR (k) [ dK dF
_— T A —U- .
dxm B+ dx,, dxm (30)

Introducing the gp approach (Eq.17), and recalling that

dC n— d ) - d )
E(T’iasz) (”—Q)P - 1da:pmc —( 0; d d;mc(riasi),

R, can be further simplified to

(n—q) dp; N dp;
ZU Tza z (Tzvsz)Miq P C(Tu z é Thsl Z 5' r175i) P

pi  dxpy, pt dz,,
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so that Eq. (30) now reads

N

dR (n—gq). dpi JK _ dF

L2 3D or (1, PR ey § S 31
don ¢ 1i_1 o Ueq(r“sl)dzm + (31)

Some considerations have to be made concerning the above expression (Eq. 31). The i-th element
density derivative jl—p;l depends on the chosen filtering technique, and must be evaluated after it has
been defined. Moreover, one should not fooled about the range of the summation in the first parcel of
the equation, once the term ddmi; is not null only if the m-th design variable is inside the i-th element’s
filtering neighborhood. So the summation drastically reduces to a few elements. If one decides not to
adopt any filtering method, the derivative collapses to the Kronecker delta §;,, and the design variable
Z, becomes the element’s centroidal density p,,, which, after the evaluation of the stiffness matrix

derivative, leads to

di _ c(k’)T1 M

~ —1\T
de Pm qu(xmaym)+np:ln AmI<0m-U-m7 (32)

where it was assumed that the design is load-independent. The subscript m corresponds to local
properties of the m-th element, and Ky, is the m-th element’s solid stiffness matrix, i.e. p,, = 1.
One remarkable feature of Eq. (32) is that once the adjoint problem is solved, its evaluation depends
only on local properties, such as the density parameter p,,, the superconvergent recovered von Mises
stress G,m, and the local entries of the adjoint and displacement vectors. Therefore the computer code
implementation can be easily parallelized resulting in an efficient and fast calculation of the sensitivity.

5 Results

To assess the use of the patch recovery schemes to evaluate the stress constraint in topology opti-
mization we address two examples. In all the examples we analyzed the following possibilities for the
computation of the stress constraint:
e DIRECT: the effective stress was evaluated directly in the centroid of each element, which is
commonly used in the current literature;
e SPR: the effective stress was evaluated in the centroid of each element, by means of the stress
based patch recovery;
e DPR: the effective stress was evaluated in the centroid of each element, by means of the dis-
placement based patch recovery,
also, for each one of those situations, we analyze the influence of the norm exponent, with p = 8
and p = 12. For all the examples the SIMP exponent is set to n = 3 and the relaxation exponent of
the gp parameterization is set to ¢ = 2.5, as pointed out by [15]. An implementation of the original
MMA method [21] is used in all examples and in each case we assessed the convergence observing the
stabilization of the objective function and of the constraint. Thus, the number of iterations in all the
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Figure 2: L-SHAPE problem definition

examples is not fixed and can be different. We used first order patches in all examples along with the
four node bilinear isoparametric element and a linear density filter, as proposed by [16] and used by
[7]. The plane stress hypothesis is also considered.

The first example studied is the well known L-Shape problem, defined in Fig. 2, which has an
abrupt geometrical change leading to a stress concentration in its neighborhood. To overcome this
problem, the topology must distribute material in order to round that corner and to redistribute the
stress. In this example, we used a finite element mesh with 6400 bilinear isoparametric finite elements
(Imm x 1lmm) and a filter radius of 2mm. The limiting stress was set to o, = 2M Pa .

The results obtained with the different formulations for the stress recovery should be compared for
the same norm exponent. For p = 8, the final topologies and the von Mises stress field are shown
in Figs 3, 5 and 7 for the DIRECT, SPR and DPR cases. The convergence of the volume fraction
for the DIRECT, SPR and DPR cases are shown on the left in Figs 4, 6 and 8. The convergence of
the stress constraint is shown in the center of Figs. 4, 6 and 8, where for each example we show the
three estimates for the stress, although only one is used for imposing the constraint. In the right side
of Figs. 4, 6 and 8 we show the maximum von Mises stress in the last iterations of each one of the
studied strategies.

Analogously, the topologies and stress distributions obtained for p = 12 are shown in Figs 9, 11 and
13 for the DIRECT, SPR and DPR cases. The volume and stress constraint convergence for the three
cases are shown in Figs 10, 12 and 14.

As already mentioned, the use of patches highly increases the non-linearity and its use along with
the p-norm parameter p = 12 have resulted in strong oscilations during the optimization process, as
shown in Figs. 10, 12 and 14. The final volume for all cases, including p = 8 and p = 12, are quite
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Figure 3: Topology (left) and effective stress distribution (right) obtained without patch, p=8
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Figure 4: Volume fraction (left), Stress constraint (center) and and a comparison of different stress
recovery strategies in the final iterations (right) for the direct stress, p=8.

Figure 5: Topology (left) and effective stress distribution (right) obtained with stress patch, p=8
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Figure 6: Volume fraction (left), Stress constraint (center) and a comparison of different stress recovery
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Figure 7: Topology (left) and effective

stress distribution (right) obtained with displacement based

patch, p=8
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Figure 8: Volume fraction (left), Stress constraint (center) and and a comparison of different stress
recovery strategies in the final iterations (right) for the the displacement based patch, p=8.
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obtained without patch, p=12
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Figure 10: Volume fraction (left), Stress constraint (center) and a comparison of different stress recov-
ery strategies in the final iterations (right) for the the direct stress , p=12.

Figure 11: Topology (left) and effective stress distribution (right) obtained with stress patch, p=12
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Figure 12: Volume fraction (left), Stress constraint (center) and and a comparison of different stress
recovery strategies in the final iterations (right) for the the stress based patch, p=12.

Figure 13: Topology (left) and effective stress distribution (right) obtained with displacement patch,
p=12
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Figure 14: Volume fraction (left), Stress constraint (center) and and a comparison of different stress
recovery strategies in the final iterations (right) for the the displacement based patch, p=12.

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonca & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



190 J.M.C. Farias, E.L. Cardoso and P.A. Muiioz-Rojas

similar and around 30%, but the latter presented a slightly lower volume fraction. Rigorously the
final topologies are different, but the overall designs are similar. Although the numerical issues, the
exponent p = 12 gives the best topologies with respect to the rounded corner and the stress saturation.

The second example is the volume minimization with stress constraint of a 8 x 5 cantilever beam,
defined in Fig. 15. The finite element mesh is composed by 16000 bilinear isoparametric elements
(5mm x 5mm) and the filter radius is set to 15 mm. The stress limit is set to 1 MPa.

800 mm

E=1MPa
v=0.3 500 mm
t=1mm

o, =1MPa

1]
750 mm P=0.5MPa

Figure 15: BEAM problem definition

In this example, only results obtained with p = 12 are shown, although the case p = 8 was also
investigated. Topologies and stress distributions obtained are shown in Figs 16, 18 and 20 for the
DIRECT, SPR and DPR cases respectively. The convergence history for each case is shown in Figs
17,19 and 21,

Figure 16: Topology (left) and effective stress distribution (right) obtained without patch, p=12
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Figure 17: Volume fraction (left), Stress constraint (center) and a comparison of different stress recov-
ery strategies in the final iterations (right) for the the direct stress, p=12.

Figure 18: Topology (left) and effective stress distribution (right) obtained with the stress patch,
p=12.

The design domain does not possess the theoretical problems related to singularity as in the previous
example and the Figs.17, 19 and 21) show that the optimization process could generate feasible
solutions without the strong numerical oscilations in the stress constraint. Conceptually the final
topology has given special treatment to the upper and lower left corners of the design domain, where
the normal stresses due to bending are higher and the clamped region leads to an artificial stress
concentration. As mentioned before, the superconvergent patch recovery schemes were able to absorb
the numerical variations of the original stress field, illustrated in Figs. 19 and 21, where the DPR and
SPR stresses remained practically unchanged despite of the DIRECT centroidal stress oscilations.
Considering the DPR case, it can be seen that the DIRECT centroidal stress converged to a value
12% higher than the permissible stress, while the stress in the patch based approaches were no greater
than 1 MPa. Moreover, all topologies have converged to a approximately 28% of volume, and have
well satured the stress among its members.
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Figure 19: Volume fraction (left), Stress constraint (center) and a comparison of different stress recov-
ery strategies in the final iterations (right) for the the stress based patch, p=12.

Figure 20: Topology (left) and effective stress distribution (right) obtained with the displacement
based patch, p=12
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Figure 21: Volume fraction (left), Stress constraint (center) and a comparison of different stress recov-
ery strategies in the final iterations (right) for the the displacement base patch, p=12.
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6 Conclusions

We proposed the use of superconvergent stress recovery techniques to evaluate stress constraints in
topology optimization. Also, we presented the displacement based patch that is more consistent with
the spatial variation in the constitutive parameters that arise in topology optimization.

It was observed a strong variation during the iterations, due to the non-linearity of the stress
constraint and the coupling provided by the use of patches. The MMA parameters used in this work
must be refined to overcome this difficulty. The norm p = 12 showed the best compromise between
numerical stability and the efficacy of stress constraint.

It can be seen that although quite similar, the maximum effective stress evaluated by means of the
different schemes employed in this work are different for each topology. Also, strictly speaking, the
topologies obtained are different, although leading to the same overall design. The two patch based
approaches could handle the DIRECT stress oscilation and their associated stresses have remained
unaffected, as shown in the cantilever beam problem. Thus, as the displacement based patch has the
good convergence properties of the stress based patch recovery and is more consistent with respect
to the material variation along the domain, we suggest its use to evaluate the stress constraint.
Moreover, the displacement based stress recovery is prone to be used with topology optimization of
FGM structures, since the spatial variation of properties in this case is more pronounced.
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Appendix A — Sensitivity for the stress based patch

If the stress based patch is used to evaluate Eq. (18), then the stress in a given coordinate is obtained by an
average among the contributions of all patches that share this point

&(r,s) = Ni S 6 (r,s) (33)

where 6 is the stress tensor obtained with the stress based patch considering a central element p. Analogously
to Eq. (9), the stress obtained by the p-th patch AR (r, s) is given by

50 (r,5) = B(r,)Ay Y W (1, ) (31)
b=1
where
PT(T’S) [0]1><n [0]1><n
‘I'(T7 3) = [O]lxn PT(T7 5) [0]1><n )
[Olixn  [0lixn  PT(r,s)

3x3n
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A71 [O]an [O]an
AP = [O]an A71 [O]an )
[0lnxn  [Olnxn A7

npp

n><n - g P 7"[,5[ Tlasl)

3nx3n

and

share the same definitions of the already presented displacement based patch.
Introducing the stress parameterization Eq. (17)

nsp
P (r,s) =®(r,5)Ap Y ¥ (ry,5)p;  “CoBH,U (35)
b=1
where the summation is now performed among all the nsp superconvergent points inside the p-th patch, and
H, is the mapping matrix of the correspondig element at which the barlow point is located.
Differentiating Eq. (18) with respect to a design variable z,, and employing the chain rule of differentiation,

1_q
d(c™||5e P
( d” qH)_1 (M(z:gp)

)

Te
e=1 ed

n Np nsp
{ > 06t 5 &TMN%, S W (re,se)Ap > W (10, 53) [(n —q) p27Q71;$L:;COBHbU + pfiquBHbaax%] }
p=1 b=1 g

dTm

AT (EEU KR - )
(36)

Aiming at the avoidance of the displacement sensistivity d , the adjoint system can be defined and solved

14
n P n
T k ~ ~ 2~ T —
ATK = —c® <§ :qu> > ety MN E:\Ime,se YA, § O (1, 8)pp " ‘CoBH,, (37)

e=1 e=1

The sensitivity is then given by

- 1_
d(C(k) Hgvap) (k) - ~p o 50257 — T (n—q) dpb
L S A Zaeq Z M Z\Il Te, Se)A Z‘I’ (rv, sp) v da
b=1 m

dx
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dK dF
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(38)
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Abstract

This work presents the optimization of a composite plate subjected to non uniform loadings when two design
criteria are simultaneously taken into account. The design criteria considered are buckling load and funda-
mental frequency. These optimization criteria are important for practical applications, particularly in the
aeronautical industry. The use of minimax strategy as a bilevel procedure is proposed in order to solve the
optimization problem. Furthermore, the optimization process includes a mass optimization external loop that
yields efficient structures. The uncertain and non uniform loads are defined using a hypothetical aircraft load
envelope, with the condition that loads must be self equilibrating.

Keywords: multicriteria optimization, buckling, fundamental frequency, composite plate, uncertain loading,
non uniform loading.

1 Introduction

A commonly used approach for buckling and fundamental frequency simultaneous optimization is the
use of the design criteria as constraints [1] or to use as objective function a weighted sum of the design
criteria [2]. In order to use these approaches it is necessary to have some previous information so
that proper constraint values can be defined. Furthermore, it is required to have some idea about the
relative relevance of each criterion on the optimization problem to define a weighted sum of the design
criteria.

Another common approach of performing multicriteria optimization is using Pareto optimality [3].
The Pareto optimal design ensures that, at least, one criterion is optimized and the others are satisfied.
A similar strategy is the minimax strategy [4] which can either be used to minimize the maximum
loss or to maximize the minimal profit. The minimax strategy allows the determination of the best
design for the worst load condition.
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Among the new approaches for multicriteria optimization, the genetic algorithms have reached some
relevance [5]. The genetic algorithms are based on the natural evolution theory and the design variables
are the initial population that should evolve. These algorithms usually present good results but they
have high computational cost.

The methods described above can be combined among them or with some other optimization meth-
ods to solve multicriteria optimization problems. A good reference for traditional numerical optimiza-
tion methods is Vanderplaats [6].

The multicriteria optimization process used in this work combines the minimax strategy and Powell’s
method [6]. The minimax strategy as proposed here is a bilevel procedure where the design criteria
are maximized with respect to the design variables and minimized with respect to the load cases.
Initially, the criteria are minimized with respect to the loading parameters by a random search. In
a second step, the maximization with respect to the design variables is performed using Powell’s
method. Furthermore, a mass optimization external loop is included in the optimization process. This
external loop yields minimum mass structure within prescribed safety margins previously adopted.
The optimization process is described in Section III.

The use of uncertain and non uniform loads makes the design closer to real situations and, conse-
quently, more robust. The uncertain non uniform loading is defined herein from some physical load
cases combined with the condition that the loads applied to the structure must be self-equilibrating.
The procedure to extract self-equilibrating load cases from physical loads is described in Section II.
This type of loading representation was used in previous works [7-9]. The work of Conrado, Faria and
Almeida [7] yielded very conservative results as the optimal design was able to withstand an entire class
of linear piecewise loads along the rib boundary even those that are unrealistic. In the works of Gama
[8] and Ferreira [9] a novel procedure is proposed to compute self-equilibrating loads that represent an
arbitrary load envelope to which an aircraft could be subjected within a prescribed degree of fidelity.
Moreover, parameters are introduced to control the degree of robustness of the resulting load cases.
The procedure proposed in Conrado, Faria and Almeida [7] is too conservative; the present procedure
can be tailored by the user to exclude non realistic load cases from the optimization procedure thus
providing a solution that is applicable in actual design situations.

The structure chosen for optimization is a wing composite panel with two reinforcers. These struc-
tures are fundamental parts in aircraft design and manufacturing and their optimization is important
in order to design more efficient airplanes.

Buckling and fundamental frequency are numerically computed by the finite element method. The
finite element computation is done using software Abaqus® and the optimization algorithm was
developed using a Fortran code.

2 Non uniform loading representation

When dealing with preliminary design of aircraft structures, it is important to take advantage of
the fact that the structure may be considered to be in static equilibrium and possibly be statically
determined. For example, in the case of a wing panel, once the aerodynamic properties of the wing,
that depend only on the geometry of the wing, are known one can compute the pressure distribution

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonca & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



Multicriteria optimization of an aircraft reinforced composite panel subjected to non uniform loading 199

on the wing for a given maneuver using a CFD code. From these data, the bending moment and
torsional moment distributions and vertical resultant stress resultants may be computed considering
the wing as a beam. Naturally, the stress and strain distributions depend on the material and stiffness
of the structural elements of the wing. However, with the assumptions previously stated the stress
resultant forces and moments do not depend on the stiffness distribution of the wing.

Figure 1 illustrates in a simplified way this procedure for the case of pure bending moment. In this
case, the stress resultant N on an arbitrary section along the wing does not depend on the stiffness
distribution. Therefore, for that particular physical load case the stress resultant on a particular section
of a wing panel must be N. That is, the integral of the stress distribution normal to the section along
the entire length of that section must be N regardless of the design variables. Similarly, the shear
stress resultant at any section along the wing may be computed from the torsional moment. These
information along with the fact that the panel is considered to be in a state of static equilibrium
provides a way to describe the non-uniform loading in a robust way [9].

L,

upper skin

Fuselage

lower skin

Figure 1: Forces due to physical loading.

In this loading representation the non uniform loading is discretized by piecewise linear functions,
as shown in Fig. 2, defined at an arbitrary number of load control points placed on the structure
boundary. The larger the number of load control points is the better is the loading representation.

Since previous works [7-9] have already described the methodology for non uniform loading repre-
sentation, this work presents only the main equations. In the two dimensional case, vector {X} contains
the load magnitudes at each load control point in x and y directions:

{X}T = fm f’yl fIQ f’y2 flm/2 fym/2 ] <1)

where m is twice the number of loading control points. Vector {X} may be computed by minimizing
the following expression:
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Figure 2: Load discretization [9).

e = (pisFs {n}] —(23]) (pisFy {n; — {a};) (2)

subjected to the condition:

[G]j {x}j = {A}j (3)

where [G] is (3+k) X m matrix given in Ferreira [9]; (3+k) are the first three lines representing the sum of
forces and moments plus the & lines representing the forces acting on the edges where the physical loads
are applied. The first three lines of {A} ; are zero because they define the static equilibrium conditions.
The other components (for j > 3) have a magnitude corresponding to the physical load integrals at
the load control point, as previously illustrated. The index j refers to the load case considered and
index i refers to the considered load control point. Finally, p;; is a dimensionless parameter in the
range [0, 1] that represents the non uniform physical load in a way that is conservative, intermediate
or non-conservative.

It should be remarked that in a three dimensional case the above equations still hold but with some
changes. For example, the number of static equilibrium equation should be 6 rather than 3.

After some algebraic manipulations {X} vector can be shown to be [9]:

oy, = (- (61 (161, 61]) e, ) mofs i, + 6] ( (6, [6)]) "y, @

where [1] is the identity matrix and Fij is the magnitude of the load applied at the load control point.
It is defined from the load applied on the edge where load control point is located:

_ 2 A
Fij =
i de()\2 | [ dy(s) 2d i1 [ (de()\2 | [ dy(s) 2d
fi*l (ds>+(ds)8+\fi (ds)+<ds>8
where A is the load applied on the considered edge and x(s) and y(s) are parametric representations
of the geometry of the edge.

When p;; is chosen to be 1 the load magnitude at load control point i corresponding to the j-
th physical load will tend to be very concentrated and the design is conservative because this type

(5)
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of loading is unrealistic. When p;; is chosen to be zero the load magnitude at load control point i
corresponding to the j-th physical load will tend to be very uniform and the resulting design will
not be robust as some physically possible loads may not be taken into account in the optimization
procedure. Therefore, the robustness of the design may be controlled by parameters p;;. For each load
control point i and a physical load case j, a convenient p,;; may be chosen in the interval between 0
and 1 to realistically represent all physically possible non uniform loading thus adjusting the desired
degree of robustness of the design for each load case.

3 Multicriteria optimization strategy

The buckling and fundamental frequency problems are described in matrix form in Egs. (6) and (7),
respectively. The evaluation of buckling loads and fundamental frequency is based on a prebuckling
state and a linearized buckling problem that can be described in matrix form as:

(K] = AlK]g) {g} =0 (6)

(IK] = A[K]g —w? [M]) {g} =0, (7)

where [K] is the stiffness matrix, [M] is the mass matrix and [K]¢ is the geometric stiffness matrix. In
order to solve these problems it is first necessary to compute the prebuckling displacements, given in
Eq. (8) by {q}p, {p} is the global vector of applied loads:

(K1{q}, = {p} (8)

The minimax strategy is used in this work with the goal of obtaining the best design for the
worst load condition. It is applied as a bilevel procedure since the idea is to maximize buckling and
fundamental frequency simultaneously.

NEICRCIAT. w08
I??}X%?{ {1 (6)) }_ o) eln) w}{ A{E) {8)) } )

The convexity property is especially useful in optimization processes because it significantly reduces
the computational cost. Based on it, it is possible to assure that the function minimum will be asso-
ciated with the loads on the convex hull of the load space. In this work it is considered a hypothetical
load envelope that represents the convex hull of the load space. In the first part of the minimax
strategy the objective function is minimized with respect to load cases {3} that represent the load
envelope. This is done by a random search.

The first part of the minimax strategy just verifies whether the structure buckles or not. If buckling
occurs, the structure mass should be increased and first part repeated until a not buckled structure
is obtained.

In the second part of the minimax strategy the objective function is maximized with respect to
the design variables {¢}. This is done by Powell’s method. The buckling value computed here is non
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dimensional; the fundamental frequency must be normalized by some prescribed minimum admissible
value (wg). Therefore, the values of the design criteria may be directly compared. These frequency
normalization factors are defined based on design requirements.

At the end of the second part of the minimax strategy it is checked if the structure is under or over
dimensioned. If the structure satisfies the safety margins and design requirements, the optimization
process is completed. If not, the mass should be updated and part two is repeated.

The optimization of an aeronautical composite panel is used as an example in this work. The
constraints used for this problem were:

1. The structure must not buckle before the proof load; this condition is consistent with the def-
inition of the proof load [10]. The proof load is defined as the limit load multiplied by a proof
factor. In general, the proof factor is adopted to be 1.25; this value will be used in this work.

2. The structure must preserve a minimum fundamental frequency under the limit load to preserve
its performance under dynamic loads.

These hypotheses are consistent with actual aeronautical panel design and avoid problems with
objective function discontinuity and a predominance of the frequency criterion over the buckling
criterion, as discussed in what follows.

The mass optimization external loop tends to bring the normalized buckling values closer to one
if the frequency normalization value is low. However, occasionally during the optimization process,
the buckling load can be less than one. When this occurs, the frequency value tends to zero as the
structure loses its stability. This fact causes numerical problems in the eigenvalue computation and
represents a discontinuity in the objective function. Moreover, when buckling values are close to one
the optimization process is not multicriteria since frequency will always have the minimum value and
be the dominant criterion. These problems are avoided using the problem statement described above.
It must be emphasized that this assumption was not used just to avoid numerical problems. It was
used because the statement of the problem as proposed is consistent with actual aircraft structural
design.

4 Numerical results

The structure chosen for optimization is a rectangular composite plate with two reinforcers. The
present work original contributions are the multicriteria optimization and the use of composite mate-
rial; the proposed procedure provides robust preliminary optimum designs for aeronautical appli-
cations. The description of the main geometrical characteristics is repeated here because they are
essential for the comprehension of the results.

For simplicity, the plate was assumed to be rectangular with dimensions 0.4 m along the y direction
and /.2 m along the x direction. It must be remarked that the procedure proposed here is quite general
and is applicable to any geometrical shape of the panel. The panel skin is a crossply laminate with
[(0/90)]; stacking sequence. The reinforcers are located at x = 0.4 m and x = 0.8 m. The reinforcer at x
= 0.4 m have the design variables width (w;) and height (h1); the reinforcer at x = 0.8 m has the same
design variables in order to yield a symmetric structure. These reinforcers divide the panel into three
sections, as depicted in Fig 3. The thicknesses of the layers in each section are defined by another four
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design variables. The thicknesses ¢; and ¢y correspond to layers 0° and 90°, respectively, of sections
1 and 3 (due to the assumed panel symmetry); ¢35 and ¢4 correspond to the thicknesses of the same
layers in section 2. Therefore, there are a total of six design variables. Since the magnitudes of the
layer thicknesses and the width and height of the reinforcers can be significantly different, the design
variables must be normalized in the optimization process to avoid numerical problems.

Reinforcer 1 Reinforcer 2

(wy, hy) \ (w1, hy)

Section 1
Section 2

Figure 3: Reinforced panel with the design variables [9].

The load envelope is composed of the five load cases described in Table 1. This work presents five
examples of the reinforced panel optimization where the influence of the p;; variation on the loading
representation and the optimization strategy performance are investigated.

Table 1: Load cases.

Case 1 Compression: 3600 N at upper edge
Case 2 Compression: 500 N at right edge
Case 3 Shear: -1200 N at upper edge and 1200 N at lower edge
Case 4 Compression: 2800 N at lower edge

Case 5 Shear: -880 N (section 3) and 720 N (section 1) at lower edge

4.1 Reinforced panel considering p;; = 0

When p;; is zero the resulting load distribution is nearly uniform as shown in the plot of Force x Edge
distance, Fig. 4. Table 2 presents the optimization results of the reinforced panel under the load cases
described in Table 1.
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Figure 4: Self-equilibrated loading for load case 1, p;; = 0 [9].

Table 2: Optimization results p;; = 0.

Initial Structurel | Initial Structure 2 | Initial Structure 3

Initial | Optimum | Initial | Optimum | Initial | Optimum
) | ) | o) | ) | o) | )
t1 0.6 0.05 0.7 0.08 0.5 0.06
to 0.8 0.7 0.7 0.6 0.9 0.7
t3 0.6 0.4 0.7 0.2 0.9 0.09
ta 0.8 0.4 0.7 0.6 0.5 0.6
w1 4.00 4.00 3.00 1.00 2.00 1.52
h1 60.00 12.01 80.00 17.61 70.00 11.09
Mass (kg) | 2.396 1.208 2.396 1.101 2.271 1.117
Load A1 5.82 1.02 5.23 1.00 5.01 1.01
case 1 w1 /wo 3.51 1.49 3.42 1.18 3.24 1.18
Load A2 20.96 3.01 20.79 2.47 20.26 2.51
case 2 w2 /wo 3.53 2.37 3.44 2.08 3.27 2.08
Load A3 13.39 2.51 12.42 1.99 13.17 2.08
case 3 w3 /wo 3.54 2.51 3.45 2.24 3.28 2.23
Load A4 7.48 1.31 6.73 1.29 6.43 1.30
case 4 w4 /wo 3.51 1.89 3.42 1.58 3.25 1.57
Load A5 11.91 1.78 11.39 1.78 10.43 1.47
case b ws/wo 3.52 2.14 3.43 1.96 3.26 1.79
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The optimization process used three different groups of initial design variables in order to identify
possible local maxima despite the fact that the problem is convex. It means that the optimization
is done for three different initial structures. Initial structures 1, 2 and 3 are over dimensioned for
the considered load cases. They support loads approximately five times larger than the ones that are
applied in the example.

The buckling load is defined by the non dimensional variable A and the normalized frequency is
defined by w/wp. The frequency normalization value adopted was wg = 20 Hz. The used stop criterion
for the optimization was 2%, that is, the optimization stops when the normalized objective function
is in the range [1.00 — 1.02.]. This value was adopted for all optimization examples in this work.

The results presented in Table 2 leads to the conclusion that the load case 1 was the critical one,
yielding lower buckling and fundamental frequency values before and after the optimization process.
In the beginning of the optimization procedure the dominant criterion was frequency and at the end of
the optimization the dominant criterion was buckling. Using the mass optimization external loop, the
three initial structures converged to design variables that satisfy the design requirements and safety
margins. Initial structure 2 converged to the lowest mass value and can be considered the global
optimum. In this structure the 0° layer almost disappear in sections 1 and 3 and is thinner than the
90° layer in section 2.

4.2 Reinforced panel considering p;; = 1

When p;; = 1 the resulting load distribution for load case j is very concentrated close to load control
point i. Since the critical load case in the previous subsection was case 1, this subsection represents
load case 1 considering p;; = 1 at three different load control points placed at the panel upper edge.
In this way the optimization deals with seven load cases, the three already mentioned and cases 2 to
5 considering p;; = 0.

The Force x Edge distance plot in Fig. 5 depicts the load distribution obtained when it was consid-
ered p;; = 1 at load control point 3 that is placed at 0.4 m from the upper edge. It can be noted that
the loading is significantly concentrated close to load control point 3. This type of loading is certainly
unrealistic for actual wing design and, consequently, the design will be too conservative.

From the results presented in Table 3, it is possible to conclude that for initial structures 1, 2 and 3
the critical load case was case 1 (the minimum of \; or w;/wp for the initial structures are always for
i = 1, 2, or 3 that correspond to load casel). After the optimization, the critical load continues to be
case 1. Buckling is the dominant criterion for the three structures, before and after the optimization
process. The optimal structures are very similar but global optimum may be assumed to be structure
number 3 as it presents a mass that is slightly lower than the other optima. In this structure the 0°
layers are thinner than the 90° ones in the three sections.

4.3 Reinforced panel considering p,; = 0.25

In this subsection the optimization considers 32 self-equilibrated load cases that are obtained setting
pij = 0.25 for load cases 1 to 5 at the respective load control points. Load case 1 is a compressive
load acting on the edge with eight load control points. Setting p;; = 0.25 at each one, yields eight self
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Figure 5: Self-equilibrated loading for load case 1 and load control point 3, ps; = 1 [9].

equilibrated load cases. Load case 2 acts on the edge with two load control points yielding two more
self-equilibrated load cases. Load case 3 is defined on two edges that have a total of ten load control
points; this yields another ten self-equilibrated load cases. Load case 4 is applied on an edge with eight
load control points, yielding another eight self equilibrated load cases. Finally, load case 5 is defined
on edges segments that involve four load control points, yielding another four self equilibrated load

cases.

Figure 6: Self-equilibrated loading for load case
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1 and load control point 3, p3; = 0.25 [9].
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Table 3: Optimization results p;; = 1.

Initial Structurel | Initial Structure 2 | Initial Structure 3
Initial | Optimum | Initial | Optimum | Initial | Optimum

(mm) (mm) (mm) (mm) (mm) (mm)

t1 0.6 0.3 0.7 0.1 0.5 0.3

to 0.8 0.7 0.7 0.9 0.9 0.6

t3 0.6 0.9 0.7 0.1 0.9 0.5

ta 0.8 0.4 0.7 0.9 0.5 0.6

w1 4.00 2.53 3.00 1.59 2.00 1.97
h1 60.00 13.10 80.00 14.56 70.00 17.04
Mass (kg) | 2.396 1.680 2.396 1.532 2.271 1.490

Load A1 3.10 1.00 2.80 1.04 3.25 1.01
case 1 w1 /wo 3.51 1.52 3.42 1.64 3.24 1.75
Load A2 2.72 1.10 2.47 1.02 2.07 1.02
case 1 w2 /wo 3.51 1.75 3.42 1.71 3.24 1.97
Load A3 3.24 1.22 291 1.19 3.48 1.16
case 1 w3 /wo 3.51 2.00 3.42 1.92 3.24 2.07
Load A 20.96 8.02 20.79 6.34 20.26 7.25
case 2 w4 /wo 3.53 2.79 3.44 3.05 3.27 3.17
Load A5 13.39 5.05 12.42 5.13 13.17 4.70
case 3 ws /wo 3.54 2.80 3.45 3.15 3.28 3.26
Load A6 7.48 2.95 6.73 3.08 6.43 2.85
case 4 we /wo 3.51 2.43 3.42 2.82 3.25 2.95
Load A7 11.91 6.03 11.39 3.74 10.43 4.65
case b w7 /wo 3.52 2.76 3.43 2.97 3.26 3.14

207

Figure 6 shows the plot of Force x Edge distance when ps; is equal to 0.25 for load case 1. Load
concentration at section 1 upper edge is lower than the one that results when p;; is equal to one. The
loading representation is closer to a non uniform loading and could represent actual design loads.

Analyzing Table 4 it is possible conclude that for initial structures 1 and 2 the critical load cases
were cases 1 and 4 (the minimum of \; or w;/wy for these initial structures are always for i = 1 to 8
that correspond to load casel or for i = 21 to 28 that correspond to load case 4). For initial structure
3 the critical load case was case 1. After the optimization, the critical load case is case 1 for the three
optimal structures. At the beginning of the optimization process, frequency was the dominant criterion
for the three structures and by the end of the process, buckling becomes the dominant criterion. As
expected, the three optimal structures are very close as the problem is convex. The global optimum
structure is structure 1 with the minimum mass. In this structure the 0° layers are thinner than the
90° layers for the three sections.
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Table 4: Optimization results p;; = 0.25.

Initial Structurel | Initial Structure 2 | Initial Structure 3
Initial | Optimum | Initial | Optimum | Initial | Optimum

(mm) (mm) (mm) (mm) (mm) (mm)

t1 0.6 0.1 0.7 0.2 0.5 0.3

to 0.8 0.7 0.7 0.6 0.9 0.5

t3 0.6 0.2 0.7 0.01 0.9 0.6

ta 0.8 0.6 0.7 0.8 0.5 0.3

w1 4.00 2.25 3.00 2.04 2.00 4.00
h1 60.00 10.06 80.00 12.07 70.00 12.88
Mass (kg) | 2.396 1.22 2.396 1.23 2.271 1.307

Load 2 5.38 1.11 4.86 1.20 5.44 1.06
case 1 w1 /wo 3.51 1.44 3.42 1.63 3.24 1.65
Load A2 5.16 1.02 4.66 1.09 5.05 1.01
case 1 w2 /wo 3.51 1.27 3.42 1.50 3.24 1.54
Load A3 6.30 1.17 5.66 1.42 5.36 1.33
case 1 w3 /wo 3.51 1.46 3.42 1.90 3.24 2.06
Load A 2.82 1.01 4.35 1.00 3.79 1.02
case 1 w4 /wo 3.51 1.24 3.42 1.40 3.24 1.74
Load A5 4.82 1.01 4.35 1.00 3.79 1.02
case 1 ws/wo 3.51 1.24 3.42 1.40 3.24 1.74
Load A6 6.30 1.17 5.66 1.42 5.36 1.33
case 1 we/wo 3.51 1.46 3.42 1.90 3.24 2.06
Load A7 5.16 1.02 4.66 1.09 5.05 1.01
case 1 w7 /wo 3.51 1.27 3.42 1.50 3.24 1.54
Load s 5.38 1.11 4.86 1.20 5.44 1.06
case 1 wg /wo 3.51 1.46 3.42 1.63 3.24 1.65
Load A21 6.91 1.43 6.25 1.54 6.99 1.36
case 4 w21 /wo 3.51 1.78 3.42 1.94 3.25 2.04
Load A2g 6.91 1.43 6.25 1.54 6.99 1.36
case 4 wag/wo 3.51 1.78 3.42 1.94 3.25 2.04
Load A32 11.80 2.35 11.28 1.37 10.33 2.74
case 5 w32 /wo 3.52 2.27 3.43 2.15 3.26 2.54

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonca & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



Multicriteria optimization of an aircraft reinforced composite panel subjected to non uniform loading 209

4.4 Reinforced panel [(0/90/45/-45)], considering p,; = 0.25

Since the load cases defined in Table 1 include two cases of shear loadings, the panel was also optimized
including layers oriented at +45°. This optimization was done just for p;; = 0.25 because this is the
loading parameter that provides more realistic loading representation among the p;; values tested in
this example. The results are presented in Table 5. The design variable t5 represents the thickness for
all layers oriented at £45°.

Analyzing Table 5 it is possible conclude that with the inclusion of the four layers oriented at +45°
the initial structure becomes significantly heavier. However, by the end of the optimization process the
optimal structures have mass quite close to the mass of the [(0/90);] optimal structures. The inclusion
of £45° layers certainly is beneficial for the shear load cases. However, for the particular example
presented, due to the existence of compressive load cases, the optimal structure with the laminate
including the £45° layers is approximately the same as the one that does not include such layers.
The results indicate that the proposed optimization procedure is efficient in finding the minimal mass
necessary to support the applied loading.

For initial structures 1 and 3 the critical load cases were cases 1 and 4 (the minimum of A; or w;/wg
for these initial structures are always for i = 1 to 8 that correspond to load case 1 or for i = 21 to 28
that correspond to load case 4). For initial structure 2 the critical load cases were cases 1, 4, and 5 (the
minimum of \; or w;/wy for these initial structures are always for i = 1 to 8 that correspond to load
case 1 or for i = 21 to 28 that correspond to load case 4 or i = 29 to 32 that correspond to load case
5). After the optimization, the critical load is case 1 for the three initial structures. At the beginning
of the optimization process, frequency was the dominant criterion for the three initial structures and
at the end of the process buckling becomes the dominant criterion. The global optimum structure is
structure 2 that presents minimum mass. Except for 0° layer in section 2, all layers have the same
thicknesses in the optimal structure.

4.5 Reinforced panel [(0/90)]; considering p;; = 0.25, w; = 60 Hz

From Table 4 it is possible to conclude that the optimal result for initial structure 1 has a normalized
minimum frequency value of 1.24. Therefore, it is expected that if the minimum frequency requirement
and, as a consequence, the normalization value is changed to 60 Hz (instead of 20 Hz), the dominant
criterion would become frequency and the mass should increased. In order to confirm these facts it
was performed an optimization process using wg = 60 Hz, p;; = 0 using initial structure 1. The results
are presented in Table 6.

More important than confirming what was expected, these results show the importance of the
multicriteria optimization. In this case, if the optimization were done without considering frequency,
the structure would not satisfy the frequency design requirements.

5 Conclusions

Load representation is an important part of a structural design. The proposed methodology allows
the designer to represent the loading within a prescribed degree of accuracy and obtain realistic self-
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Table 5: Optimization results [(0/90/45/-45)]s, p;; = 0.25.

Initial Structurel | Initial Structure 2 | Initial Structure 3
Initial | Optimum | Initial | Optimum | Initial | Optimum

(mm) (mm) (mm) (mm) (mm) (mm)

t1 0.6 0.01 0.7 0.2 0.5 0.2

to 0.8 0.01 0.7 0.2 0.9 0.01

t3 0.6 0.01 0.7 0.1 0.9 0.01

ta 0.8 0.01 0.7 0.2 0.5 0.2

ts 0.5 0.4 0.5 0.2 0.5 0.3

w1 4.00 4.00 3.00 4.00 2.00 4.00
h1 60.00 11.22 80.00 11.80 70.00 11.36
Mass (kg) | 3.89 1.283 3.89 1.203 3.77 1.268

Load A1 30.48 1.27 29.65 1.10 30.69 1.20
case 1 w1 /wo 4.23 1.93 4.15 1.63 3.97 1.92
Load A2 29.22 1.21 28.27 1.05 29.07 1.14
case 1 w2 /wo 4.23 1.90 4.15 1.56 3.97 1.87
Load A3 34.37 1.28 32.75 1.31 31.03 1.50
case 1 w3 /wo 4.23 1.98 4.15 1.94 3.97 2.15
Load Aq 26.67 1.00 25.64 1.00 23.25 1.26
case 1 w4 /wo 4.23 1.64 4.15 1.53 3.97 2.07
Load A5 26.66 1.02 25.62 1.00 23.25 1.26
case 1 ws /wo 4.23 1.66 4.15 1.54 3.97 2.07
Load A6 34.31 1.18 32.69 1.28 31.19 1.24
case 1 we /wo 4.23 1.85 4.15 1.90 3.97 1.97
Load A7 28.90 1.01 27.98 1.01 28.90 1.00
case 1 w7 /wo 4.23 1.55 4.15 1.47 3.97 1.59
Load Ag 30.04 1.06 29.22 1.06 30.36 1.06
case 1 ws/wo 4.23 1.64 4.15 1.55 3.97 1.68
Load A21 39.18 1.63 38.11 1.42 39.46 1.55
case 4 w21 /wo 4.23 2.21 4.15 1.99 3.97 2.21
Load A2s 38.63 1.37 37.57 1.36 39.04 1.36
case 4 wag/wo 4.23 2.04 4.15 1.94 3.97 2.08
Load A32 53.27 1.90 51.91 2.00 49.08 2.18
case 5 w32 /wo 4.24 2.50 4.15 2.31 3.98 2.64
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Table 6: Optimization results [(0/90)]s, p;; = 0.25, wy = 60 Hz.

Initial Structurel

Initial Structurel

Initial | Optimum Initial | Optimum
(mm) (mm) (mm) (mm)
t1 0.6 0.4 t1 0.6 0.4
to 0.8 0.6 to 0.8 0.6
t3 0.6 0.8 t3 0.6 0.8
ta 0.8 0.3 ta 0.8 0.3
w1 4.00 4.00 w1 4.00 4.00
h1 60.00 14.92 hi 60.00 14.92
Mass (kg) | 2.396 1.622 Mass (kg) | 2.396 1.622
Load A1 5.38 2.28 Load case 1 As 5.38 2.28
case 1 w1 /wo 1.17 1.02 ws/wo 1.17 1.02
Load Ao 5.16 2.13
case 1 w2 /wo 1.17 1.01 Load case 4 A2 6.91 2.94
Load A3 6.30 2.54 wa1/wo 1.17 1.06
case 1 w3 /wo 1.17 1.06
Load A4 4.82 1.79 Load case 4 A2s 6.91 2.94
case 1 w4 /wo 1.17 1.01 wag/wo 1.17 1.06
Load A5 4.82 1.79
case 1 ws/wo 1.17 1.01 Load case 5 A32 11.80 5.14
Load 6 6.30 2.54 w32/wo 1.17 1.07
case 1 we/wo 1.17 1.06
Load A7 5.16 2.13
case 1 w7 /wo 1.17 1.01
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equilibrating load cases from a given set of physical load cases. If the designer wants a good accuracy
on the load representation, it is necessary to use a larger number of load control points. The only
limitation for this methodology is the available computational resources.

The p;; parameters are defined in the [0 1] range; the p;; values for a certain non uniform loading
representation can be selected by a comparative analyses and a judicious choice based on a clear
understanding of the physical load associated with it. As a general trend, it can be said that when p;;
is equal to 0 the loading representation is almost uniformly distributed and the structure tends to be
under dimensioned with low mass. When p;; is equal to 1 the loading representation is significantly
concentrated at the considered load control point and the structure tends to be super dimensioned
with high mass. Therefore, the results presented in this work are consistent: the mass of the optimal
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structures always increase with parameters p;;.

The minimax strategy, Powell’s method and the mass optimization external loop resulted in a
robust optimization process. The multicriteria optimization yields the best design for the worst loading
condition with adaptable structural mass. These features guarantee that the proposed design procedure
is quite general and flexible. The examples presented in this work demonstrate that the present design
procedure is able to minimize the structural mass while satisfying the design requirements for a typical
design problem.

The main contribution of this work actually is a design procedure that provides robust preliminary
optimum designs for aeronautical applications. The proposed procedure is quite flexible. The finite
element code used for the examples was Abaqus® but any commercial or in-house finite element code
could be used. This flexibility allows the application of the methodology to a wide variety of structures
in the aerospace industry. Also, the Powell’s method was used for the optimization procedure. The
reason for this choice was primarily the simplicity of the method and the fact that it does not require
computation of gradient. However, any other standard optimization procedure could be used, including
those that use gradient information. Finally, the procedure may be used for multicriteria optimization
of composite structures. Therefore, these features make the proposed procedure very attractive for
applications in actual design of aerospace structures.

As a future work, the composite structure multicriteria optimization may be performed using the
lamina angular orientation as design variable.

Acknowledgments This work is financed by the Brazilian Agency FAPESP (Grant No. 06/60929-0)
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Abstract

Conceived as generalization of the homogenization method, a multiphase modeling is developed to assess the
macroscopic behavior of reinforced concrete slabs within the framework of classical plasticity with account
of concrete cracking. Particular emphasis is put on the effects on structure response of the thickness of the
reinforced zone adopted in the modeling for the multiphase zone.

Basically, the multiphase model is quite similar to description at the macroscopic level of ordinary porous
media. The macroscopic particle is regarded as the geometrical superposition of continuous media in mutual
interaction, called matrix and reinforcement phases. These geometrically coincident particles are attributed
different kinematics. The equations of motion are derived by means of the virtual work method. The state
equations for each phase and the interaction law are formulated within the framework of generalized plasticity.

The multiphase approach is applied to analyze reinforced concrete slab structures under prescribed loading.
In addition to validate the approach through confrontation of obtained resulted with experimental test data,
the main focus of the study was the assessment of the effects of multiphase zone extent in the modeling.
The analysis showed that the results converge rapidly toward the experimental ones as the multiphase zone
thickness decreases, thus emphasizing the slight sensitivity of the modeling with respect to the latter.

Keywords: multiphase model, elastoplasticity, finite element method, reinforced concrete.

1 Introduction

The capacity of predicting the essential characteristics that govern the behavior of materials reinforced
by stiff linear inclusions from the properties of the individual components still remains a major concern
in structural engineering of composite materials, and a significant number of works has been dedicated
to this subject in the last decades.

As far as the finite element modeling of reinforced concrete structures is concerned, steel bars are
traditionally accounted for through three ways according to CEB [1]: 1) by means of a continuous
equivalent model as often used in the case of plates and shells, substituting the dense reinforcement
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by equivalent layers, 2) through a discrete modeling in which the steel bars are represented by one-
dimensional elements frequently associated with appropriate adherence elements, and 3) through the
so-called “embedded model” where each bar is considered as a stiffer linear inclusion embedded within
the element of concrete matrix, thus resulting in an element stiffness equal to the sum of concrete
matrix and steel bar contribution. However such approaches can come up against serious numerical
difficulties when the number of bars involved in the structure becomes higher. Indeed, the computa-
tional cost may eventually be prohibitively large since three-dimensional analysis is generally needed
to take into account interactions between concrete matrix and inclusions properly and since non-linear
constitutive models, such as plasticity, have to be utilized in order to obtain relevant results.

Some features about the reinforced concrete may be pointed out now: the reinforcing inclusions take
the form of linear inclusion elements (steel bars) which are incorporated into the concrete matrix,
following some pattern and preferential orientations, and the stiffness of the reinforcing material are
considerably higher that those of the concrete. So, taking advantage of the fact that the reinforcing
inclusions are periodically distributed, the homogenization theory for heterogeneous periodic media
can be legitimately applied.

An alternative approach called multiphase model, which may be conceived as a generalization of
the homogenization method, was recently developed, providing a mechanically consistent framework
to analyze the behavior of structures made up of materials reinforced by linear continuous inclusions.
Such approach will allow to capture the macroscopic behavior of the concrete structures.

The general formulation of the model is presented in Sudret [2] together with applications in the
field of geotechnical engineering. Extensions of the multiphase model have been introduced by Bennis
[3] and later by Hassen [4]. The method has been applied to a large variety of problems involving
reinforced soils such as reinforced earth, micropile networks and rock-bolted tunnels may be found in
de Buhan and Sudret [5] or Hassen and de Buhan [6]. The main advantage of such modeling lies in a
significantly reduced computational effort, compared to that required in direct numerical simulations.

2 The multiphase model for reinforced concrete

2.1 Description of the model

Consider a medium defined by a concrete matrix reinforced by steel bars, which are arranged period-
ically (Figure 1). The typical size of the structure being significantly greater than the diameter of the
inclusions and their mutual spacing, it is suited to adopt a macroscopic scale of description in which
the reinforced concrete is regarded as a homogenous medium.

Sudret 2] explains that to any point of a volume  of reinforced material are associated geometrically
coincident particles: one particle of the matrix phase and N particles of the reinforcement phase. These
N + 1 superposed particles form the multiphase medium.

Q2 (z) =d2™ (z) | 49 (2) (1)

r=1,...N

In this way, the steel bars are grouped in a finite number of N different families, each one of
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these families characterized by a direction given by a unit vector e, (r = 1,..., N). The number of
reinforcement families will be the same to the number of directions in which the bars are disposed.

Matrix

o

“>§§§§)‘ Reinforcement

Yo \0

/\/\e

Figure 1: Description of the reinforced material [4].

particle (concrete)

Figure 2: Description of the material with the matrix phase and two reinforcement phases.

2.2 Efforts behaviour

The matrix phase is modelled as Cauchy continuum. It can be shown that the internal forces are
described by a second-order symmetrical tensor denoted by g™. This quantity will be referred to as
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the matrix phase stress tensor.

It is admitted that the inclusions are assumed to take only tensile-compressive forces, that is, shear
forces and bending moments are disregarded. Hassen [4] applies the multiphase model taking into
account that the inclusions takes these efforts. So, the variable that describes the internal forces in
the reinforcement phase turns out to be a scalar stress, noted o”.

Finally, due to the superposition of N + 1 particles in each point, body forces, I7, are introduced
to account for the interaction between phases.

The external forces applied onto a geometrical volume ) are prescribed in each phase j separately,
and consists in:

(a) Body forces denoted by p? F? (gravity) exerted by the outside of Q.

(b) Tractions T applied at the boundary 9.

The inertial forces are computed by means of the phase acceleration fields denoted by lj .

2.3 Equations of motion

The equations of motion of the multiphase model can be derived within the framework of virtual work
method and related principles. They may be written as follows for each phase separately [2]:
e Matrix phase Q™ :

divg™ (z) + p™ (z)(F™(z) =" (z)) + zN:f () =0 (2)
r=1
e Reinforcement phase 0" :
div(c"(z)e, ®¢,) +p"(@)(F"(z) =7 (z)) = L"(z) =0, r=1,.N (3)
The corresponding boundary conditions read
T™(z) = g™ (z) -n(z)  ondQ™ (4)
T"(z) =0"(2) (n(z) ¢)e,  ondQ", r=1,.N (5)

Equations (2) and (4) are the equations of motion of a Cauchy continuum, where the interaction
forces I" appear as body forces. These interaction forces express, at the macroscopic scale, the interface
forces between each inclusion and the surrounding matrix at the microscopic scale, and can thus be
interpreted as the average of the latter on a unit volume. More precisely, I" represents the volume

density of interaction forces exerted by the reinforcement phase r onto the matrix phase.

2.4 Perfect bonding model

All the developments presented in the sequel are restricted to the particular case of perfect bonding
hypothesis: all phases have the same displacement field. This model is thus dedicated to problems
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of reinforced concrete structures where slippage between the steel bars and the concrete matrix is
disregarded. Accordingly,

gmzﬁr

¢ (6)

Taking into account the perfect bonding hypothesis, is introduced, with no ambiguity, the total
strain tensor:

gz%(%“%) (7)

The compatibility equations between the phase strain variables are:

=g & =gc:(0e) =6y (8)

In this model, the system kinematics is described by a single displacement field £. It is thus relevant
do derive global equations of motion for the whole system. These equations are obtained by summing
up Eq. (2), (3) and the Eq. (4), (5) respectively. Introducing the following notation:

pE=Y pE ; T=T"; py=> ¥ (9)
j j j

N
;:gm—FZUTQT@)QT (10)
r=1
with j € {m,r =1,... N}, one gets:
div 2+p (E-7) =0 (11)
IT'=%Xn (12)

The tensor of total stress ¥ appears to be the sum of the partial tensor in the matrix phase and
the uniaxial partial stress tensor in the reinforcement phase. With this notation, the constitutive Eq.
(11) and (12) reduce to those of the classical Cauchy continuum.

To complete the description of the perfect bonding model, global constitutive equation relating X
and € are derived. One can easily prove that the global tensor of elastic moduli A satisfying ¥ = A : €

in the elastic domain write:

[l[ES

N
" 4 Z a’e,Re,. Ve, Ve, (13)
r=1

s

where the global tensor of elastic moduli is decomposed additively in a contribution of the matrix
phase and a contribution of each reinforcement phase. It appears clearly that the directions e, are
privileged, what is seen in the anisotropic characteristic of the behavior.
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Equilibrium equations and constitutive laws have been derived, making it possible to solve boundary
value problems. In order to model real reinforced structures, it is now necessary to connect the phase
constitutive laws with the material characteristics of the concrete and inclusions.

Assuming that the volume fraction " of the inclusions is small when compared to unit (i.e., n” < 1),
a heuristic identification can be used:

e The matrix phase constitutive law is identified with that of the concrete.
e Since the inclusions are supposed to take purely uniaxial stresses, it is possible to evaluate the
contribution a” of the reinforcement phase stiffness in Equation (13) as:

CLT —_ nr X Einc (14)

where E"¢ is the Young’s modulus of the steel bars.

Remark A first attempt to extend the multiphase modeling to geotechnical structures taking into
account the interaction matrix/reinforcement can be found in [3].

3 Numerical implementation of the model
The implementation formulated herein follows the steps presented by Sudret [2] and Hassen [4].

3.1 Description of the model

Considering a kinematically admissible virtual displacement field § and its associated linear strain
field £, the principle of virtual work, derived from (11) and (12), writes

N:£dU— | pF-EdQ— | TY-£dS=0 (15)
fyzezman for-gan [ rtd

Relating the elastic strain to the phase stress by ¢™ = a™ : (sm — %”) and 0" = a” (5’” — 5;) and

substituting in Eq. (11) and using the Eq. (8), the first term in Eq. (15) may be rewritten as follows:

/QZ:édQ:/Q[A;S_

The geometric volume is discretized into N, elements. The displacement field £ in each element »°
is approximated as follows

nis

Sp pEr r

Mg —a"ere ®e]:édQ (16)

Vo € v, &(x),. = Ne(z)-u, (17)

e

where u, is the vector of element nodal displacements and IN.(z) are the shape functions. The strain
vector is classically given by:
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e=B.(z) u (18)

€

where the matrix B, contains partial derivatives of the shape functions with respect to the coordinates.
Consequently, the matrix phase stress vector is:

It is introduced now an additional notation for dealing with the reinforcement phase. Let us denote

by e, the vector of the six components of e, ® e,.. The compatibility Eq. (7) can be rewritten as:

e'="e, e="ce, (20)

Substituting the above equations in the principle of virtual work (15) and using (16), one gets the
discretized formulation, which leads to the usual linear system yielding the global vector of nodal
displacement U.

ext m s
K -U=F"+F)+F, (21)

The global stiffness matrix K turns out to be:

N
K= Z /C ‘B, (dm + Zargr . ter> B.dv°¢ (22)
v r=1

the terms in the right-hand side of Eq. (33) are the external load vector:

Fert — Z ( / ‘N, - pFdv°® + / N, - Tddue> (23)
ve - oM ve

and the vector of plastic forces associated to each phase:

=3 / [ Bed gt (24)

N
Ep=> / e > a'ey'B. - e,dv (25)
r=1

v

3.2 Plastic integration algorithm

Due to the non-linearity of the phases’ constitutive laws, the loading path is divided into load incre-
ments noted by AF;”. For each load step, the problem is solved by an iterative algorithm.

: mo .7 m r
Denotlng by {Qrwg” 70”’%1,’%9,7“ Ep’n

step n. For each variable y in this set, let us write:

} the set of state variables describing the system after load
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Axpn = Xn+1 — Xn (26)
Let us apply the load increment M;m. The corresponding displacements increment AU, is obtained
from the global equilibrium.

K-AU, = AFS" + AF, (27)

where AF, = AF”, + AF) , is the vector of plastic nodal forces. These forces are unknown, since

P,n P,n

the plastic strain increments {gm Epm

p,n’
The latter have to be determined in such a way that the elastoplastic constitutive laws are satisfied
in each Gauss point of the mesh.

The goal is achieved by using an iterative procedure. Starting from: g:ln (0) = Ae? . (0) =0 at

} resulting from the load increment AF** are still unknown.

p,n

every Gauss point, sucessive evalutions {%”n (i) ,er (z)} of the plastic strains are calculated until

rTpmn
convergence.

Suppose that {gzln (i—1),ep, (- 1)} is known at each Gauss point, the vector of plastic forces

calculated by (34) and (35) being AF}", (i —1) and AF) , (i —1). The iteration i consists first in
computing the increment of nodal displacement AU, (i) satisfying:

K- Mn (7’) = Mf{rt + Mpﬂz (Z - 1) (28)

Following the global calculation yielding the displacement vector AU, (i), the constitutive laws
have been checked locally in each Gauss point. The original point of the present implementation is
the separate treatment of each individual phase. The power of the multiphase approach is thus totally
exploited. The classical return mapping algorithm, Simo and Hughes [7], is applied in each Gauss
point as follows:

At first, trial stress states are calculated for each phase by freezing the plastic strains resulting from
the load increment. Then the phase yield criteria are evaluated separately. If they are negative, no
additional plastic strain has developed due to AF' fft. If not, a closest-point projection of the trial
states onto their respective yield surfaces is performed.

For the matrix phase, this leads to solving the following set of equations:

Fm (gn+1(i)) =0 (29)
gn+1 (i) = g::j‘jum(i) _ %m :gijn(i) (30)

Considering now the reinforcement phase, the yield criterion can be written as f"(¢") = |o"| — o},
due to the one-dimensional formulation. The solution for the projection problem and the related plastic
strain increment is:
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r : trial,r(; r
T i) = { N g < (32)
—op i gt () < —op
trial,r - r .
ag 1) — O, 1
AE;’H(Z) _ n+1 ( ) n+1( ) (33)

al'l”
3.3 Failure criterion

The strength of concrete under multiaxial states of stress may be estimated from the so-called Ottosen
failure criterion given by Eq. 34, CEB [1]. It is considered that the plasticity convex is homothetic to
the failure convex.

J: J: I

cm cm f cm

—1=0 (34)

where

A = ¢ cos [1/3 arccos (¢3 cos 30)],  cos36 > 0;
A =cycos[m/3 —1/3arccos (—cgcos36)], cos36 < 0;

3vV3 J3
cos 30 = TJ3/2'
2

The parameters Js, J3 and I represent the invariants of the stress deviator and stress tensor, respec-
tively, characterizing the state of stress considered. The coefficients are material parameters which
depend on the strength ratio fem/fem (tensile and compression concrete strength).

3.4 Stress-strain relation for concrete under compression

The hardening rule sets the yield surfaces during the plastic deformation and is determined by the
effective plastic stress-strain relationship. In the present work a uniaxial stress-strain relationship for
compressed concrete is assumed as hardening rule. This stress-strain diagram is calculated by the
following function (CEB [1]):

2
Eei ec [ &c
Eciea €c1

Oc = — = R fcm (35)
1+ (E—l — 2) =
where E.; is the concrete tangent modulus, E.; = — f,,,/0.0022, o, is the strength compressive stress,
€c is the compression strain and £.; = -0.0022.

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonca & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



224 M.P. Figueiredo, S. Maghous and A. Campos Filho

3.5 Modeling of cracked concrete — Hinton [8]

The main feature of plain concrete material behavior is probably its low tensile strength, which
results in tensile cracking at very low stress compared with the failure stress in compression. In the
finite element context two main approaches have been used for crack representation, the discrete crack
model that represents the individual cracks as actual discontinuities in the finite element mesh; the
smeared crack model in which the cracked concrete is assumed to remain a continuum and the material
properties are modified to account for damage. The second alternative will be adopted in this work.

3.6 The smeared crack model

The concrete is initially isotropic, but cracking induces anisotropy. After cracking, the concrete is
assumed to become orthotropic, with the principal material axes oriented along the directions of
cracking. The material properties depend on the state of strain and stress. The Young’s modulus is
reduced in the direction perpendicular to the crack plane and Poisson’s effect is usually neglected.
This approach is computationally attractive, since the topology of the mesh is unchanged throughout
the analysis, and only the stress-strain relationship need to be updated when cracking occurs. In order
to implement the smeared crack model, the following items have to be applied: a cracking criterion, a
strain-softening rule and a model for shear transfer.

In the present work concrete in tension is modeled as a linear elastic-strain softening material. For
a previously uncracked sampling point, the principal stresses and their directions are evaluated. If the
maximum principal stress exceeds a limiting value, a crack is formed in a plane orthogonal to this
stress. So, the behavior of the concrete is no longer isotropic.

Due to bond forces, cracked concrete carries between the cracks a certain amount of tensile stress
normal to the cracked plane. The concrete adheres to reinforcing bars and contributes actively to the
overall stiffness of the structure. This can be incorporated into the computational model assuming
that the loss of tensile strength in concrete occurs gradually and such procedure has been extensively
used in computational analysis of reinforced concrete structures. According to Hinton [8] it is easy
to choose a tension-stiffening curve that will adequately fit experimental results, but very difficult to
make a priori predictions.

For the tensile concrete it will be used the constitutive equation (Eq. 36) adopted by Prates Junior
[9], Martinelli [10] and other authors.

0 = g feq (1 — 06131> (36)

where a; is the reduction coefficient related to cracking strength and e,,; is the strain on direction i.

3.7 Shear transfer across the crack

Experiments show that a considerable amount of shear stress can be transferred across the rough sur-
faces of cracked concrete. In plain concrete the main shear transfer mechanism is aggregate interlock. In
reinforced concrete dowel action will play a significant role, the main variable being the reinforcement
ratio.
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The above-mentioned mechanisms cannot be directly included in the smeared crack model. A sim-
plified approach is generally employed to take into account the shear transfer capacity of cracked
concrete. The process consists of assigning to the shear modulus corresponding to the crack plane a
reduced value, G, defined as G. = G, where GG, is the shear modulus of uncracked concrete and
is a reducing factor in the range of zero to one. Hinton [8] relates the value of 8 to the tensile strain
normal to the crack plane. In this work, the following value is used.

B=1-(/0.005)" (37)

where ¢; is the tensile strain normal to the crack plane and k; is a parameter in the range of 0.3 to
1.0.

4 Applications

The following numerical examples were performed in order to verify the relevancy of the proposed
multiphase modeling.

4.1 McNeice’s and Duddeck’s corner-supported reinforced concrete slab with a point load

The results of a corner-supported two-way square reinforced concrete slab, tested experimentally under
a central point load by Jofriet and McNeice [11] and Duddeck et al. [12], have been used as a benchmark
for verification of numerical schemes by several researchers (Zhang et al. [13], Hinton et al. [14]) and
these slabs were analyzed using the multiphase model to assess the accuracy and performance of the
proposed schemes for RC slabs. The geometry and reinforcement of the slabs are shown in Figure 3
and the material properties are those of Table 1.

Table 1: Material properties.

Phase Properties McNeice Duddeck
Young’s modulus 28600 MPa  16.400 MPa
) Poisson’s ratio 0,15 0,15
(C?Ii;;fe) Compression strength 38 MPa 43 MPa
Tensile strength 3,8 MPa 2,0 MPa
ay reduction coefficient 0,4 0,4
Reinforcement Young’s modulus 200.000 MPa 201.000 MPa
(steel) Yield stress 350 MPa 670 MPa
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The finite element mesh used to perform both simulations consists in two hundred twenty-noded
hexahedral elements. The cross-section of the slab was divided into eight concrete layers and one or
more equivalent steel layers with reinforcement in two directions, with one quarter of the slab being
analyzed owing to symmetry with a 5 x 5 meshing of the quadrant (Figure 3). The slab tested by
McNeice has the steel bars laid only at the botton of the structure while Duddeck’s slab has the
reinforcement placed both on top and botton, as it can be seen on Figures 4 and 5.
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Figure 3: Geometry of the concrete slabs: (a) McNeice, (b) Duddeck

The slabs are two-way reinforced by a distribution of parallel steel bars introduced following direc-
tions e, and ey. The loading mode corresponds to a bending-like test with just one point loaded.

For Duddeck’s plate the reinforcement ratio of steel area to the total area of the slab in both
direction is r = 0.0296 at the top and 7 = 0.061 at the bottom. For McNeice the reinforcement, just
at the botton, is 282 mm?/m.

Numerical simulations are performed corresponding to five different reinforcement distributions
along the transversal section. Example 0 has no reinforcement while Example 1 has the reinforcements
distributed all along the cross-section. Examples 2, 3 and 4 have the steel distributed at the inferior
region of the structural element as it can be seen in Figure 6. It is very important to point out that
variable called volumetric fraction 7, varies in each model aiming to maintain the same amount of
steel reinforcement.
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