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Preface

This book contains articles presented at the Third International Symposium on Solid Mechanics,
held in Florianópolis, Brazil, 25-27 May 2011. The International Symposium on Solid Mechanics –
MecSol – is the first Brazilian series of conference fully dedicated to this branch of the engineering
science. It had its first edition in 2007 in São Paulo, then in Rio de Janeiro in 2009.

The MecSol Symposium is organized under the aegis of the Solid Mechanics Committee of the
Brazilian Society of Mechanical Sciences and Engineering. The present book reflects the effort of the
committee and authors to spread in the technical society knowledge in the field of Solid Mechanics.

As in the previous books, this edition features articles with focus on fundamental and applied
issues, including computational, theoretical and experimental contributions, drawing upon the various
branches of engineering science and the allied areas within applied mathematics, materials science,
structural engineering and applied physics.

The editors would like to thank all the contributors to this volume for their effort in producing such
fine articles. We also would like to thank Renato Yamassaki for formatting the whole book. Finally, we
would like to acknowledge the support of the Brazilian Society of Mechanical Sciences and Engineering
and the Department of Mechanical Engineering from the Federal University of Santa Catarina to this
event.

Eduardo Fancello
Paulo de Tarço R. Mendonça

Marcílio Alves
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A study of macroscopic failure of laminates with phases
exhibiting softening hyperelasticity using a two-scale

asymptotic homogenization method

A. R. Aguiar, L. D. Pérez-Fernández
Department of Structural Engineering, São Carlos School of Engineering,

University of São Paulo, Brazil. Av. Trabalhador São carlense 400, Centro,
13566-590

São Carlos – SP, Brazil

Abstract

In classical hyperelastic models, the strain energy density becomes unbounded as the strain becomes large. In
reality, defects, such as voids and microcracks, are created and accumulate inside a body as the strain becomes
large, reducing its strength to further deformation. Also, no real material can sustain large enough strains.
Based on these considerations, we investigate a class of softening hyperelastic materials that, while preserving
classical hyperelastic behavior for moderate deformations, captures softening behavior of materials at large
strains. It is based on the introduction of a limiter for the strain energy, which quantifies the amount of defor-
mation the material can undergo hyperelastically before failing. Softening hyperelasticity has been successfully
applied to various problems of interest in engineering and biomedicine that involve cavitation and fracture. To
the best of our knowledge, the macroscopic failure induced by the microscopic softening of softening hyperelas-
tic constituents of composite materials has not been studied yet. We adopt a homogenization-based approach
by applying the two-scale asymptotic homogenization method to predict the macro-failure of laminate com-
posites with softening hyperelastic phases; in particular, we investigate bilaminates under uniaxial deformation
parallel to the lamination direction.

Keywords: hyperelasticity, softening, composites, asymptotic homogenization, material failure.

1 Introduction

Material failure is usually addressed via the phenomenological approach of damage mechanics. From
the theoretical point of view, such an approach is known to be very flexible, as it allows considering
physical processes that cause macroscopic damage at small length scales. In practice, however, the
calibration of damage model via experimental procedures is anything but simple, as measuring relevant
damage parameters and other technicalities are typically complex. Thus, alternative theories describing
material failure in ways simpler than traditional damage mechanics are desirable [1–4].
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2 A.R. Aguiar and L.D. Pérez-Fernández

An alternative theory is based on an atomistic analysis of fracture, linking material debonding
to atomic separation. In [5, 6], the atomistic and continuum material descriptions are combined to
simulate the failure process. The ensuing method applies the Cauchy–Born rule linking microscopic
and macroscopic length scales to certain empirical potentials, which include the possibility of full
atomic separation. Such continuum-atomistic linkage leads to the formulation of a macroscopic strain
energy function, which allows for softening and strain localization. The method is very effective at
small length scales, where purely atomistic analysis becomes computationally intensive. However,
addressing macroscopic damage becomes unpractical as it involves the numerical averaging of the
inter-atomic potentials over a representative volume.

An alternative to the continuum-atomistic method addressing macroscopic failure is the so-called
softening hyperelastic model presented in [7]. This is a phenomenological model in which softening is
controlled by a limiter for the strain energy that quantifies the amount of deformation the material can
undergo hyperelastically before failing. Therefore, any classical hyperelastic model can be enhanced
by including softening in it, so that moderate strains will produce hyperelastic deformations while
large ones will cause failure via hyperelastic softening.

In the present contribution, we use the softening hyperelastic model to investigate a composite
material formed by microscopically-arranged hyperelastic constituents that can undergo softening.
Can macroscopic failure of such material be described via a homogenization-based approach? This
work is an attempt to address such a question, which has the potential of theoretically control the
macro-failure in terms of the parameters describing phase failure. Here, the two-scale asymptotic
homogenization method described in [8, 9] is applied to such endeavor.

2 Finite elastostatics

Let B ⊂ R3 be the region occupied by a heterogeneous body with volume |B| and smooth boundary
∂B. Here, a material point of the body coincides with a point X ∈ B in the reference configuration.
Let x : B → R3 be a deformation field acting on the body. The corresponding displacement field and
deformation gradient are given by, respectively, u (X) = x (X)−X and

F = gradx = 1+ gradu, X ∈ B, (1)

where grad : R3 → R3 ⊗ R3 is the gradient operator for vector fields, and 1 is the identity tensor.
Then, F , gradu : B → Lin, where Lin is the set of second-order tensors.

The body is in equilibrium under the action of a body force b : B → R3, that is,

divP + b = 0, X ∈ B, (2)

where div : Lin→ R3 is the divergence operator for tensor fields, and P : B → Lin is the first Piola-
Kirchhoff stress tensor. In a rectangular Cartesian coordinate system fixed at the origin, definition (1)
and equilibrium equation (2) are written as
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Study of macroscopic failure of laminates using two-scale asymptotic homogenization method 3

Fij =
∂xi
∂Xj

= δij +
∂ui
∂Xj

, X ∈ B (3)

and

∂Pij
∂Xj

+ bi = 0, X ∈ B, (4)

where i, j ∈ {1, 2, 3}, and Fij , xi, Xj , δij , ui, Pij , and bi are the components of F , x, X, 1, u, P and
b, respectively. In (4) and, unless stated otherwise, in what follows, the usual summation convention
over repeated lower case Latin subscripts is adopted.

The constitutive behavior of the body is formally stated by an endomorphism over Lin such that
F 7→ P (F ). The realization of such constitutive law will depend on the particularities of the material
to be studied. In this work, the body is assumed to behave hyperelastically, that is, there exists a
stored energy function W : Lin→ R,F 7→W (F ), such that

Pij =
∂W

∂Fij
, X ∈ B. (5)

Substitution of (5) into the equilibrium equations (4) yields

∂

∂Xj

[
∂W

∂Fij

]
+ bi = 0, X ∈ B, (6)

which, together with (1) and an appropriate boundary condition, say,

u = ū, X ∈ ∂B, (7)

where ū : ∂B → R3 is a known displacement field over the boundary, defines a boundary value problem
for the determination of the displacement u : B → R3.

A well-known particular case of (7) corresponds to the uniform displacement ū =
(
F̄ − 1

)
X, where

F̄ = ⟨F ⟩ and ⟨ · ⟩ = 1
|B|
∫
B
( · ) dX is the average operator over the body. In this case, a usual practice

is to take u = ū + u′ where u′ = 0 on the boundary. Then, it follows from (1) that F = F̄ + F ′,
where F ′ = gradu′ and

⟨
F ′⟩ = 0.

3 Softening hyperelasticity

In classical hyperelastic models, the stored energy function W grows unbounded as the deformation
gradient tends to infinity:

∥F ∥ → ∞⇒W →∞, (8)

where ∥ · ∥ is an appropriate norm. This is an ideal elastic behavior since no real material is able to
undergo increasingly large deformations without exhibiting irreversible changes due to the formation
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4 A.R. Aguiar and L.D. Pérez-Fernández

and accumulation of micro-defects. To account for more realistic behavior, we introduce ψ : Lin→ R
which keeps the classical hyperelastic behavior predicted by W under moderate deformations and
tends to a limiting constant value Φ ∈ R accounting for material failure as the deformation becomes
large, that is,

∥F ∥ → ∞⇒ ψ → Φ. (9)

An expression for ψ that satisfies (9) is proposed in [7] and is given by

ψ = Φ− Φexp

{
−W

Φ

}
. (10)

Observe from (10) that the following properties hold:

W = 0⇒ ψ = 0, (11)

W →∞⇒ ψ → Φ, (12)

W ≪ Φ⇒ ψ ≈W. (13)

Observe from the exposition above that (12) satisfies (9). Property (13) follows by taking the power
series expansion of (10) and clearly states that classical hyperelastic behavior is kept. By replacing W
with ψ in (5), we obtain

Pij =
∂ψ

∂Fij
=

∂W

∂Fij
exp

{
−W

Φ

}
. (14)

4 Composites

In this work, we consider a heterogeneous body composed by N distinct phases that are periodically
distributed inside the body. This is the case, for instance, of a bilaminate composed of two types
of lamina with an alternating stacking sequence. Each phase occupies a region Br with volume |Br|
and boundary ∂Br, such that

∪N
r=1Br = B and Br

∩
Bs = ∅, ∀r, s = 1, 2, ..., N, r ̸= s. We use the

characteristic function χr : B → {0, 1} to identify each phase in the composite material. Assuming
local softening hyperelastic behavior, phase r is modeled by an energy function ψr : Lin→ R defined
as in (10), that is, related to a classically-hyperelastic energy function Wr : Lin → R and with the
corresponding failure energy Φr. Then, the stored energy density ψ : Lin × B → R is a piecewise
function over B defined by

ψ = ψrχr, X ∈ B. (15)

Substituting (15) in (14) and then substituting the resulting expression in (4), we obtain the equi-
librium equations
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Study of macroscopic failure of laminates using two-scale asymptotic homogenization method 5

χr
∂

∂Xj

[
∂ψr
∂Fij

]
+ bi = 0, X ∈ B. (16)

For the formulation of the problem to be complete, boundary conditions of the form (7) and con-
tinuity conditions for tractions and displacements on the interfacial surfaces Γrs = ∂Br

∩
∂Bs,

∀r, s = 1, 2, ..., N , r ̸= s, must be imposed. The ideal case of perfectly bonded phases implies continuity
of tractions and displacements across the interfaces, that is,

[[Pijνj ]]Γrs
= 0, [[u]]Γrs

= 0, (17)

where [[·]]Γrs
denotes the jump operator across interface Γrs, and ν is the unit normal vector to Γrs.

The solution of the boundary value problem given by (16), (17) and (7) is sought in a way similar
to the one employed for linear composites, that is, we take u = χrur to be a piecewise linear vector
field with ur = ū + u′

r and χru
′
r = u′. The corresponding deformation gradient is F = χrF r with

F r ∈ Lin constant, F r = F̄ + F ′
r with F ′ = χrF

′
r and F ′

r = gradu′
r. With such considerations, we

ensure compatibility of deformation. Also, note that
⟨
F ′⟩ = 0 and ⟨F ⟩ = F̄ as above.

5 Two-scale asymptotic homogenization

Now, assume that the characteristic sizes of the phases in the heterogeneous body are small when
compared to a characteristic size of the composite. For instance, the thicknesses of laminae in a lam-
inate are much smaller than the thickness of the laminate. This means that the constitutive behav-
ior of the composite exhibits rapid oscillations. Moreover, if the phases are periodically distributed
inside the composite, that is, the composite can be reproduced by replicating some periodicity cell
Ω inside the region B, so are such oscillations. In the case of a bilaminate, Ω is formed by any
two consecutive laminae. The ratio of the characteristic size of Ω to the characteristic size of the
composite is a small geometric parameter ε > 0. In order to account for these periodic oscillations,
we define the local “fast” variable Y = ε−1X. Using this definition, the average operator becomes
⟨ · ⟩ = 1

|εΩ|
∫
εΩ

( · ) dX = 1
|Ω|
∫
Ω
( · ) dY .

The solution u of the boundary value problem defined by (1), (7), and (14)-(17) is sought as a
two-scale asymptotic expansion in powers of ε:

u = u(0) + εu(1) + ε2u(2) +O
(
ε3
)
, (X,Y ) ∈ B × Ω, (18)

where the (macroscopic) displacement field u(0) : B → R3 depends only on X, while the other
coefficients u(i) : B × Ω → R3, i ≥ 1, depend on both variables X and Y and are Ω-periodic in Y .
Notice that such Ω-periodicity of u(i) implies that

⟨
gradu(i)

⟩
= 0.

Substitution of (18) into (1) and substitution of the resulting expression into (5) together with the
chain rule ∂

∂Xj
( · ) ≡ ∂( · )

∂Xj
+ 1

ε
∂( · )
∂Yj

yields
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6 A.R. Aguiar and L.D. Pérez-Fernández

F = F (0) + εF (1) +O
(
ε2
)
, (X,Y ) ∈ B × Ω (19)

and

P = P (0) + εP (1) +O
(
ε2
)
, (X,Y ) ∈ B × Ω, (20)

where F (i),P (i) : B ×Ω→ Lin, i = 0, 1. Using rectangular Cartesian coordinates, the components of
F (0), F (1), and P (0) are given by, respectively,

F
(0)
ij = δij +

∂u
(0)
i

∂Xj
+
∂u

(1)
i

∂Yj
, (X,Y ) ∈ B × Ω, (21)

F
(1)
ij =

∂u
(1)
i

∂Xj
+
∂u

(2)
i

∂Yj
, (X,Y ) ∈ B × Ω (22)

and

P
(0)
ij =

∂ψ

∂F
(0)
ij

∣∣∣∣∣
F (0)

, (X,Y ) ∈ B × Ω. (23)

As the coefficients u(i) are Ω-periodic in Y , so are F (i) and P (i). Moreover, averaging of (19) with
(21) yields

F̄ = ⟨F ⟩ −→
ε→0+

⟨
F (0)

⟩
= 1+ gradu(0). (24)

Substitution of both (20) and (18) into the perfect bonding conditions for tractions (17)1 and
displacements (17)2 yield, respectively,r

P
(0)
ij νj

z
Γrs

= 0,
r
P

(1)
ij νj

z
Γrs

= 0, (25)

and r
u(0)

z
Γrs

= 0,
r
u(1)

z
Γrs

= 0,
r
u(2)

z
Γrs

= 0. (26)

Also, by substituting (18) into the boundary condition (7), we find that

u(0) = ū,u(1) = 0,u(2) = 0, (X,Y ) ∈ ∂B × ∂Ω. (27)

Next, substitution of (20) into the equilibrium equation (16) together with the application of the
chain rule yields
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Study of macroscopic failure of laminates using two-scale asymptotic homogenization method 7

ε−1
∂P

(0)
ij

∂Yj
+ ε0

[
∂P

(0)
ij

∂Xj
+
∂P

(1)
ij

∂Yj
+ bi

]
+O (ε) = 0, (X,Y ) ∈ B × Ω. (28)

Now, substitute both (23) and (21) into (28), group the terms together by the powers of ε, and
equate to zero the resulting coefficients to obtain a sequence of Partial Differential Equations (PDEs)
for the determination of the unknowns u(i) in (18). In particular, the PDE corresponding to the first
member of the sequence is

∂P
(0)
ij

∂Yj
= 0, (X,Y ) ∈ B × Ω. (29)

Since P (0) and F (0) are given by, respectively, (23) and (21), we can use the PDE (29), the perfect
bonding conditions (25)1 and (26)2, and the boundary condition (27)2, to define a local problem for
the determination of u(1). Observe from (21) that this local problem for u(1) involves knowledge of
gradu(0), which is obtained below. Thus, in fact, we have a family of local problems defined in terms
of gradu(0).

In order to obtain the macroscopic displacement u(0), we apply the average operator onto the
coefficient of ε0 in (28) and recall from above that P (i) are Ω-periodic in Y . We then obtain that

∂
⟨
P

(0)
ij

⟩
∂Xj

+ bi = 0, (X,Y ) ∈ B × Ω, (30)

where,

⟨
P

(0)
ij

⟩
=

∂ ⟨ψ⟩

∂
⟨
F

(0)
ij

⟩
∣∣∣∣∣∣
F (0)

, (X,Y ) ∈ B × Ω. (31)

To obtain (31), we have used (21) together with the macroscopic homogeneity condition ⟨Fij⟩ ⟨Pij⟩ =
⟨FijPij⟩ presented by Hill in [10]. Relation (31) is the effective law of the composite and represents
the macroscopic realization of the local constitutive relation (5). Expression (31) can also be written
as

P̄ij = cr
∂ψr
∂Fij

∣∣∣∣
F=F̄+F ′

r

, (32)

where P̄ =
⟨
P (0)

⟩
, cr = ⟨χr⟩ = |Br|

|B| ,
∑N
r=1 cr = 1, F ′

r is the restriction of gradu(1) to phase r, and

u(1) is the solution of the local problem.
The system of PDEs (30), the effective law (31), or, (32), together with F̄ =

⟨
F (0)

⟩
= 1 +

gradu(0), and the boundary condition (27)1 define the macroscopic, or, homogenized problem for the
determination of u(0).
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8 A.R. Aguiar and L.D. Pérez-Fernández

In the following example, we obtain the effective laws of periodic bilaminates by prescribing F̄ =

1+gradu(0), solving the corresponding local problems to obtain F ′ = gradu(1), and then substituting
F̄ + F ′ = 1+ gradu(0) + gradu(1) into the effective law (32).

6 Example: homogenization of periodic bilaminates

Consider a two-phase (N = 2) laminate composite formed of periodically alternating homogeneous
laminae along the Y2-direction. The periodicity cell of such a bilaminate is Ω = Ω1

∪
Ω2, where, for

a given c1 ∈ (0, 1), Ω1 = (0, 1) × (0, c1) × (0, 1) e Ω2 = (0, 1) × (c1, 1) × (0, 1). Considering a fixed
orthonormal basis (e1,e2, e3) for the rectangular Cartesian coordinate system, continuity of both
displacement u(1) and traction P

(0)
i2 = ei · P (0)e2 across the contact surface Γ12 = ∂Ω1

∩
∂Ω1 =

{Y : Y1, Y3 ∈ [0, 1] , Y2 = c1} are guaranteed by assuming that the laminae are perfectly bonded to
each other.

Based on the exposition above, it is reasonable to assume that F (0)
i2 depend on the lamination

direction only, which is parallel to the coordinate Y ≡ Y2. Thus, F (0) = χ1F
(0)
1 + χ2F

(0)
2 with

F (0)
r = F̄ + F ′

r, r = 1, 2, where F̄ = 1 + gradu(0), F ′
ij = 0, j ̸= 2, and F ′

i2 =
∂u

(1)
i

∂Y , which is
to be obtained from the local problem. Then, recalling that u(1) is Ω-periodic, it follows from the
application of the average operator to F ′ that

⟨
F ′⟩ = c1F

′
1 + c2F

′
2 = 0. Since c2 = 1 − c1, we have

that F ′
2 = − c1c2F

′
1. Denoting G ≡ F ′

1, we have that F ′ = G
(
χ1 − c1

c2
χ2

)
. It then follows form the

exposition above that the components Gij of G are such that Gij = 0, j ̸= 2, and Gi2 is the restriction

of ∂u
(1)
i

∂Y to Ω1. Then,

F
(0)
ij = F̄ij + δj2Gij

(
χ1 −

c1
c2
χ2

)
, (X,Y ) ∈ B × Ω. (33)

Moreover, PDEs (29) of the local problem become ∂P
(0)
i2

∂Y = 0, which implies that the components
P

(0)
i2 do not depend on Y . The other components P (0)

ij , j ̸= 2, can still depend on the heterogeneity
direction, which we recall from above is parallel to Y .

On the other hand, the perfect bonding condition (25)1 of the local problem is now
r
P

(0)
i2

z
Y=c1

= 0.

Since P (0)
i2 is independent of Y , its continuity is guaranteed for every Y ∈ Ω and not only for Y = c1.

Thus, the components of P (0) that are independent of Y satisfy

∂ψ1

∂Fi2

∣∣∣∣
F=F

(0)
1

=
∂ψ2

∂Fi2

∣∣∣∣
F=F

(0)
2

, (X,Y ) ∈ B × Ω, (34)

where the components of F (0)
r are obtained from (33) for Y ∈ Ωr. Notice that the conditions (34)

yield a system of nonlinear algebraic equations that are employed to obtain the G corresponding to
each fixed F̄ . With these considerations, the effective law (32) becomes
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Study of macroscopic failure of laminates using two-scale asymptotic homogenization method 9

P̄ij =

 cr
∂ψr

∂Fij

∣∣∣
F=F̄

, j ̸= 2

∂ψR

∂Fi2

∣∣∣
F=F̄+F ′

R

, R = 1 or 2, j = 2
, (35)

where

F ′
R =

{
G, R = 1

− c1c2G, R = 2
(36)

and G is the solution of (34). In (35), the equality for j = 2 is a consequence of taking F ′
r constant

in phase r in (32), and (34) being identically satisfied for G.
Let us now consider that the stored energy function of each lamina is given by

Wr = µrI
(
F (0)
r − 1

)
, r = 1, 2, (37)

where µr is a material property, I (F ) ≡ F T · F for F ∈ Lin, with the superscript T denoting the
transpose of a tensor, and F (0)

r is of the form given by (33) with Y ∈ Ωr and G being the solution of
(34). An expression similar to (37) is employed in [9] to analyze reinforced hyperelastic elastomers at
finite strain.

In the case of a hyperelastic material without softening, we replace ψr by Wr given by (37) in (35)
to obtain

P̄ij = 2µ̂
(
F̄ij − δij

)
, µ̂ =

 ⟨µ⟩ = c1µ1 + c2µ2, j ̸= 2⟨
µ−1

⟩−1
=
(
c1
µ1

+ c2
µ2

)−1

, j = 2
. (38)

In the case of a hyperelastic material with softening, we use the expressions (10) and (37) to obtain
the stored energy function for each lamina, which is given by

ψr = Φr − Φr exp

{
−µr
Φr
I
(
F (0)
r − 1

)}
, r = 1, 2. (39)

Then, substitution of (39) into (34) yields the following system of nonlinear algebraic equations for
Gi2:

µ1

Φ1

(
F̄i2 +Gi2 − δi2

)
exp

{
E
(
F (0)

)}
− µ2

Φ2

(
F̄i2 −

c1
c2
Gi2 − δi2

)
= 0, i = 1, 2, 3, (40)

where

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



10 A.R. Aguiar and L.D. Pérez-Fernández

E
(
F (0)

)
=

(
µ2

Φ2
− µ1

Φ1

)(
F̄ijF̄ij − 2F̄ii + 3

)
−2
(
c1
c2

µ2

Φ2
+
µ1

Φ1

)(
F̄i2Gi2 − 2G22

)
+

[(
c1
c2

)2
µ2

Φ2
− µ1

Φ1

]
Gi2Gi2

(41)

Now, in order to illustrate the influence of softening hyperelasticity of phases on the effective behav-
ior of the bilaminate, consider the simple case of uniaxial extension in the lamination direction.
Denoting by λ̄i the principal macro-stretches and by J̄ = det F̄ the determinant of the macroscopic
deformation gradient, (33) becomes

F
(0)
22 = λ̄2 +G22

(
χ1 −

c1
c2
χ2

)
, F

(0)
11 = F

(0)
33 = λ̄1 =

√
J̄

λ̄2
, F

(0)
ij = 0, i ̸= j. (42)

In this case, it follows from (42) and (39) that
⟨
P

(0)
11

⟩
=
⟨
P

(0)
33

⟩
and P (0)

ij =
⟨
P

(0)
ij

⟩
= 0, i ̸= j, and

system (40)-(41) reduces to a single equation for the determination of G22, which is given by

µ1

Φ1

(
J̄

λ̄21
+G22 − 1

)
exp

{
Eλ

(
F (0)

)}
− µ2

Φ2

(
J̄

λ̄21
− c1
c2
G22 − 1

)
= 0, (43)

where

Eλ

(
F (0)

)
=

(
µ2

Φ2
− µ1

Φ1

)[
2λ̄21 +

(
J̄

λ̄21

)2

− 4λ̄1 − 2
J̄

λ̄21
+ 3

]

−2
(
c1
c2

µ2

Φ2
+
µ1

Φ1

)(
J̄

λ̄21
− 1

)
G22 +

[(
c1
c2

)2
µ2

Φ2
− µ1

Φ1

]
G2

22

(44)

Finally, by substituting the solution G22 of (43)-(44) into (35) with (39), the non-null components
of the effective law are obtained.

We now present numerical results concerning the uniaxial extension of homogenized composites,
which are obtained from the application of the two-scale asymptotic homogenization on two periodic
bilaminates. The phases of the two bilaminates behave according to, respectively, the classical hyper-
elastic model given by (37) and the softening hyperelastic model given by (39). In both cases, we have
that µ1 = 2, µ2 = 4, Φ1 = Φ2 = 1, c1 = c2 = 0.5, and J̄ = 1.1. In Fig. 1, we show the components
P̄11 =

⟨
P

(0)
11

⟩
and P̄22 =

⟨
P

(0)
22

⟩
of the effective first Piola-Kirchhoff stress tensor plotted against the

principal macro-stretch λ̄1.
Observe from Fig. 1 that the homogenization method is capable of predicting the macroscopic failure

of the composite induced by local failure of the laminae. Also, the shape of the curve of P̄11 in the
softening hyperelastic case resembles the one presented in Fig. 8 of [7] for the failure behavior and
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Figure 1: Effective behavior obtained via a two-scale asymptotic homogenization for two periodic
bilaminates composed of, respectively, classical and softening hyperelastic phases.

rupture of a softening Fung-type balloon under inflation. Observe also from Fig. 1 that both curves are
on the top of each other for small to moderate stretches, which indicates that the softening hyperelastic
model is capable of obtaining the same behavior of a classical model for moderate deformations, as
predicted by property (13).

7 Conclusions

In this work, we addressed the problem of macroscopic failure of hyperelastic composite materials. We
employed softening hyperelasticity to model the local failure of the phases, and then applied a two-scale
asymptotic homogenization to predict the corresponding effective behavior. We solved an example
problem involving the uniaxial extension in the lamination direction of two periodic bilaminates,
which are composed by, respectively, classical and softening hyperelastic laminae. The results indicate
that, even when softening is local, the homogenization procedure is capable of predicting classical
macroscopic hyperelastic behavior for moderate deformation and macroscopic failure for large enough
deformations.
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A load survey for a lifting operation of an emergency
tower for electrical energy lines transmission

A.R. Alberti, J.C. de C. Pereira, L.C. Nicolazzi
Federal University of Santa Catarina – UFSC, Mechanical Engineering Depto. –

EMC 88040-900, Florianópolis – Brazil

Abstract

The emergency towers for electrical energy lines transmission are structures that should be light weight and
easily assembled for a quickly replacement of damaged towers. In this context, some devices must be used in
the lifting operation in order to reduce the total time of assembling. These devices named ginpole can be used
in a lifting operation of horizontal assembled towers. So, this work concerns a numerical analysis for a load
survey for lifting operation of a guyed truss emergency tower using fixed ginpole. These loads will be used
to design the ginpole and to optimize the position of the cables fixed on the emergency tower in the lifting
operation. This load survey is analyzed from geometrical position and dimensions of all devices used in the
lifting operation as: emergency tower, ginpole, engine power and cables. The free software SciLab is used to
solve the non linear equilibrium equations due to the relationship between all parameters involved.

Keywords: tower, restoration, electrical energy, transmission, computational methods.

1 Introduction

Electrical energy is usually produced in hydroelectric and thermoelectric plants far from the consumer
centers, and is transmitted by means of transmission lines that cross large areas with the most varied
topography. The electricity supply interruption because of the fall of the towers due to hurricanes, rock
and earth landslides, foundation erosion, tower corrosion, vandalism, may result in serious economic
losses for the society. Therefore, the power restoration transmission system as soon as possible is the
primary goal to be achieved by company’s teams of maintenance services. The restoration tower or
emergency tower used for the immediate line restoration after these events is the first step to be
taken. However, sometimes the field topography presents major difficulties for the team to maintain,
as a place of difficult access, land on steep slopes, marshy ground, which makes the assembly of the
emergency towers to be in a slow way. To meet these peculiarities, the restoration towers shall have
the main features, easy transport, easy assembly and low cost or cheaper than the ordinary towers.

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



14 A.R. Alberti, J.C. de C. Pereira and L.C. Nicolazzi

This present work concerns one of all steps of the emergency tower design. It concerns a numerical
analysis for a load survey for lifting operation of the tower using fixed ginpole and these ones can be
used to design the ginpole and to optimize the position of the cables fixed on the emergency tower in
the lifting operation. The loads are analyzed from geometrical position and dimensions of all devices
used in the lifting operation as: emergency tower, ginpole, engine power and cables. At each instant
of the lifting operation, the loads acting on the ginpole and the internal forces and moments in the
tower can be obtained by solving the equilibrium equations. These equilibrium equations represent a
non linear problem due to the relationship between all parameters involved.

2 The mathematical model of the problem

In the lifting operation of an emergency tower assembled on a horizontal position it should be used
a ginpole device in order to create an upward force. As any other device of the emergency tower
to be designed, it should be obtained the loads acting over the ginpole in this operation. Moreover,
the position of the cables should be calculated in order to avoid failure at any structural element of
the tower and at the whole tower itself due to the force imposed by an engine power used to lift it.
So, for determination of these forces it is necessary the resolution of equilibrium equations obtained
from geometrical evaluations of the parameters involved. Figure 1 presents a model that describes the
emergency tower and all elements used in the lifting operation.

Figure 1: The lifting operation model of the emergency tower on a horizontal position.

In this model, BF represents the emergency tower with its own weight Wt, BC represents the gin-
pole, and the segments AC, DCE represent cables. At A is placed the engine power, B represents an
articulation and C a roller that permits the slipping of the cables. The loads acting on the cables
are named p1 and p2. The tower is 34m high, the ginpole is lC high and the distance between the
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engine power and the tower is L. These lengths are fixed by line transmission specifications. D and E
are points where cables are anchorage on the tower. The position of these points, lD and lE , and the
position of the tower in each instant of the lifting operation regulate the loads over the ginpole and
internal forces and moments in the tower.

Figure 2 presents the emergency tower at any other position on the lifting operation. Due to the
fixation of the ginpole at the tower, it will be always normal to the tower throughout the lifting
operation. So, BCD and BCE triangles sides are fixed in the first stage of this operation, as shown
later. Nevertheless, the triangle ABC changes its internal angles by the reduction of the segment AC.

Figure 2: The lifting operation model of the emergency tower on any other position.

The survey of the loads in this operation should be divided in two stages: a) in the first stage in
which the ginpole is loaded at its top, and, b) in the second stage in which the ginpole is no more
loaded. The transition between these two stages is defined by the angle αt, Figure 3 presents this
situation.

At this instance, it could be stated from triangle CDE:

ω + (π − β) + γ = π ⇒ ω = β − γ (1)

From the extension of segment AC, it could be found at C the relation:

θ +
(π
2
− β

)
+
ω

2
= π ⇒ θ =

(π + β + γ)

2
(2)

where β = arctan
(
lC
lD

)
and γ = arctan

(
lC
lE

)
.

On the ABC triangle, the cosine rule on θ can be shown as:
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Figure 3: The transition between the two stages on the lifting operation.

L2 = AC
2
+ l2C − 2.AC.lC . cos θ (3)

So, the segment AC at this instant can be found by rearranging equation (3):

AC
2 − (2.lC . cos θ) .AC +

(
l2C − L2

)
= 0 (4)

AC =
2.l2. cos θ +

√
∆

2
(5)

where ∆ = (2.lC . cos θ)
2 − 4.

(
l2C − L2

)
.

The angles ϕ and α can also be related as:

ϕ+
π

2
+ αt = π (6)

So:

ϕ =
π

2
− αt (7)

It could be find that:
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sin (αt) = cos (ϕ) (8)

On the same ABC triangle, the cosine rule on ϕ can be shown as:

AC = l2C + L2 − 2.lC .L. cos (ϕ) (9)

So, the angle αt from which the ginpole has no load over it is:

αt = arcsin

(
l2C + L2 −AC2

2.lC .L

)
(10)

It can be observed from equations (2), (5) and (10) that αt is function of γ and β, thus function of
the positions of the anchorages D (lD) and E (lE).

So, if the goal is to determine the internal forces and moments in the tower, the equilibrium equations
should be imposed in each stage individually. As it will be seen later, on the first stage the equilibrium
equations can be solved analytically, and on the second stage equilibrium equations should be solved
numerically due to the its non linearity.

2.1 Equilibrium equations on the first stage

From Figure 2, the equilibrium of momentum imposed at B is as:

lF
2
.Pt. cosα = p2. (D. sinβ + E. sin γ) (11)

where β = arctan
(
lC
lD

)
and γ = arctan

(
lC
lE

)
.

So, the load imposed by the cables over the tower is:

p2 =
lF .Pt. cosα

2. (D. sinβ + E. sin γ)
(12)

And also:

lF
2
.Pt. cosαt = lC .p1. sin θ (13)

So, the load imposed by the engine power is:

p1 =
lF .Pt. cosαt
2.lC . sin θ

(14)

In the intention to determine the internal forces and moments, the tower is divided in 3 patches
named BD, DE, EF. After that, analytical functions of the internal forces and moments can be obtained
from equilibrium.

By the equilibrium conditions, the internal forces and moments can be obtained in each patch as:
axial force P, shear force Q and bending moment M.
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a. Patch CB (0 < x′ < D):
Axial force P –

P (x′) = − (lF − x′) .Wp. sinα− p2. (cosβ + cos γ) (15)

Shear force Q –
Q (x′) = p2. (sinβ + sin γ)−Wt. cosα. (lF − x′) (16)

Bending Moment M –

M (x′) = p2. ((lD − x′) . sinβ + (lE − x′) . sin γ)−
Wt. cosα. (lF − x′)2

2
(17)

b. Patch DE (D < x′ < E):
Axial force P –

P (x′) = −Wt. sinα. (lF − x′)− p2. cos γ (18)

Shear force Q –
Q (x′) = p2. sin γ −Wt. cosα. (lF − x′) (19)

Bending Moment M –

M (x′) = p2. sin γ. (lE − x′)−
Wt. cosα. (lF − x′)2

2
(20)

c. Patch DE (E < x′ < F ):
Axial force P –

P (x′) = −Wt. sinα. (lF − x′) (21)

Shear force Q –
Q (x′) = −Wt. cosα. (lF − x′) (22)

Bending Moment M –

M (x′) =
−Wt. cosα. (lF − x′)2

2
(23)

2.2 Equilibrium equations on the second stage

On this stage, the geometrical parameters considered earlier change, so the angles β and γ are no
more constants, as on the first stage. Thus, β’ and γ’ represent these angles in each instant. Figure 4
presents the geometrical configuration on this stage.

The determination of the internal forces and moments in the tower depends on the inclinations β’
and γ’ of the cables, in order to find the components of all forces action on it. In this way, these
components are function of the coordinates of point C(x,y) and position of the anchorage D and E on
the tower. The line passing through point G is the prolongation of the line that defines the segment
AC. Thus, the segment CG is the bisectrix of the angle formed by segments CD and CE.
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Figure 4: Geometrical configuration on the second stage.

The coordinates of the points involved in this analysis are:

A = (−L, 0), B = (x, y), C = (0, 0)

D = (lD.cosα, lD.sinα), E = (lE .cosα, lE .sinα), G = ((lD + a).cosα, (lD + a). sinα)

As it can be observed, the unknown of the coordinates of these points are x, y and a. For the
resolution of this problem three equations should be stated:

1. The length of the cable DBE is constant throughout the lifting operation:

DCE =
√

(l2D + l2C) +
√
(l2E + l2C) (24)

So, the equation (25) should be satisfied:

√
(lD. sinα− y)2 + (lD. cosα− x)2 +

√
(lE . sinα− y)2 + (lE . sinα− x)2 −DCE = 0 (25)

2. Point C should be on the straight line passing to points A and G. This stating is shown by the
equation:

y − ((lD + a) . sinα)

((lD + a) . cosα+ L)
.x− ((lD + a) . sinα)

((lD + a) . cosα+ L)
.L = 0 (26)
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3. The segment AB and the bisectrix of the angle DCE should be collinear. To satisfy this condition
the inclination of segmentsCD, CE, and CG about the x axis should be found. So, to warrant
the third statement, at point C it can be set the expression:

arctan

(
lE . sinα− y
lE . cosα− x

)
− ψ = ψ − arctan

(
lD. sinα− y
lD. cosα− x

)
(27)

Rearranging equation (27) as a function of x, y and a, it suits:

2. arctan

(
(lD + a) . sinα

(lD + a) . cosα− L

)
− arctan

(
lE . sinα− y
lE . cosα− x

)
− arctan

(
lD. sinα− y
lD. cosα− x

)
= 0 (28)

The latest equation (27) and (28) are non linear for the unknowns x, y and a.
In this work, the Newton Method was used to solve the non linear equation systems. Tests were

performed in order to verify the convergence of the resolution and to validate the results. The free
software SciLab was used to program the numerical method for the resolution of these equations.

The Newton Method searches the roots of non linear equation systems in a linearization procedure
such as:

J
(
Xk
)
.Xk = −F

(
Xk
)

(29)

where vector F
(
Xk
)
is composed by the three equations that form the system:

F (1) = y − (D + a) . sinα

(D + a) . cosα+ L
.x− (D + a) . sinα

(D + a) . cosα+ L
.L

F (2) =

√
(lD. sinα− y)2 + (lD. cosα− x)2 +

√
(lE . sinα− y)2 + (lE . cosα− x)2

−
(√

l2C + l2D +
√
l2C + l2E

)
F (3) = 2. arctan

(
(lD + a) . sinα− y
(lD + a) . cosα− x

)
− arctan

(
lE . sinα− y
lE . sinα− x

)
− arctan

(
lD. sinα− y
lD. sinα− x

)
(30)

Vector Xk is the solution of equation (30), at the k iteraction is:

XK =


xK

yK

aK

 (31)

In the equation (29), J
(
Xk
)

represents the Jacobian matrix composed by the partial derivatives of
vector F

(
Xk
)

in respect to the variables x, y and a, as:
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J
(
XK

)
=


∂F (1)
∂x

∂F (1)
∂y

∂F (1)
∂a

∂F (2)
∂x

∂F (2)
∂y

∂F (2)
∂a

∂F (3)
∂x

∂F (3)
∂y

∂F (3)
∂a

 (32)

The actualization of the solution of the non linear system is done by:

XK+1 = XK + δ (33)

where δ is the step of the iteraction process. The convergence is reached when δ is lower than 10−8.
After the resolution of the non linear system, where the variables x, y and a are found, the internal

forces and moments on the second stage of the lifting operation can be found using the same equations
presented earlier, from (15) to (23).

As an example of the determination of the internal forces and moments in the tower on the first
and second stage, it is proposed the data: lC = 6m, lD = 16m, lE = 30m, lF = 34m, L = 12m and
the equivalent force due to self weight of the tower Pt = 10.000N. Figures 5 and 6 present the internal
forces and moments diagrams for α = 0◦, on the first stage, and for α = 60◦, on the second stage,
respectively. It can be observed in these figures the effect of the distributed load Wt, especially on the
axial internal effort P.

(a) (b) (c)

Figure 5: Internal forces and moments diagrams in the tower for α = 0◦: (a) axial force P , (b) shear
force Q and (c) bending moment M .

Figure 7 presents the axial and transversal loads acting at the top of the ginpole. It can be observed
that for the design of this device, concerning its stability and strength, the critical position is for α =
0◦.
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(a) (b) (c)

Figure 6: Internal forces and moments diagrams in the tower for α = 60◦: (a) axial force P , (b) shear
force Q and (c) bending moment M .

(a) (b)

Figure 7: Load acting at the top of the ginpole: (a) axial load and (b) transversal load.

3 Conclusions

This work deals with the survey load in the lifting operation of an emergency tower used to restore
damaged transmission lines. These loads are used to design the devices used in this operation, especially
the ginpole. Moreover, in order to find the better position of the cables anchoraged on the tower to
avoid failure at the whole tower itself in this operation. In this context, the loads acting over the ginpole
and the internal forces and moments should be found. The determination of these loads induces to a
resolution of a non linear equation system that involves geometrical parameters. The Newton Method
was used to solve numerically this non linear equation system. The results have shown the robustness
of the Newton Method for this kind of problem.
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Abstract

This paper deals with the molecular mechanics simulations of graphene nanostructures and their vibration
behavior for potential applications on nano-electronics and nanocomposites. These nanostructures are good
candidates to nano resonators due to high specific stiffness and strength and elevated aspect ratio. The funda-
mental frequencies for CNTs range from 10-250 GHz and 100-1000 GHz for the cantilevered and bridged con-
ditions, respectively. As the ratio length/diameter increases the fundamental frequency decreases, as expected.
A decrease on fundamental frequencies with the bending waviness was noticed for all conditions. The mode
shape for bent carbon nanotubes seems to be a superposition of the vibration mode and the bending mode for
the zigzag configuration. Multi-layered graphene were also investigated. The fundamental frequencies ranged
from 50-150 GHz, with an odd/even shape mode switch.

Keywords: graphene nanostructures, carbon nanotubes, vibration analysis, molecular mechanics, nano res-
onators.

1 Introduction

As commented by Campanella [1], one of the key components into micro electromechanical systems
(MEMS) is the resonator. Nanotechnology allowed the development of the so called nano electrome-
chanical systems, NEMS for short. Reduction in the size of a resonator enhances its resonant frequency
and reduces its energy consumption. According to Jah [2], sensors sensitivity are directed related to
the resonant frequency, i.e. higher resonant frequency means higher sensitivity. Nowadays, more and
more wireless communication devices are required, the usage of higher frequency resonators enable
the production of higher frequency filters, oscillators, and mixers. The improvement of high-frequency
NEMS brings about new applications ranging from signal processing [3] to biosensors [4]. Potential
candidates to nano resonators are carbon nanotubes and graphene nanosheets.

According to Saito and his co-workers [5], carbon nanotube is a honeycomb lattice rolled into a
cylinder. Carbon nanotubes (CNTs) have been the center of many researches due to their dimensions
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and remarkable electro-mechanical properties. In general, a CNT diameter has a nanometer size and
its length can be more than 1µm. Its large aspect ratio (length/diameter) is appointed as one of the
reasons for the CNTs notable properties. As mentioned by Kalamkarov et al [6], CNTs have predicted
specific strength around 600 times larger than steel.

CNT capabilities have been observed experimentally and verified by numerical simulations. Among
the different numerical simulations, two different approaches are the most common, i.e. molecular
dynamics [7], atomistic simulations [8] also known as molecular mechanics [9]. The traditional molec-
ular dynamics (MD) simulations are limited because is computational intensive, while the molecular
mechanics is more flexible and more computational efficient.

As discussed by Gibson and co-workers [10], the knowledge of vibration behavior of CNTs is critical
in a large number of nanomechanical devices such as oscillators, clocks, field emission devices and
sensors. Furthermore, during the sonication process for nanocomposites synthesis of carbon based
nanoparticles, e.g. CNTs and graphene, vibration takes place. Therefore, the development of an accu-
rate model for the natural frequencies and mode shapes of carbon based nanoparticles is an important
issue.

Here the concept of molecular mechanics described by Li and Chou [9] and Tserpes and Papanikos
[11], and extended by Ávila and Lacerda [12] is associated to the three-dimensional finite element
model and later on employed to predict the vibrational behavior of carbon based nanoparticles, i.e.,
carbon nanotubes and graphene nanosheets.

2 Structure of a single wall carbon nanotube

The molecular mechanics approach can be described by numerical methods where the equilibrium
configuration of the model system is required by minimizing the energy, which consists of the sum of
the inter-atomic potential minus any work by external forces. SWNT may be thought of as a sheet of
graphene rolled along a chiral vector, C, as described by Fig. 1.

Figure 1: Chiral angle and vector representation adapted from Ávila and Lacerda [12].
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Dresselhaus and co-workers [13] described SWNT in terms of nanotube diameter (d) and its chiral
angle (θ). The chiral vector (Ch) was defined in terms of the graphene sheet lattice translation integer
indices (n,m) and the unit vectors (a1, a2) and it is defined as:

C⃗k = na⃗1 +ma⃗2 (1)

where the unit vectors in (x,y) coordinates are defined as:

a⃗1 =

(√
3

2
,
1

2

)
a a⃗2 =

(√
3

2
,−1

2

)
a (2)

the length of the unit vector a is defined as 2.46 angstroms, or 1.73 times the carbon-carbon distance,
i. e. 1.421 angstroms. The nanotube circumference (p) was defined by:

p = |Ck| = a
√
n2 +m2 + nm (3)

from simple geometry, it is possible to obtain the nanotube diameter (d) as:

d =
p

π
=

√
n2 +m2nm

π
a (4)

and the chiral angle (θ), between 0 and π/6 rad, was described by Dresselhaus et al [13] by

sin θ =

√
3m

2
√
n2 + nm+m2

cos θ =
2n+m

2
√
n2 + nm+m2

(5)

The three main SWNT configurations were described by Kalamkarov et al [6] in Fig. 2. Notice
that each configuration has its own cap distinct formation. As the aspect ratio (length/diameter) is
in general large, it is possible to discard the cap effect without loss of generality.

3 Molecular mechanics basics

As stated by Li and Chou [9], the carbon atoms in the nanotube are held together by covalent bonds
of characteristic bond length and bond angles, and the corresponding molecular forces constrain any
displacement of individual atoms. In the molecular structural mechanics approach, a single-walled
carbon nanotube is simulated as a space frame structure, with the covalent bonds and carbon atoms
as connecting beams and joint nodes, respectively. If the beam elements simulating the covalent bonds
are assumed to be of round section, then only three stiffness parameters, i. e., the tensile resistance
EA, the flexural rigidity EI and the torsional stiffness GJ, need to be defined for deformation analysis.
Figure 3 describes the correlation between the atomic interactions and their molecular mechanics
equivalent.

Ávila and Lacerda [12], based on the energy equivalence between local potential energies in computa-
tional chemistry and elemental strain energies in structural mechanics, established a direct relationship
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Figure 2: SWNT configurations and their caps adapted from Kalamkarov and collaborators [6].

between the structural mechanics parameters and the molecular mechanics force field constants. Such
parameters are mathematically represented by:

EA

L
= kr

EI

L
= kθ

GJ

L
= kτ (6)

where L denotes the bond length, and kr , kθ and kτ are the force field constants in molecular
mechanics. By assuming a circular beam cross section (bond) with diameter db, and setting the area,
moment of inertia and polar moment of inertia as Ab = πd2b/4, Ib = πd4b/64 and Jb = πd4b/32, Tserpes
and co-workers [11] presented the covalent bond equivalent Eb and Gb as

db = 4

√
kθ
kr

Eb =
k2rL

4πkθ
Gb =

k2rkτL
8πk2θ

(7)

In order to compute the fundamental frequencies and vibrational modes of a carbon nanotube, Li
and Chou [14] simulated the nested tube layers by equivalent space frame structures and the Van der
Waals interactions between tubes by spring elements. The van de Waals forces were approximated by
the Lennard-Jones forces. The equation of motion for the free vibration of an undamped structure is
described as,

[M ] {ÿ}+ [K] {y} = {0} (8)

where [M ] and [K] are, respectively, the global mass and stiffness matrices. The nodal acceleration
and the displacement vectors are represented by {ÿ} and {y}, respectively.

The C-C bonds were replaced by beam elements with properties based on chemical potentials.
Therefore, once the chemical-mechanical equivalence was established, the global stiffness matrix [K]
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Figure 3: Equivalence between molecular and structural mechanics. (a) molecular mechanics; (b)
structural mechanics adapted from Tserpes and Papanikos [13].

followed the conventional finite element assemblage procedure as described in Bathe [15]. As com-
mented by Li and Chou [14], there are two kinds of elemental stiffness matrix [K]e. One is for the
beam element in tube layers, i.e.

[K]
e
b =

[
[kii] [kij ]

[kji] [kjj ]

]
(9)

where the sub matrices [kii], [kij ], [kji], and [kjj ] are stiffness coefficients related to the cross-sectional
parameters of beam element i-j. The second elemental matrix is based on non-linear spring element
representing Van der Waals interactions, i.e.

[K]
e
vdw =

[
[kii] [kij ]

[kji] [kjj ]

]
, [kii] = [kjj ] =

[
[A] [0]

[0] [0]

]
, [kij ] = − [kji] (10)

where [0] is a null matrix and
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[A] =


∝ 0 0

0 0 0

0 0 0

 , α = 24 ε
σ2

[
26
(σ
r

)14
− 7
(σ
r

)7]
(11)

The global mass matrix [M ] is based on the atomistic feature of a carbon nanotube, like in Li and
Chou [14]. The masses of electrons are neglected and the masses of carbon nuclei (mc = 1.9943×10−26

kilogram) are assumed to be located at the centers of atoms, i. e., the joints of beam members. The
flexural rotation and torsional rotation are assumed to be identical to zero as the carbon nuclei radius
are extremely small (rc = 2.75×10−6 nm). Based on these considerations, and the fact that in a CNT
each carbon atom is bonded to three others, the elemental mass matrix was described by Li and Chou
[14] as,

[M ]
e
= diag

[
mc/3 mc/3 mc/3 0 0 0

]
(12)

Following Mackerle [16], the natural frequencies and mode shapes of a finite element formulation
are obtained solving an eigenvalue problem as,(

[K]− ω2 [M ]
)
{y} = 0 (13)

where the angular frequency is defined as ω = 2πf .

4 Vibrational behavior studies

According to Gibson et al [10], the knowledge of vibrational behavior of carbon based nanoparticles is
critical for various industrial applications, e.g. oscillators, nanocomposites. To be able to investigate
the vibrational behavior of such nanoparticles, two groups were considered, i. e. carbon nanotubes
and graphene nanosheets. For CNTs, two major boundary conditions were applied. The first one
was the cantilever beam and the second one the bridged carbon nanotubes. To be able to validate
the proposed model a numerical simulation of resonant frequencies of bridged zigzag and armchair
carbon nanotubes were performed. These cases were studied by Li and Chou [14] and the results
are available for comparison. Another set of data available for to be used as benchmark is the one
provided by Sakhaee-Pour and co-workers [17]. Table 1 shows a comparison between the present model
and data from Sakhaee-Pour et al. [17], for an armchair configuration. As it can be noticed, a small
difference (less than 2%) is noticed between the two models. This difference can be attributed to the
geometric differences between the two models. Sakhaee-Pour et al [17] provided the nanotube diameter
(0.814 nm) and the nanotube length (5.660 nm). For a (6,6) armchair configuration, the calculated
diameter was equal to 0.808 nm, while the length employed was 5.600 nm. Table 2 summaries the
zigzag configuration results. In this case, the difference between Sakhaee-Pour et al [17] results and
the present model was higher. The largest difference was around 8%. This difference can be attributed
to two factors. The differences into the geometry, for Sakhaee-Pour et al [17] considered a diameter
of 0.626 nm and length of 5.826 nm, while the present model for a (8,0) configuration the diameter is
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0.622 nm and the length of 5.80 nm. The second factor is the zigzag configuration itself. As commented
by Gibson et al [10], for zigzag nanotubes small geometric variations can lead to variations on natural
frequencies due to atoms distribution.

Table 1: Natural frequencies (GHz) for the armchair SWNT configuration.

Mode ID
Sakhaee-Pour Present model Absolute error [%]

Cantilevered Bridged Cantilevered Bridged Cantilevered Bridged

1 104 557 104 551 0.0 1.1

2 104 557 104 558 0.0 0.1

3 562 1280 566 1270 0.7 0.7

4 562 1280 566 1278 0.7 0.1

5 650 1320 640 1296 1.5 1.8

6 947 1910 954 1873 0.7 1.9

Table 2: Natural frequencies (GHz) for the zigzag SWNT configuration.

Mode ID
Sakhaee-Pour Present model Absolute error [%]

Cantilevered Bridged Cantilevered Bridged Cantilevered Bridged

1 72 427 76 462 5.6 8.2

2 72 427 76 462 5.6 8.2

3 421 1050 443 1128 5.2 7.6

4 421 1050 443 1128 5.2 7.6

5 628 1270 646 1332 2.9 4.9

6 882 1780 923 1895 4.6 6.5

Another benchmark problem is the one published by Harrar and Gibson [18]. They developed a
finite element model based on shell elements that can be applied to carbon based nanostructures, in
special carbon nanotubes. Table 3 shows, for the bridged configuration, the three zigzag nanotubes
studied by Harrar and Gibson [18], by Li and Chou [19] and the present model.

The large maximum absolute error for small L/D ratio (3.55) can be attributed to differences on
boundary conditions applied by Li and Chou [19], i.e. nanotube diameter and mass distribution due
to the number of atoms (each carbon atom has a correspondent node). Notice that both models, the
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Table 3: Natural frequency (GHz) for the zigzag SWNT with different aspect ratios.

Diameter
[nm]

Length
[nm]

Li and
Chou

Harrar and Gibson Present
model

Max.
Absolute
Error [%]Space frame model Shell model

1.1 3.9 1041 1167 1092 1197 14.9

1.1 5.6 662 692 656 705 7.4

1.1 8.0 380 377 374 382 2.1

one described by Harrar and Gibson [18] and the present model, used the same software for nanotube
generation, i.e. Nanotube Modeler [20]. The diameter for the (14,0) nanotube for both cases are
identical (1.08 nm) and the number of carbon atoms is also the same (518 carbon atoms). The mass
distribution is the same, and consequently the natural frequencies are approximately the same. This
hypothesis is confirmed by the close results obtained by the present model and the data presented by
Harrar and Gibson [18].

As discussed by Li and Chou [14] and Gibson et al. [10], the fundamental frequency of carbon
nanotubes can be influenced by various factors, e.g. boundary conditions and geometric configura-
tions. To investigate how these parameters affect natural frequencies and vibration modes, a series
of numerical simulations were performed. The nanotube diameters ranged from 0.38 nm to 0.89 nm,
while length/diameter ratios varied from 6 to 19. As it can be observed in Fig. 4, the fundamental fre-
quencies were in the range of 10-250 GHz and 100-1000 GHz, for cantilevered and bridged nanotubes,
respectively. These results are in good agreement with those presented by Li and Chou [14]. However,
for the bridged, the peak value obtained using the proposed model was lower (998 GHz) than the one
reported by Li and Chou [14], i. e. 1042 GHz. This difference can be due to the boundary conditions
applied and the number of atoms considered in each model. In the present model, one layer of node
(atoms) was constrained, while in Li and Chou [14] a different number of layers were probably used.
Note that in another paper, Li et al. [21] constrained 5 layers of atoms as a clamped condition. Small
differences on length lead to different numbers of atoms and consequently different total mass. Yet,
the results obtained by the present model are in good agreement with the one presented by Li and
Chou [14, 19].

Another issue that must be investigated is the carbon nanotube waviness. As described by Gibson
and colleagues [10], carbon nanotubes are naturally curved due to the synthesis process. To be able to
investigate the waviness effect on carbon nanotubes fundamental frequencies, a fixed aspect ratio L/d
of 18, the largest aspect ratio employed by Li and Chou [19], was assumed. Two different configurations,
one armchair and another zigzag, were selected. Furthermore, the waviness was simulated by bending
the nanotube with respect to z axis from 0 to 90 deg at 30 deg interval. As commented by Gibson
and co-workers [10], a macro mechanical correlation between models for vibrating curved beams and
arches show that the curvature of the beam or arch has strong effect on modal frequencies.
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Figure 4: Fundamental frequencies of single-wall carbon nanotubes.

The work done by Lee and Wilson [22] showed that for fixed-fixed arches the natural frequencies
decrease with the increase of curvature. This behavior was also noticed for the set of bridged nanotubes
configurations studied. As it can be shown in Figure 5, the nanotubes with smaller diameters (3,3)
and (5,0) seem to the ones with the smallest variations. Notice that according to Harrar and Gibson
[18], variations on natural frequencies of wavy nanotubes are related to the projected length of the
nanotube. Another issue must be added to this analysis, the diameter variation due to bending.
Small diameters will lead to smaller differences on cross section diameter, thus smaller variations on
natural frequencies, as equation (1) in Harrar and Gibson [18] demonstrates. This hypothesis is also
corroborated by Stokey [23]. In his investigation, Stokey [23] recalled the Timoshenko Beam Theory
for considering the effects of shear deflection and cross section rotation. By analyzing the governing
equations described by Stokey [23], it is possible to conclude that natural frequencies are directly
proportional to the radius of gyration of the curved beam. By applying this analogy to curved carbon
nanotubes, it is possible to concluded that curved nanotubes, under bridged configuration, with larger
diameters will have larger gyration radius and greater variations on natural frequencies when curvature
changes. The two configurations with the smallest diameters, i.e. (5,0) with 0.38 nm and (3,3) with
0.40 nm, are the ones less affected by the curvature effect. As the carbon nanotube radius increase,
the largest radius is 0.81 nm for the (6,6) configuration, the decrease on natural frequency is more
evident (≈ 23%). Nevertheless, the (10,0) configuration with 0.78 nm diameter seems to be virtually
insensible to curvature effect (variation of approximately 6%). As discussed by Li and Chou [19], this
phenomenon can be explained by the perfect symmetry on mass distribution for the (10,0) SWNT
configuration.
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Figure 5: Waviness effect on SWNT fundamental frequencies – bridged.

Figure 6: Waviness effect on SWNT fundamental frequencies – cantilevered.
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When the boundary condition is changed from bridged to cantilevered, the natural frequencies
variation is smaller as it can be noticed in Fig. 6. This behavior was expected as the same trend was
observed for straight SWNT. Furthermore, as commented by Stokey [23], variations curvature has no
practical influence on fundamental frequency (first vibration mode) for the cantilevered configuration.
This behavior is true for the nanotubes with small diameters, i.e. (3,3), (5,0) and (4,4). For these
configurations variations on natural frequencies due to bending ranged from 1.6% to 6.5%, while for
the large diameter nanotubes the peak variation on natural frequency was around 17.6%. Once more
the (10,0) configuration presented a small variation on natural frequency (≈4.2%) despite of its large
diameter 0.78 nm.

To investigate the vibration modes changes as function of the bending waviness, a well-known CNT,
i.e. (14,0) with length of 3.9 nm and bridged boundary condition, was selected as benchmark. This
SWNT was studied by Gibson and co-workers [10], Li and Chou [19] and Harrar and Gibson [18].
Figure 7 shows the first five vibration modes. These vibration modes are identical the ones showed by
Gibson et al [10]. Figure 8 shows the first five vibration modes for the same SWNT configuration with
a bending waviness of 30 deg. As it can be noticed, the bending waviness seems to be superimposed
to the vibration modes of the straight nanotubes. The same pattern is observed for the 60 deg and 90
deg bending waviness, as shown in Figs. 9-10.

Figure 7: Vibration modes for the (14,0) SWNT straight.

Shape modes for bent SWNT seem to be essentially a superposition of each vibration mode and the
bending waviness. Recalling Gibson et al [10], carbon nanotube can be described as one dimensional
entity. Therefore, a different approach must be employed for analyzing graphene nanosheets as they are
similar to plates. However, as discussed by Ávila et al. [24], for some nanocomposites manufacturing,
the graphene nanosheets are usually exfoliated in blocks. Therefore, this research focuses on vibrational
behavior of multi-layered graphene nanosheets. According to Ávila and co-workers [25] and Li and
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Figure 8: Vibration modes for the (14,0) SWNT with bending waviness of 30 deg.

Figure 9: Vibration modes for the (14,0) SWNT with bending waviness of 60 deg.

Figure 10: Vibration modes for the (14,0) SWNT with bending waviness of 90 deg.
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Chou [14], the inter-graphene inter layer spacing is 0.34 nm. As the Lennard-Jones potential force
approaches to zero for distances bigger than 0.85 nm, only atoms around this distance are considered.
As it can be noticed from Figs. 11 and 12 (multi-layered graphene cantilevered and bridged), the
Van der Waals forces act as a “control system”. They allow the graphene nanosheets to deform on
even shape modes and let the graphene nanosheets return to equilibrium (non-deformed shape) on
odd shape modes. This odd/even behavior alternates with the number of layers. The same pattern is
noticed for both configurations, i. e. cantilevered and bridged. Furthermore, for one single graphene
nanosheets or blocks, the fundamental frequency for a 2.5 nm by 2.5 nm square graphene nanosheets
is around 52.87 GHz and 148.45 GHz, for cantilevered and bridged configurations, respectively.

(a) (b)

Figure 11: Multi-layer graphene shape modes for cantilevered condition. (a) even; (b) odd.

(a) (b)

Figure 12: Multi-layer graphene shape modes for bridged condition. (a) even; (b) odd.
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5 Conclusions

Carbon nanotubes were investigated considering two major boundary conditions, i. e. cantilevered
and bridged. Those are the ones with larger potential applications for nano mechanical resonators.
The length over diameter ratio (L/d), the nanotube configuration (armchair and zigzag) and the
waviness effect were investigated. The fundamental frequencies ranged from 10-250 GHz and 100-
1000 GHz for the cantilevered and bridged conditions, respectively. As the ratio L/d increased, the
fundamental frequency decreased, as expected. For carbon nanotubes under the bridged configuration,
the bending waviness effects lead to a decrease on natural frequencies. Large variations, up to 23%,
on natural frequencies were observed on carbon nanotubes with large diameters. The only exemption
was the (10,0) configuration where despite of the large diameter (0.78 nm), the natural frequencies
were practically constant with the bending waviness variation. This phenomenon can be explained by
the perfect symmetry on mass distribution for the (10,0) SWNT configuration. Numerical predictions
on shape modes for a (14,0) configuration, the same used by Li and Chou [19] for straight nanotubes,
indicate a mode superposition of the bending shape and the vibration modes.

Multi-layered graphene nanosheets were also studied. In this case, the Van der Waals forces were
considered. It seems that the Van de Waals forces acts a “control system”. They allow the graphene
nanosheets to deform on even shape modes and let the graphene nanosheets return to equilibrium
(non-deformed shape) on odd shape modes. This odd/even behavior alternates with the number of
layers.
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Abstract

In Deterministic Design Optimization (DDO), constraints are given by codified design rules involving alow-
able stresses, strains or deflections. Uncertainties in structural loads, material resistances and other problem
parameters are taken into account in a subjective and indirect way, by means of partial safety factors specified
in design codes. By definition, the optimum structure will have more failure modes designed against the limit:
hence, the optimum structure obtained via DDO will be less safe than the original, non-optimal structure. This
is a consequence of treating uncertainties in an implicit way. Hence, it can be said that DDO yields the shape
or configuration of a structure that is optimum in terms of mechanics, but the formulation grossly neglects
the effects of parameter uncertainties on structural safety. Reliability-based Design Optimization (RBDO) has
emerged as an alternative to properly model the safety-under-uncertainty part of the problem. In RBDO,
alowable failure probabilities are specified as design constraints, and it is possible to ensure that a minimum
(and measurable) level of safety is achieved by the optimum structure. The general RBDO formulation, how-
ever, addresses the minimization of manufacturing costs, with no account for the expected costs of failure.
Risk optimization (RO) increases the scope of the problem, by quantifying the monetary consequences of
failure, as well as the costs associated to construction, operation and maintenance. Risk Optimization stands
for the minimization of total expected costs, addressing the compromising goals of economy and safety. In
this paper, results obtained with DDO, RBDO and RO are compared for some example problems. The wider-
scope RO solution is found first, yielding the optimum safety coefficients and optimum failure probabilities
for each problem. These values are used as constraints in DDO and RBDO, respectivelly. Results show that
even when the optimum safety coefficients are used as constraint in DDO, the formulation leads to optimum
configurations which respect these design constraints, reduce manufacturing costs but increase total expected
costs (including expected cost of failure). When the optimum system failure probability is used as constraint
in RBDO, the formulation also leads to a reduction of manufacturing costs, but to increases in total expected
costs. This happens when the costs associated to different failure modes are distinct. Hence, it is shown in
this paper that the optimum structural configuration can only be found by the wider-scope risk optimization
formulation.

Keywords: structural optimization, optimum design, DDO, RBDO, reliability analysis.
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1 Introduction

In a competitive environment, structural systems have to be designed taking into account not just
their functionality, but their expected construction and operation costs, and their capacity to generate
profits. This capacity depends on the risk that construction and operation of a given facility implies to
the user, to employees, to the general public or to the environment. The capacity to generate profits
can be adversely affected by the costs of failure.

The performance and safety of structural systems is affected by uncertainties, or natural randomness,
in the resistance of structural materials and in loading conditions. Uncertainty implies risk, or the
possibility of undesirable structural response.

In monetary terms, risk (or the expected cost of failure) is given as the product of the cost of
failure by a failure probability. Failure probabilities, in their turn, are directly affected by the level of
safety adopted in the design, construction and operation of a given facility. This includes the safety
coefficients adopted in design, safety and quality assurance measures adopted during construction and
the levels of inspection and maintenance practiced during operation.

In structural engineering design, economy and safety are competing goals. Generally, increasing
safety implies greater costs, and reducing costs may require a compromise in safety. Hence, designing
a structural system involves a tradeoff between safety and economy. In common engineering practice,
this tradeoff is addressed subjectively. In codified design, the issue is decided by a code committee,
which defines safety coefficients to be used in design, and basic safety measures to be adopted in
construction and operation. In general, the tradeoff between economy and safety in structural design
can be addressed by structural optimization.

In this paper, the effects of uncertainty on optimum structural design are investigated by comparing
three distinct formulations of the structural optimization problem. Deterministic Design Optimization
(DDO) grossly neglects the effects of parameter uncertainty and failure consequences, but it allows one
to find the shape or configuration of a structure that is optimum in terms of mechanics. As a general
rule, the result of DDO is a structure with more failure modes designed against the limit: hence,
the optimum structure compromises safety, in comparison to the original (non-optimal) structure.
Reliability-Based Design Optimization (RBDO) has emerged as an alternative to properly model the
safety-under-uncertainty part of the problem [1–8]. With RBDO one can ensure that a minimum (and
measurable) level of safety is achieved by the optimum structure. However, RBDO does not account for
the economical consequences of failure, since the safety level is a constraint, and not an optimization
variable. DDO and RBDO can both be used to achieve mechanical structural efficiency, but they do
not address the safety-economy tradeoff.

Risk Optimization (RO) increases the scope of the problem, by including the (expected) cost of
failure in the economic balance [9–15]. Hence, RO allows one to find the optimum tradeoff point
between the competing goals of economy and safety [15]. RO aims at finding the optimum level of
safety to be achieved in a given structural system, in order to minimize the total expected cost or
maximize the expected profit. It is as a tool for decision making in the presence of uncertainty. RO is
complementary to DDO or RBDO, in the sense that the most economic structural design also requires
mechanical efficiency.
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2 Failure probability and expected cost of failure

Let X and z be vectors of structural system parameters. Vector X represents all random system param-
eters, and includes geometric characteristics, resistance properties of materials or structural members,
and loads. Some of these parameters are random in nature; others cannot be defined deterministically
due to uncertainty. Typically, resistance parameters can be represented as random variables and loads
are modeled as random processes of time. Vector z contains all deterministic system parameters to
be optimized, like nominal member dimensions, partial safety factors, design life, parameters of the
inspection and maintenance programs, etc. Vector z may also include some parameters of random
variables in X.

The existence of uncertainty implies risk, that is, the possibility of undesirable structural responses.
The boundary between desirable and undesirable structural responses is given by limit state functions
g(z,x)=0, such that:

Df = {z,x|g(z,x) ≤ 0} is the failure domain

Ds = {z,x|g(z,x) > 0} is the safety domain
(1)

Each limit state describes one possible failure mode of the structure, either in terms of performance
(serviceability) or ultimate capacity. The probability of undesirable structural response, or probability
of failure, is given by:

Pf (z) = P [g(z,X) ≤ 0] (2)

where P[.] stands for probability. The probabilities of failure for individual limit states and for system
failure are evaluated using traditional structural reliability methods such as FORM and SORM [16, 17].

The life-cycle cost of a structural system subject to risk can be decomposed in an initial or construc-
tion cost, cost of operation, cost of inspections and maintenance, cost of disposal and expected costs
of failure (Jexpected). The expected cost of failure, or failure risk, is given by the product of failure
cost (Jfailure) by failure probability [9–15]:

Jexpected(z) = Jfailure(z) Pf (z) (3)

Failure costs include the costs of repairing or replacing damaged structural members, removing a
collapsed structure, rebuilding it, cost of unavailability, cost of compensation for injury or death of
employees or general users, penalties for environmental damage, etc. All failure consequences have to be
expressed in terms of monetary units, which can be a problem when dealing with human injury, human
death or environmental damage. Evaluation of such failure consequences in terms of the amount of
compensation payoffs allows the problem to be formulated, without directly addressing matters about
the value of human life [18, 19].

For each structural component or system failure mode, there is a corresponding failure cost term.
The total (life-cycle) expected cost of a structural system becomes:
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J total(z) =J initial or construction(z)

+ Joperation(z)

+ J inspection and maintenance(z)

+ Jdisposal(z)

+
∑

failure modes

Jfailure(z)Pf (z)

(4)

The initial or construction cost increases with the safety coefficients used in design and with the
practiced level of quality assurance. More safety in operation involves more safety equipment, more
redundancy and more conservatism in structural operation. Inspection cost depends on intervals,
quality of equipment and choice of inspection method. Maintenance costs depend on maintenance
plan, frequency of preventive maintenance, etc. When the overall level of safety is increased, most cost
terms increase, but the expected costs of failure are reduced.

Any change in z that affects cost terms is likely to affect the expected cost of failure. Changes in
z which reduce costs may result in increased failure probabilities, hence increased expected costs of
failure. Reduction in expected failure costs can be achieved by targeted changes in z, which generally
increase costs. This compromise between safety and costs is typical of structural systems.

3 Structural optimization formulations

3.1 Deterministic Design Optimization (DDO)

In deterministic design optimization, uncertainties and consequences (cost) of failure are not explicitly
taken into account. A typical formulation of DDO reads:

find : z∗

which minimizes: cost(z) or volume(z)

subject to: deterministic failure criteria(σ(z) < σyield/λ)

(5)

In Eq. (5), λ is a safety coefficient, given by some design code and not an optimization variable.
The cost function only includes cost (or volume) of structural materials, and sometimes life-cycle
and/or manufacturing costs. The formulation allows finding a structure which is optimal in terms of
mechanics but, due to lack of a quantitative measure of safety, expected costs of failure cannot be
considered. Since safety is not quantified, the resulting optimal structure may compromise safety, in
comparison to the original (non-optimal) structure.

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



A comparison of deterministic, reliability-based and risk-based structural optimization under uncertainty 45

3.2 Reliability-Based Design Optimization (RBDO)

One formulation which allows uncertainty to be taken explicitly into account is known as reliability-
based design optimization. A typical formulation of RBDO reads [1–8]:

find : z∗

which minimizes: manufacturing cost(z) or volume(z)

subject to: Pf (z) < Pfadmissible

(6)

Generally, the cost term in this formulation is the same as for DDO, that is, it does not include
expected costs of failure. RBDO allows finding a structure which is optimal in mechanical sense,
and which does not compromise safety. However, results depend on the admissible failure probability
used as constraint. The balance between safety and economy cannot be addressed, because failure
probability is not an optimization variable.

3.3 Risk Optimization (RO)

When expected costs of failure are included in the analysis, it is possible to find the best point of
compromise between safety and economy. Risk optimization (reliability-based) will also look for the
optimum failure probabilities [9–15]:

find : z∗, λ∗ and P ∗
f (z

∗, λ∗)

which minimizes: J total(z)
(7)

where J total(z) is the total expected cost given by Eq. (4). Partial safety factors λ are included as
design variables in the risk optimization formulation (Eq. 7). Hence, the formulation yields optimum
partial safety factors λ*, which are associated to optimum failure probabilities, Pf* . In comparison
to RBDO, risk optimization is an unconstrained optimization problem, since all failure probability
“constraints” now appear in the cost function (Eq. 4). Multiple reliability constraints [20] are also
“automatically” included in the RO formulation, as Eq. 4 admits one cost term for each failure mode.
Considering the solution of a constrained optimization problem like Eq. (6) via penalty methods, one
observes that, in the RO formulation, the cost of failure terms (Eq. 4) are equivalent to the “penalties”
for exceeding failure probability constraints in RBDO. However, these are no artificial penalties; they
are the actual costs of designing away from the optimum. Hence, the RO formulation yields a smoother
problem which is, nevertheless, not easier to solve.

Risk optimization can be achieved by controlling failure probabilities and/or the cost of failure. Risk
mitigation through preparation, education, training, and so on, is out of scope of this investigation.
Although failure costs are constants in the present formulation, it is important to note that it does
allow for a trade-off between different costs for different failure modes. Hence, service and ultimate
limit states, with their intrinsically different costs of failure, are readily accounted for in the present
formulation.
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If social or non-monetary consequences of failure are involved (like death or environmental damage),
failure probabilities constraints can be included in the RO formulation:

find : z∗, λ∗ and P ∗
f (z

∗, λ∗,X)

which minimizes: J(z)

subject to: Pf (z,X) < Pfadmissible

(8)

The revenue to be obtained with a structural system is generally independent of z or X, that is, it
only depends on the facility been available. Hence, an alternative risk optimization problem can be
formulated as:

find : z∗, λ∗ and P ∗
f (z

∗, λ∗,X)

which maximizes: profit = revenue - J(z)
(9)

Figure 1 illustrates the scope of the three formulations just presented. It is clear that the formulations
are not equivalent, but complementary, each addressing a different part of the problem. The RO
formulation is complementary to DDO or RBDO, since the most economic structure also needs to be
mechanically efficient. In fact, the RO formulation increases the scope of the problem, by considering
the costs of failure. It is noted that DDO, in comparison to RO, does not account for the effects of
uncertainty. RBDO considers uncertainty, but it neglects one of the main consequences of uncertainty:
the expected costs of failure.

It should be noted that the nomenclature used in this paper is not necessarily in accordance with
the literature: in many cases, the name RBDO is used for problems where expected costs of failure
are also considered [9–15]. In the present paper, it is convenient to refer to RBDO and RO as two
different formulations due to the objective of exposing the difference in the results obtained using
each formulation. Another common approach to structural optimization in presence of uncertainties,
robust optimization [21, 22], is not considered in the present paper because results are not directly
comparable to DDO, RBDO or RO.

In the literature, there are a number of approaches which simplify the RBDO problem by replacing
it by an equivalent DDO problem [23–25]. The conditions under which this simplification is possible
are not comprehensively investigated in these papers. For example, Qu and Hafta [23] use a single
safety factor to make the conversion from reliability to deterministic constraints. In the present paper,
it will be shown that this is not always possible. It is also not known whether the RO problem can be
replaced by equivalent DDO or RBDO formulations. These issues are addressed in the present paper,
by means of comparative optimization analyses.

4 Comparative optimization analyses

In sections 2 and 3, optimization formulations were presented in very general terms. In order to study
the effects of uncertainty in optimum structural design, these formulations are used in this paper in
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Figure 1: Scope of structural optimization formulations.

a number of different ways [26]. This section explains how these formulations are applied to some
example problems in the sequence.

It is clear that the three formulations are not directly comparable, because their scope is different.
Results of DDO clearly depend on the safety coefficient(s) used as constraint(s). Similarly, results of
RBDO of course depend on failure probabilities used as constraints. Now suppose that optimum safety
coefficients and optimum failure probabilities are first obtained from a (greater scope) risk optimization
analysis and then used as constraints in DDO and RBDO, respectively. One could expect that, by
using optimum constraints in DDO and RBDO, one would obtain the same optimum structure obtained
in risk optimization (RO). This is not always so, as will be shown in the sequence.

In the numerical examples that follow, the RO solution is found first. Since the scope of RO is larger,
and includes the scopes of DDO and RBDO, this general RO solution is used as reference. In order
to compare results, total expected costs (Eq. 4) are evaluated for the optimum structures resulting
from each formulation. Hence, following DDO or RBDO analyses, failure probabilities and costs of
failure are computed. In order to understand the differences between the results, (manufacturing) cost
functions used in DDO and RBDO analyses are also computed for RO for comparison.

In real world problems, one does not know optimal failure probabilities or optimal safety coefficients
before designing a structure. Hence, a “natural” order of solution for real problems would be a DDO (or
RBDO) analysis, followed (or not) by a risk optimization (RO) analysis. In this paper, the implications
of performing a DDO analysis first, followed by a RO analysis, are studied. In this case, the optimum
structural configuration is found in the DDO analysis. The risk optimization that follows maintains
aspect ratios, but scales the structure in order to find its optimum failure probability (or optimal safety
coefficients). Table 1 summarizes the different optimizations considered in this paper, and presents
the keywords that identify each solution.
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Table 1: Summary of comparative optimization analysis.

Keyword Description Result

RO Complete RO, used as reference for other
analyses.

optimum configuration (z*) and safety
factors (λ*); hence also optimum Pf*

RBDO RBDO, with Pf* used as constraint optimum configuration (z*)

DDO1 DDO, with single optimum safety
coefficient λ* used as constraint

optimum configuration (z*)

DDOn
DDO, with n optimum safety coefficients
λi*, i=1,. . . ,n used as constraints, for n

design (limit state) equations
optimum configuration (z*)

RO_esc
DDO, followed by a scaled RO which

maintains aspect ratios but looks for the
optimum Pf*

optimum config. (z*) by DDO,
optimum Pf* by RO

5 Numerical examples

5.1 Three-bar parallel system

This problem involves a parallel system composed of three bars, each made of a different material.
The mean resistance is the same for all materials, but the coefficient of variation (c.o.v.) is different
for each material, reflecting differences in manufacturing quality control. The cost of each material is
also different, as presented in Table 2.

Table 2: Summary of random variable data for three-bar parallel system.

Random Variable variant distribution mean c.o.v. cost

Load (P) - normal 75 kN 15% -

Elastic modulus (E) - normal 200 GPa 3% -

Material strength (fy)
material 1 lognormal 250 MPa 15% 1 (reference)

material 2 lognormal 250 MPa 10% 1.05

material 3 lognormal 250 MPa 5% 1.10

The optimization variables for this problem are the cross-section areas of each bar, and the number
of bars (maximum 3). If the optimization algorithm reduces the area of any bar to 0.1 cm2 or below,
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the bar is considered not necessary and eliminated. Hence, z = {A1, A2, A3}. The only deterministic
design restriction for this problem is given by:

g =
∑
i

(fyi ·Ai)− P · λ ≥ 0 (10)

where λ is the safety coefficient, fyi is the strength of the ith material, and Ai is the area of the ith

bar.
The stiffness of the ith bar is given by Ki = EAi/L. The load factor for bar 1 is given as RSF1 =

K1/KS , where KS is the total stiffness, given by: KS = K1+K2+K3. Hence, the limit state equation
used to evaluate the probability that bar 1 fails, given that no other bar has failed before, is given by:

g1(z) = fy1 ·A1 −RSF1 · P (11)

Failure of the first bar (be it bar 1, 2 or 3) is considered a service failure, since the remaining bars
will carry the load. Given that bar 1 has failed, the load factor for bar 2 becomes RSF2 = K2/KS ,
where KS is now: KS = K2 +K3. The limit state equation for failure of bar 2, given that bar 1 has
failed, is given by:

g2(z) = fy2 ·A2 −RSF2 · (P − η · fy1 ·A1) (12)

This is again considered a service failure, because the third bar will carry the load. In Eq. (12),
variable η is used to model brittle and ductile material failures, following Hendawi and Frangopol
[27]. A perfectly elastic material with brittle (fragile) failure is modeled with η=0. An elastic-perfectly
plastic material with ductile failure is modeled using with η=1. The term η · fy1 ·A1 in Eq. (12) gives
the residual strength of bar 1, which is zero when material failure is brittle.

The collapse failure probability, for failure sequence 1-2-3, is given by the probability that bar 3
fails, given that bars 1 and 2 have failed. The limit state equation is:

g3(z) = fy3 ·A3 − (P − η · (fy1 ·A1 + fy2 ·A2)) (13)

In a similar way, all possible failure sequences are considered. Equations (11) to (13) are used to
evaluate the corresponding probabilities, with a proper change in the indexes. If the jth failure sequence
is denoted by Sj , the system collapse probability is given by the union:

Pf |system (z) = P

∪
j

Sj(z)

 (14)

The objective function for DDO and RBDO is a “manufacturing” cost function, which includes cost
of materials and workmanship. Cost of materials is given by:

Cmat = $mat · ρ · L · (A1 + 1.05 ·A2 + 1.10 ·A3) (15)

where $mat is the unit cost of material 1 (per weight), ρ is material density, L is length of the bars, 1.05
and 1.10 are the relative cost factors for materials 2 and 3. A fixed reference cost, Cref , is evaluated
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from an initial, deterministic design, for a central safety factor λ = 2.0. This cost is obtained as
Cref = 5.5 · $mat. Cost of workmanship is given by:

Cwork = Cref + 0.2 · Cmat + Cref · 0.05 · (Nbars − 1) (16)

The first term in Eq. (16) is a fixed cost of labor, the second term is a fraction of cost of materials,
and the last term is a penalty for complexity, i.e., considering that a system with three parallel bars
is more elaborate to manufacture than a system with a single bar. The manufacturing cost function
becomes:

CM = 1.2 · Cmat + Cref · [1 + 0.05 · (Nbars − 1)] (17)

The objective function for RO is the total expected cost, which is the sum of manufacturing costs
and expected costs of failure. The cost of service failures is assumed equal to Cref , and the cost of
ultimate failure is 10 · Cref . If Ei denotes the event that the ith bar failed, then the total expected
cost is:

J total(z) = CET = CM +Cref ·
Nbars∑
i=1

P [Ei] +Cref ·
Nbars∑
j=1,j ̸=i

·P [Ej |Ei] + 10 ·Cref · Pf |system (z) (18)

where CET is the total expected cost, referred to in the tables and figures to follow. Solutions are
obtained for three variants of the problem, as shown in Table 3. Optimum structural configurations
are presented in Table 4. Table 5 compares manufacturing and total expected costs obtained with
alternative formulations, with respect to the reference RO solution.

Table 3: Variants of three-bar parallel system problem.

Variant brittle-ductile material (η) Cost of service failure

(1A) 0 Cref

(1B) 1 Cref

(1C) 1 0

For problem variant (1A), with brittle material and including service failure costs, the RO and
DDO solutions converge to a system of a single bar, made of the best-quality material (material 3).
Hence, manufacturing costs and total expected costs are identical for these formulations, including the
“scaled” RO_esc (DDO followed by RO) solution. Clearly, for brittle materials there is no safety (or
economical) advantage in having two or more bars, instead of a single bar of greater cross-sectional
area. Nevertheless, the RBDO formulation does converge to a different solution: two bars, made of
materials 2 and 3, and such that A3 > A2. In Table 5 it can be observed that, with this solution, the
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Table 4: Optimum results for variants of three-bar parallel system problem.

Variant Solution A1 A2 A3 λ Pf

(1A)

RO 0 0 4.3575 1.4525 3.270 10−3

RBDO 0 0.1 3.8035 1.3010 3.270 10−3

DDO1 0 0 4.3575 1.4525 3.270 10−3

RO_esc 0 0 4.3570 1.4524 3.277 10−3

(1B)

RO 0 4.0740 0.1075 1.3938 6.246 10−4

RBDO 0 2.5220 1.5728 1.3649 6.246 10−4

DDO1 0 0 3.8472 1.2824 4.216 10−2

RO_esc 0 0 4.3575 1.4525 3.270 10−3

(1C)

RO 0 3.0394 0.8887 1.3093 2.660 10−3

RBDO 0 3.0395 0.8885 1.3093 2.660 10−3

DDO1 0 0 3.6787 1.2262 8.230 10−2

RO_esc 0 0 4.3575 1.4525 3.270 10−3

Table 5: Optimum cost results for variants of three-bar parallel system problem.

Problem
variant

CM/CMref CET/CETref

RO RBDO DDO1 RO_esc RO RBDO DDO1 RO_esc

(1A) 1.000 0.980 1.000 1.000 1.000 1.033 1.000 1.000

(1B) 1.000 0.998 0.957 1.010 1.000 1.006 1.164 1.006

(1C) 1.000 1.000 0.960 1.032 1.000 1.000 1.405 1.035

RBDO formulation is able to reduce manufacturing costs, but by compromising total expected costs.
The reasons for this behavior will be made clear in the sequence (problems 1B and 1C).

For ductile materials (problem variant 1B), the reference RO solution is a system of two bars,
made of materials 2 and 3, with A2 >> A3. The second bar is a “wire” of minimal area and made of
the best material, which provides an alternative load path in case of failure of the first bar. For the
ductile material, this two-bar solution is cheaper than the single bar solution obtained for problem
(1A). None of the alternative formulations reaches the optimum obtained by the reference risk-based
solution. DDO (and also RO_esc) yield a single-bar, made of the best material, just as for problem
(1A). Hence, it is observed that (such simple) deterministic formulation does not account for the
materials post-failure behavior, and its effect on system safety. The RBDO solution for this problem
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yields a system of two bars, but with A2 > A3. The solution is not the same as RO because the areas
of the bars are similar (no “wire bar”). In Table 5 it is observed that this RBDO solution minimally
affects manufacturing costs, but increases total expected costs. This difference in optimum solution,
and also the differences observed for problem (1A) can be explained by the cost of service failure, as
follows.

Problem variant (1C) considers ductile materials but no service failure costs. In Table 5 it is observed
that the RBDO solution now agrees with the reference RO solution, which is identical to the reference
solution obtained for problem (1B) – one bar of material 2 and a thin “wire” of material 3. Hence, it
is observed that the RBDO formulation does respect the system failure probability constraint, but it
does not account for the costs associated to service failure. For the formulations to become equivalent,
it would be necessary to specify “optimum” failure probability constraints for all service and ultimate
failure modes. It is also observed in Table 5 that DDO and RO_esc optimum solutions (single bar
of best material) yield much higher total expected costs. The DDO formulation is able to find an
optimum which reduces manufacturing costs, but which results in larger total expected costs. The
RO_esc formulation, which tries to improve on the DDO solution by finding the optimum safety
coefficient, following a DDO analysis, does reduce the total expected costs, but cannot match the
results obtained in the more general risk-based formulation.

5.2 Three-bar series system

This problem is based on the three-bar parallel system (same bars made of the same materials), but the
bars are connected as a series system. For this problem, the four formulations yielded the same results,
when 3 different (optimal) safety coefficients were used in DDO. Using a single safety coefficient (the
largest between the 3 optimal values) resulted in slight increases in optimal DDO manufacturing and
total expected costs.

5.3 Built-up column

The column illustrated in Figure 2 is made of U-section struts (U200×75×2.65 mm), with L-section
braces and battens (L30×2.25 mm) [26]. The total length is L and the column is subject to a load
P. Optimization variables are the width b and the number of braces and battens (N = L/d), hence
z={b,N}. Random variables are the load P, the elasticity modulus and the materials yield stress, as
summarized in Table 6.

Table 6: Summary of random variable data for column problem.

Random Variable distribution mean c.o.v.

Load (P) normal 300 kN 15%

Elastic modulus (E) normal 210 GPa 3%

Material strength (fy) lognormal 250 MPa 10%
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Figure 2: Built-up column.

The design equations for this problem relate to local and global buckling. Ideal truss behavior and
elastic (Euler) buckling are assumed. Local buckling of the U-shaped struts is given by:

gL(z) =
π2 · E · IU

d2
− λ1 ·

P

2
(19)

where IU is the moment of inertia of the U-section. Global column buckling is given by:

gG(z) =
π2 · E · IG

L2
− λ2 · P (20)

where IG is the moment of inertia of the column cross-section, given by:

IG = 2 · (IU +AU · (b/2)2) (21)

The limit state equations are equivalent to Eqs. (19) and (20), but with unitary safety factors.
One unit of braces and battens is considered as one horizontal and one diagonal L-shape. The total

length of one brace-batten unit is:

Lbb =
√
b2 + (L/N)2 + b (22)

The basic cost of materials is given by:
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Cmat = $mat · ρ · (N · Lbb ·AL + 2 · L ·AU ) (23)

The fixed, reference cost is Cref = 150 · $mat. Cost of workmanship includes a fixed term, a term
proportional to cost of materials, and a term for each additional brace-batten unit, after the first:

Cwork = Cref + 0.2 · Cmat + (N − 1) · 0.025 · Cref (24)

Total manufacturing cost becomes:

CM = 1.2 · Cmat + Cref · [1 + 0.025 · (N − 1)] (25)

Cost of failure is equal to 10 · Cref , for any of the possible failure modes, hence the total expected
cost is:

J total(z) = CET = CM + 10 · Cref · Pf |system (z) (26)

where the series-system failure probability is

Pf |system (z) = P

[∩
i

{gi(z) ≤ 0}

]
(27)

The problem is first solved for L=7.5m. The optimum structural configuration found in the reference
RO analysis has b=16.77 cm and 4 brace-battens units (N=4). Optimum central safety coefficients are
λ1 = 1.875 and λ2 = 1.676; optimum failure probabilities are Pf1 = 2.374·10−8 and Pf2 = 9.624·10−6,
for local and global buckling, respectively, and PfSY S = 9.624·10−6 for the series system. Interestingly,
although both safety coefficients refer to the same failure mode (elastic buckling), the optimal safety
coefficient with respect to local buckling is larger than the optimal safety coefficient due to global
buckling. Correspondingly, failure probability is smaller for local in comparison to global buckling. This
can be explained by the restriction of an integer number of brace-batten units. When the number of
brace-batten units jumps from 3 to 4, column length for local buckling is reduced, hence λ1 is increased.
According to the analysis, increasing distance b in order to also increase λ2 is not worthwhile.

The optimum configuration found in RO is also found by the RBDO and DDO2 analyses. For
this problem, the RBDO formulation yields the same result as RO because there are neither service
failures nor costs associated to it. If a single safety coefficient is used (DDO1), the optimum number
of brace-battens becomes N = 5. If this number is fixed and a scaled (RO_esc) analysis is made,
manufacturing and total expected costs cannot be reduced. Manufacturing and total expected costs
are compared in Figure 3.

The problem is solved again, varying column length L from 7.5m up to 40m. For all column configu-
rations, the RBDO result agrees with RO. For some column lengths, the DDO1 and RO_esc solutions
agree with RO: this happens when the optimum number of braces and battens is (coincidently) the
same for all solutions. Manufacturing and total expected cost ratios are evaluated by dividing optimum
costs found by the DDO1 and RO_esc formulations by the reference optimal costs found through
RO. Total expected cost ratios are shown in Figure 4, and manufacturing cost ratios are shown in
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Figure 3: Comparison of optimum costs for the column problem.

Figure 5. It is verified that, for some values of column length L, the same optimal number of brace and
battens is found, hence total expected and manufacturing costs are the same for the DDO1, RO_esc
and reference RO solutions. For other values of L, however, the DDO1 and RO_esc formulations yield
different numbers of braces and battens, making both manufacturing and total expected costs larger
than those obtained in the reference RO formulation.

Figure 4: Ratio of total expected costs obtained in DDO1 and RO_esc solutions, with respect to
reference RO solution.
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Figure 5: Ratio of manufacturing costs obtained in DDO1 and RO_esc solutions, with respect to
reference RO solution.

5.4 Cable-stayed tower

The cable-stayed tower considered in this example is illustrated in Figure 6 [26]. Considering tower,
cable and loading symmetry, only one set of three cables needs to be considered, as shown in the
figure. For simplicity, design of the vertical part of the tower is not included in the problem. The
optimization problem refers to the number of, location and depth of the foundations supporting the
cables. A horizontal wind load is assumed on the tower, with linear variation from zero to W0 in the
lower segment, and constant valueW0 in the higher segments, following Figure 6. Random variable data
for this problem is presented in Table 7. Wind load and resistance of the foundations are considered
as random variables. Without loss of generality, non-dimensional units are considered throughout the
problem. Total tower height is H = 30 meters.

Table 7: Summary of random variable data for cable-stayed tower problem.

Random Variable distribution mean c.o.v.

Wind load (W) Gumbel w0 30%

Foundation resistances (Rf) lognormal 1.0 20%

Foundation depth is assumed proportional to the vertical component of cable force (fv) and to the
safety factor for foundation design (λi). Hence, the design equations are:

dfi(λi, xi) = λi · fvi(xi, w0) (28)
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Figure 6: Cable-stayed tower.

where dfi is the depth of ith foundation. Foundation resistance is assumed directly proportional to
foundation depth, hence the random resistance of the ith foundation is obtained as:

Rfi(λi, xi) = dfi(λi, xi) ·Rf (29)

where Rf is a non-dimensional random (variable) foundation resistance (Table 8). Limit state functions
for this problem relate to foundation failure, hence:

gi(Rf ,W ) = λi · fvi(xi, w0) ·Rf − fvi(xi,W ) (30)

Failure of any foundation is assumed to cause collapse of the tower; hence the system limit state is:

Pf |system = P

[∩
i

{gi ≤ 0}

]
(31)

Optimization of the cable support for the tower involves 6 optimization variables, hence
z={x1, x2, x3, λ1, λ2, λ3}. Moreover, if during the optimization process two foundations come closer
than one meter, they are merged into a single foundation, with depth equal to the sum of depths.
Hence, the number of foundations is also a design variable.

Objective functions for this problem involve manufacturing costs (material plus workmanship) and
expected failure costs. The cost of one square meter of land, in the location where the tower is to
be built, is assumed as reference cost (Cref ). All other cost terms are related to this value, which is
assumed unitary. Cost of land, required to install the tower and it’s supporting cables, is given by:

Cland = π ·max
i

(xi)
2 · Cref (32)

Cost of the foundations is proportional to foundation depth:
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Cfoundation = 125 · Cref ·
#foundations∑

i=1

(dfi)
1.1 (33)

where 125Cref is the cost per meter of foundation. The unitary cost of cables (per meter) is assumed
as 50Cref and total length of cables (Lcables) is a function of foundation positions (x1, x2, x3). The cost
of workmanship is fixed at 105Cref . Putting all these terms together, manufacturing cost becomes:

CM = Cland + Cfoundation + 50 · Cref · Lcables + 105 · Cref (34)

Failure costs, for tower collapse, are the cost for reconstructing the tower (CM − Cland), plus the
cost of damage, if the tower hits third party facilities when falling. Damage to third parties will only
occur if the land bought for tower erection is less than tower height, H = 30m. In the risk optimization
problem, it will be decided whether buying this amount of land is worthwhile. The potential area for
damage is:

Apotential = max
[
0,

π

8
· (H2 −max

i
(xi)

2)
]

(35)

where it is assumed that a tower collapse hits (1/8)th of the encircling area. Compensation payouts
to third parties is assumed proportional to the potential area:

Cdamage = 2 · 104 · Cref ·Apotential (36)

Hence, the total expected cost function becomes:

J total(z) = CET = CM + (CM − Cland + Cdamage · P [damage|failure]) · Pf |system (37)

where P[damage |failure] = 0.75 (assuming that not all area around the tower has been built up by
third parties).

For many configurations of this problem (different ratios between cost terms), the reliability-based
risk optimization (RO) yields an optimum solution where the farthest foundation is located within
the potential damage area. For these configurations, both DDO3 and RBDO yield the same optimum
solutions. In case of RBDO, this happens because no service failures are considered in this problem.
Expected failure costs are controlled by failure probabilities, which are controlled by the foundation
safety factors. Hence, DDO with three optimum safety factors as constraints also yields the same
optimum solution.

However, for the problem configuration presented here, results are quite different, as shown in Figure
7 and Table 8. For this configuration, which can be said to be of “cheap land”, the RO formulation
yields an optimum solution where the farthest foundation is located at x3 = 30m. Hence, expected
failure costs are controlled by reducing to zero the potential damage area. This configuration is not
achieved in any of the alternative formulations (DDO1, DDO3, RDBO), because expected costs of
failure are not account for. Even when optimum safety coefficients and failure probabilities are used as
constraints, the three formulations yield optimum solutions where manufacturing costs are reduced,
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but by compromising total expected costs. It is observed that the RBDO formulation leads to an
increase of nearly 4% in total expected costs. For the RO_esc solution, both manufacturing and total
expected costs are higher. This solution is obtained by performing a DDO optimization first, with
λ = 2, and then performing a risk optimization, with fixed values of {x1, x2, x3}.

It is also observed that, for many optimum configurations (Table 8), the distance between founda-
tions was reduced to one meter, but they were not merged together by the algorithm. This may have
happened because of the non-linear exponent (1.1) in the foundation cost function (Eq. 33).

Figure 7: Comparison of optimum costs for the cable-stayed tower problem.

Table 8: Optimum cable and foundation configurations for cable-stayed tower problem.

Solution
Optimization variables

Pf |system
x1 x2 x3 λ1 λ2 λ3

RO 25.00 29.00 30.00 1.9767 1.8877 1.8521 2.6428 10−3

DDO1 22.56 23.56 24.56 1.9767 1.9767 1.9767 1.2473 10−3

DDO3 22.52 23.52 24.52 1.9767 1.8877 1.8521 2.6428 10−3

RBDO 23.00 25.77 26.77 2.0245 1.8174 1.9341 2.6428 10−3

RO_esc 20.91 23.01 24.01 2.2505 2.1735 2.1548
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6 Concluding remarks

This paper presented a study of the effects of uncertainty on optimum structural design, by means of
comparisons of the optimum solutions obtained by different formulations of the optimization problem.
Results were presented for four example problems.

Deterministic Design Optimization (DDO) yields a structure which is optimum in terms of mechan-
ics but, since parameter uncertainty and its effects on system safety are not taken into account, safety
of the optimum structure will be compromised. Results obtained for the three bar parallel system and
for the cable-stayed column examples have shown that, even if a set of optimum safety coefficients is
provided as constraints in the DDO analysis, the formulation leads to an optimum configuration which
respects these design constraints, reduces manufacturing costs but increases total expected costs. If
a single optimum safety coefficient is used as constraint (the largest in the optimum set), results are
even worst: the extra safety margin increases manufacturing costs much more than it reduces expected
costs of failure. When a risk optimization is performed, in order to find the optimum safety coefficient
after a DDO, but respecting the structural configuration found in this DDO, total expected costs can
be reduced, but not to a level of agreement with a more general formulation, where both structural
configuration and risk are optimized simultaneously.

Reliability-based Design Optimization (RBDO) does improve on the DDO formulation, by con-
sidering parameter uncertainty and one of its main consequences: the probability of failure. Failure
probabilities are used as design constraints in order to guarantee that the optimum structure will not
sacrifice safety. Results, of course, do depend on the values of failure probabilities used as constraints.
Using the optimum system failure probability as constraint in an RBDO analysis may not be suffi-
cient, when failure modes with different costs are present. Results presented in this paper have shown
that, when service failure is considered, the RBDO formulation may (also) find an optimum which
reduces manufacturing costs but increases total expected costs. Equivalence to risk optimization is
only obtained if multiple, optimum reliability constraints are used, one for each failure mode.

Most RBDO formulations encountered in the literature pretend to be minimizing costs but, in fact,
minimize volume of structural materials or manufacturing costs. It is not possible to get more than
what one bargains for: if one optimizes for volume, one gets a slim, slender structure. In order to
minimize costs, the monetary consequences of failure, or expected costs of failure, have to be taken
into account.

Results obtained for the three bar parallel system and for the cable-stayed column examples have
shown that it is not always possible to establish an equivalence between the risk optimization and DDO
or RBDO formulations. In both examples, it was observed that the risk-based optimum structural
design is not controlled by failure probabilities nor safety coefficients, but by the actual structural
configuration. In this situation, safety coefficients or failure probabilities used as constraints cannot
reproduce the risk-based optimum structural design. In consideration of uncertainty and the monetary
consequences of failure, the optimum structure can only be found by a risk optimization formulation,
where structural configuration and safety margins are optimized simultaneously, and which yields a
structure optimum in terms of mechanics and in terms of the compromise between costs and safety.

The risk optimization formulation presented herein leads to a challenging optimization problem,
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which cannot be solved by simple, first or second order mathematical optimization methods. Due
to the presence of multiple local minima, heuristic evolutionary algorithms are required. A hybrid,
auto-regulated Particle Swarm - Simplex - Powel algorithm [26] was employed in the solution of the 4
risk optimization problems presented herein, and good performance and high reliability were observed.
Improvements of this hybrid algorithm are still under investigation.
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Abstract

This paper presents a least square algorithm based on the eigenvalue decomposition of the elemental mass and
stiffness matrices, which may be used for nodal and modal high-order finite element methods. For meshes of
line elements, straight squares and hexahedra and straight triangles and tetrahedra, the jacobian is constant
and works as a scaling factor to the eigenvalues of the local mass matrix. For meshes of quadrilaterals and hex-
ahedra, the eigenvalues of the mass matrix are calculated after the Schur complement. The solution procedure
is performed for each element of the mesh and the results are smoothed on the boundary of the elements using
a least square approach. This approach is used to implement an elementwise version of the explicit central
difference method. Results are presented for three-dimensional projection and linear elastic problems.

Keywords: Finite Element Method, high-order methods, projection problem, Explicit Central Difference Method.

1 Introduction

The high-order FEM has been applied to many transient problems including Fluid Mechanics, Elec-
tromagnetism, Structural Analysis and Powder Metallurgy [1–4]. The time discretization is solved
by implicit and explicit methods, which require the solution of systems of equations which involve
the mass matrix. For the Lagrange nodal bases and meshes of quadrilaterals, the lumped or spec-
tral diagonal mass matrix is generally used with explicit methods, which corresponds to applying
the Gauss-Legendre-Lobatto (GLL) coordinates as integration and collocation points [5]. Due to the
missed points, the numerical integration is not exact for polynomial functions, which may affect the
convergence rate of the approximated solutions. For the generalized Jacobi polynomial basis, the mass
matrix is not diagonal and multilevel substructuring procedures have been used [1].

In [6, 7], nodal and modal tensor-based bases were analyzed for many element shapes in terms of
condititioning and sparsity. The high-order mass and stiffness matrices are denser and require more
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multiplications for the solution of systems of equations by iterative methods. This paper presents an
elementwise least square procedure for the solution of interpolation and time dependent problems by
the explicit central difference method, which is based on the eigenvalue decomposition of the elemental
mass matrix. In this case, due to the eigenvalue decomposition, the element mass matrices are diagonal
and the cost for the solution of the systems of equations is trivial. The procedure may be applied for
meshes of any element shape and nodal or modal bases.

The solutions obtained for each element must be combined to achieve a global continuous solution.
Due to the eigenvalue decomposition, the connectivity information may not be used to assemble a
global mass matrix, as the i − th eigenpar is not necessarily related to the i − th element degree of
freedom (DOF). In addition, the eigenvector bases for the element mass matrices are not the same as
the eigenvector basis for the global mass matrix. To overcome this problem, a smoothing procedure
applied to the element boundary DOFs, based on the least square method, is presented to obtain
a global continuous solution in Section 2. This procedure is also extended to the explicit central
difference time integration method in Section 3.

While for quadrilaterals meshes, the GLL points make possible to obtain a diagonal mass matrix,
for unstructured meshes the nodal points may be taken from [8, 9]. But they do not work well as
general integration points for any polinomial order [10–12]. In [13], it was shown that it is not possible
to construct a similar set of GLL quadrilateral points for triangles. Another possibility is the use of
simultaneous diagonalization of the Laplace mass and stiffness matrices as presented in [14]. As the
procedure presented here may be used for any element shape, it is also possible to obtain diagonal
mass matrices for triangles and tetrahedra.

This paper is organized as follows. First, the least square smoothing procedure and the elementwise
explicit method are considered. Results for interpolation and time dependent problems are presented.
Finally, the main conclusions are addressed.

2 Least square approach to the global continuity

Given a function u and a finite element basis [N ], an approximated function ū to u is given by [1]

ū = [N ]{a},

where {a} is the vector of the global approximation coefficients which are obtained using the Galerkin
method in the domain Ω as [1]

(∫
Ω

[N ]T [N ]dΩ

)
{a} =

∫
Ω

[N ]TudΩ.

In matrix notation, the projection or interpolation problem is

[M ]{a} = {f}
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and [M ] is the global mass matrix and {f} is the body load vector. They can be obtained by the
assembling procedure of the elemental mass matrices [Me] and load vectors {fe} as [1]

[M ] =

Nel∪
e=1

[Me] and {f} =
Nel∪
e=1

{fe},

where Nel is the number of elements. It should be observed that, in the case of an interpolation
problem, {f} does not represent a physical load vector.

In this paper, the global mass matrix and load vector are not assembled. Instead, the eigenvalue
decomposition of the mass matrix for each element e is calculated and the load vectors are transformed
to the eigenvector bases. The system of equations for element e is expressed as

[Me]{ae} = {fe}.

In the eigenvector basis,
[Ûe]

T [Me][Ûe]{âe} = [Ûe]
T {fe} = {f̂e},

where [Ûe] is the matrix of eigenvectors of the elemental mass matrix. This results in the following
decoupled diagonal system for each element

[Λe]{âe} = {f̂e}.

The modal coefficients {âe} are transformed back to the physical space coefficients {ae} using

{ae} = [Ûe]{âe}.

The approximated elemental solutions

ue = [Ne]{ae} e = 1, . . . , Nel (1)

are not continuous on the element boundaries. A smooth procedure based on the least square method
is presented below to achieve a continuous global solution.

i

Figure 1: Patch of elements for node i.
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Consider the following least square functional which gives the square of the error between the global
(ū) and element (ue) solutions for the patch of elements associated to node i as illustrated in Figure 1

F({a}) =
Nelp∪
e=1

∫
Ωe

(ū− ue)2 |Je|dΩe = 0, (2)

where Nelp is the number of elements of the patch.
On each element e, the global solution is approximated as

ū = [Ne]{a}. (3)

Replacing the previous equation in (2), the minimum condition of functional F results in(
Nelp∪
e=1

∫
Ωe

[Ne]
T [Ne]|Je|dΩe

)
{a} =

Nelp∪
e=1

∫
Ωe

[Ne]
Tue|Je|dΩe.

Assuming a nodal spectral Lagrange basis and using (1), the previous equation reduces to(
Nelp∪
e=1

∫
Ωe

|Je|dΩe

)
{a} =

Nelp∪
e=1

(∫
Ωe

|Je|dΩe{ae}
)
.

For the global coefficient ai, the previous expression gives(
Nelp∪
e=1

∫
Ωe

|Je|dΩe

)
ai =

Nelp∪
e=1

(∫
Ωe

|Je|dΩeaie
)

where aie is the solution obtained for node i using the local solution of the element e. The term in
parenthesis in the left hand side is the patch measure (length, area or volume), while the right hand
side term in parenthesis is the measure of each element multiplied by the element solution for node i.
Therefore,

ai =

∑Nelp
e=1 meas(Ωe)a

i
e∑Nelp

e=1 meas(Ωe)
=

∑Nelp
e=1 Sea

i
e

Sp
. (4)

Although the previous presentation considered a nodal basis, it may be also applied to modal bases
using Jacobi polynomials, as both bases span the same approximation space. Once the local coefficients
{ae} for a modal expansion are calculated, equation (1) is used to obtain the solution on the collocation
points, which corresponds to the coefficients of the nodal expansion due to the collocation property
of the Lagrange polynomials. A simpler approach is to use the smooth procedure (4) directly to the
modal coefficients.
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3 Elementwise explicit method

Consider the time-dependent discrete linear equation of motion for an undamped structure given by

[M ]{Ü t}+ [K]{U t} = {Rt}, (5)

where [M ] and [K] are the global mass and stiffness matrices; {Ü t} and {U t} are the acceleration and
displacement vectors for the degrees of freedom (DOFs) in time t; {Rt} is the vector of the equivalent
loads applied to the DOFs at time t. The purpose here is to integrate (5) in the time interval [t0, tf ]
with n time steps of size ∆t.

Given the displacement vectors for times t−∆t, t and t+∆t, the central difference explicit method
uses, respectively, the following approximations for the acceleration and velocity vectors in time t [15]

{Ü t} = 1

(∆t)2
({U t−∆t} − 2{U t}+ {U t+∆t}), (6)

˙{U t} = 1

2∆t
(−{U t−∆t}+ {U t+∆t}). (7)

Substituting (6) in equation (5), the approximation for the displacement vector at t+∆t is obtained
by the solution of a system of equations in terms of the mass matrix as

[M̂ ]{U t+∆t} = {R̂t}, (8)

where
[M̂ ] = a0[M ] (9)

and
{R̂t} = {Rt} − [K]{U t}+ [M ](a2{U t} − a0{U t−∆t}). (10)

The constants are given, respectively, by a0 = 1
∆t2 , a1 = 1

2∆t , a2 = 2a0 and a3 = 1
a2

. For a lumped
mass matrix, the computational cost for the solution of (8) is trivial. However, as the explicit method
is conditionally stable, a small time step should be used to achieve convergence in time.

Given the initial displacement vector {U0}, the initial acceleration is obtained using equation (5)
as

{Ü0} = [M ]−1({R0} − [K]{U0}). (11)

Expression (10) requires the displacement vector {U−∆t} for t = t0, which it is obtained using
equations (6) and (7). Therefore,

{U−∆t} = {U0} −∆t{U̇0}+ (∆t)2

2
{Ü0}. (12)

One of the main difficulties to develop an elementwise explicit procedure is related to the way the
Dircihlet boundary conditions are handled, as they influence the problem solution globally. For that
purpose, the external loads are considered in the respective elements where they are applied, as in the
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global assembling procedure. The homogeneous boundary conditions are replaced by the respective
reaction loads and assembled in the load vectors of the elements that share the DOFs where the
boundary conditions are applied. The values of the reactions loads are determined along the iterations
as explained below.

Given the initial displacement and acceleration vectors, equation (5) may be partitioned in terms
of the free (f) DOFs and those ones with homogeneous Dirichlet boundary conditions (d) as

{
{R0

f}
{R0

d}

}
=

[
[Mff ] [Mfd]

[Mdf ] [Mdd]

]{
{Ü0

f }
{0}

}
+

[
[Kff ] [Kfd]

[Kdf ] [Kdd]

]{
{U0

f }
{0}

}
.

The reaction forces are calculated as

{R0
d} = [Mdf ] {Ü0

f }+ [Kdf ] {U0
f }. (13)

Observe that the vector {R0
f} represents the external load vector {R0} for the initial time t0.

For any time step t, the external load vector {Rte} for the element e is obtained from the external
global load vector {Rt} using the element DOF numbers and the smoothing procedure (4) as

{Rte} ← {Rt}
Se
Sp
. (14)

The previous equation means that the coefficients of the global load vector {Rt}, which correspond
to the element DOFs, are multiplied by Se

Sp
and assigned to the element load vector {Rte}.

The global initial condition vectors may be assigned to the element vectors using again the DOF
numbering by

{U0
e } ← {U0}, {U̇0

e } ← {U̇0} and {Ü0
e } ← {Ü0}. (15)

Based on that, the displacement vector {U−∆t
e } may be calculated for each element e as

{U−∆t
e } = {U0

e } −∆t{U̇0
e }+ a3{Ü0

e }. (16)

Using the smooth procedure, the global vector is calculated by

{U−∆t} =
Nel∪
e=1

{U−∆t
e }Se

Sp
(17)

and Nel is the number of elements.
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For each time step, the following system of equations, similar to (8), is solved for each element e

[M̂e]{U t+∆t
e } = {R̂te}. (18)

The effective load vector for element e is

{R̂te} = {Rte} − [Ke]{U te}+ [Me](a2{U te} − a0[{U t−∆t
e }). (19)

The mass matrix written in its eigenvector basis [Xe] reduces to the eigenvalue matrix [Λe] and the
solution of (18) in the physical space is given by

{U t+∆t
e } = [Xe] (

1

a0
[Λe]

−1[Xe]
T {R̂te}). (20)

The velocity and acceleration vectors on each element are calculated, respectively, as

{Ü te} = a0({U t−∆t
e } − 2{U te}+ {U t+∆t

e }), (21)

{U̇ te} = a1(−{U t−∆t
e }+ {U t+∆t

e }). (22)

From the element solution vectors, the global displacement, velocity and acceleration vectors are
obtained by the assembling procedure smoothed using the element and patch measures. Therefore,

{U t+∆t} =
Nel∪
e=1

{U t+∆t
e }Se

Sp
, (23)

{U̇ t} =
Nel∪
e=1

{U̇ te}
Se
Sp
, (24)

{Ü t} =
Nel∪
e=1

{Ü te}
Se
Sp
. (25)

The coefficients of the previous global vectors which correspond to the homogeneous boundary con-
ditions are assigned zero values. Once the global vectors are obtained, the displacement, velocity and
acceleration load vectors {U t+∆t

e }, {U̇ te} and {Ü te} for each element e are obtained analogously to
equation (15).

The equivalent nodal force vector for element e is calculated as

{Re} = [Me]{Ü te}+ [Ke]{U t+∆t
e }. (26)

It can be observed that acceleration vector {Ü te} is available for time step t, while the displacement
vector {U t+∆t

e } is calculated for time t +∆t. This delay in time for the acceleration vector does not
affect the reaction forces for time t+∆t. However, the forces for the free DOFs are not equal to the
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values for the external loads for the same time step. To solve this problem, a global load vector is
assembled from the element load vectors {Re} as

{Rg} =
Nel∪
e=1

{Re}. (27)

The global external load vector {Rt+∆t} is calculated for time t +∆t and the following difference is
calculated

{∆R} = {Rt+∆t} − {Rg}. (28)

This global difference vector is assigned back to the free DOFs of each element and used in the next
time step t+∆t. Therefore,

{Rt+∆t
e } ← {∆R}Se

Sp
. (29)

Observe that beginning from the second time step, only the residual force represented {∆R} is con-
sidered. This procedure is repeated until the final time tf is reached.

4 Results

4.1 Interpolation problem

Consider the two meshes of hexahedra given in Figures 2(a) and 2(b). The function to be interpolated
is u(x, y, z) = x3(x−2)3y4(y−4) in the domain [x, y, z] ∈ [0, 2]× [0, 4]× [0, 2]. Figure 3 plots the error
behavior for the given meshes and the eigenvalue based Lagrange and Jacobi mass matrices and the
spectral Lagrange mass matrix. It may be observed that the convergence rate for the approximations
using the spectral mass matrix depends on the mesh refinement.

The CPU times to solve the considered projection problem on the coarsest mesh with P = 6 were
3.0 seconds using the eigenvalue decomposition with Jacobi and Lagrange polynomials, 1.7 seconds
for the nodal spectral Lagrange mass matrix and 267.4 seconds for the global consistent mass matrix
calculated using Jacobi polynomials. In the case of the nodal spectral matrix, the relative error norm
was 7.11 × 10−8, while for the other mass matrices, the relative error norms were about 10−15. To
achieve a similar relative error norm for the nodal spectral mass matrix, it was necessary to consider
P = 8 and the CPU time was 2.1 seconds. For the mesh with 27 elements and P = 6, the CPU times
were 12.6 and 13.1 seconds for the nodal spectral and eigenvalue based Jacobi matrices, respectively.
To improve the accuracy of the solution obtained with the nodal spectral mass matrix from 1.74×10−11

to 6.48×10−15, P = 8 was required and the CPU time increased to 16.1 seconds. These results depend
on the code implementation, the considered optimizations, mesh size and element order. The purpose
here was to give a qualitative behavior of the proposed least square procedure in terms of the CPU
time when compared to the spectral mass matrix.

Figure 2(c) illustrates a distorted mesh with 27 elements. In this case, the eigenvalue problem must
be solved for each element. The relative error norms of the approximations obtained for the Lagrange
consistent eigenvalue based and lumped mass matrices are given in Figure 3(c). It may observed that
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the solutions obtained with the two considered mass matrices achieve spectral convergence rates, but
again the convergence rate for the approximations with the lumped mass matrix is worse. The CPU
times for P = 6 were 15.0 and 2.0 seconds for the proposed algorithm and the lumped mass matrix,
respectively. The respective relative error norms were 4.89 × 10−10 and 2.64 × 10−14. However, 11.0
seconds were consumed for the calculation of the consistent mass matrices and only 2.5 seconds for
the eigenvalue decomposition for all elements. For P = 8, the relative error norm for the approximated
solution obtained with the lumped mass matrix was 1.32× 10−15 and the CPU time 11.0s. Therefore,
for similar convergence rates, both procedures have also similar computational performance.

(a) 8 elements; 27 nodes. (b) 27 elements; 64 nodes.

(c) 27 elements; 64 nodes.

Figure 2: Hexahedron meshes.

4.2 Time dependent cases

In this section, the explicit elementwise procedure is applied to a time dependent linear elastic solid
problem. The time interval [to; tf ] = [0; 0.25] with ∆t = 0.0025s (100 time steps) and the mesh of four
hexahedra illustrated in Figure 4 are considered. Unity values are taken for the Young modulus (E)
and density (ρ) and the Poisson ratio is ν = 0.25. The consistent mass matrices are calculated using
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(c) 27 distorted elements.

Figure 3: Error behavior for the projection problem in the hexahedron meshes.

Lagrange polynomials. The purpose here is to compare the convergence error for the explicit method
using the lumped and eigenvalue-based mass matrices.

The analytical solution for the displacement components is given by

ux(x, y, z) =
1

1000
x4y4z4 sin(2πt),

uy(x, y, z) =
1

1000
x4y4z4 sin(2πt),

uz(x, y, z) =
1

1000
x4y4z4 sin(2πt).

(30)
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Figure 4: Mesh of four hexahedra used in the explicit method.

After the substitution of the analytical solution (30) in the Navier equations, the components of the
body force are

fx =
sin(2πt)

5000

[
−20π2x4y4z4 − 24x2y2z2(x2y2 + x2z2)− 64x3y3z3(y + z)− 72x2y4z4

]
,

fy =
sin(2πt)

5000

[
−20π2x4y4z4 − 24x2y2z2(x2y2 + y2z2)− 64x3y3z3(x+ z)− 72x4y2z4

]
,

fz =
sin(2πt)

5000

[
−20π2x4y4z4 − 24x2y2z2(x2z2 + y2z2)− 64x3y3z3(x+ y)− 72x4y4z2

]
.

(31)

The faces with coordinates x = y = z = 0 are clamped. For the other element faces on the domain
boundary, the traction field t = (tx, ty, tx) with the following components are applied:

tx =
sin(2πt)

1000

[
4x3y3z3((xy + xz)λ+ yz(λ+ 2µ))nx + 4µx3y3z4(x+ y)ny + 4µx3y4z3(x+ z)nz

]
,

ty =
sin(2πt)

1000

[
4µx3y3z4(x+ y)nx + 4x3y3z3(λ(yz + xy) + (λ+ 2µ)xz)ny + 4µx4y3z3(y + z)nz

]
,

tz =
sin(2πt)

1000

[
4µx3y4z3(x+ z)nx + 4µx4y3z3(y + z)ny + 4x3y3z3(λ(xz + yz) + (λ+ 2µ)xy)nz

]
.

(32)

where n = (nx, ny, nz) is the normal vector on the element faces. The previous expressions are obtained
using the Neumann boundary conditions given by Tn = t, where T is the Cauchy stress tensor.
For an isotropic linear elastic material, T is written in terms of the infinitesimal strain tensor E =
1
2 (∇u+∇uT ) using the Hooke’s law as

T = CE
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and C is the fourth-order linear elasticity tensor. Its components are written in terms of the Lamé
coefficients λ and µ related to the Young modulus and Poisson ratio as

λ =
νE

(1 + ν)(1− 2ν)
,

µ =
E

2(1 + ν)
.

(33)

The components of the initial displacement and velocity are:

ux = 0, uy = 0, uz = 0,

u̇x = 2π
1000x

4y4z4, u̇y = 2π
1000x

4y4z4, u̇z =
2π

1000x
4y4z4.

(34)

Figure 5 illustrates the relative error norms for the ux component at the final time tf of the explicit
method using the eigenvalue and spectral mass matrices and polynomial orders P = 2 to P = 5. It
may be observed that both results show spectral convergence, but the lumped mass matrix has a lower
convergence rate. Similar results were obtained for the uy and uz components. The under-integration
of the spectral mass matrix may be also observed for this fourth-order analytical solution for P = 2

to P = 4. For P = 5, this fact can not be observed and both schemes have close error norms.

 

2 2.5 3 3.5 4 4.5 5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

P

||e
||

 

 

Lagrange eigenvalue
Spectral Lagrange

Figure 5: Relative error for explicit method using the spectral and eigenvalue based mass matrices.
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5 Conclusions

This work presented elementwise interpolation and explicit methods based on the eigenvalue decompo-
sition of the element mass matrices and a least square smoothing procedure. The convergence rates of
these methods are still exponential and better when compared to the results for the lumped Lagrange
mass matrices.

In addition, the methods may be applied for any element shape and finite element bases. Due to the
local feature of the presented procedures, they seem to be very suitable in parallel and GPU based
architectures.
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Abstract

We deal with numerical analysis of inverse problems for plane anisotropic solids when measured data are
given only on the boundary of the domain. In this paper we have elaborated an iterative procedure to the
solution of inverse problems for plane anisotropic solids when input data measured from suitable states are
sufficient for determination of unknown material parameters. We derive the number of measured input states
and conditions for these measured input states which secure determinability of the numerical solution. We
deal with numerical experiments. We study influence of measured input data on stability of the numerical
solutions.

Keywords: inverse problems, anisotropic solids, PDE, FDM.

1 Introduction

Inverse problems are very important from a practical point of view and interesting from a theoretical
point of view as they are improperly posed problems. An important class of inverse problems is a class
of identification problems. These problems are important, for example, in the non-destructive testing
of materials, the identification of material parameters, the study of aquifer problems as well as for
electrical impedance tomography, etc.

We deal with analysis of inverse problems for anisotropic solids when measured data is given only
on the boundary of the domain. The inverse problems for anisotropic solids have special features
in comparison with those for isotropic solids. In order to solve anisotropic problems, more unknown
material parameters of governing differential equations than the total number of equations must be
determined and therefore, in order to determine them, we need input data measured from more than
one field state. These input states as we show cannot be chosen arbitrarily. This fact leads to new
theoretical problems in the analysis of inverse problems for anisotropic solids and also complicates
numerical analysis.
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78 I. Brilla

For numerical analysis of such problems we apply discrete methods. These are very convenient
because in the case of practical problems we have to measure input states in discrete points. In this
paper, we have elaborated an iterative procedure to the numerical solution of plane anisotropic bound-
ary inverse problem when the input data measured from suitable states are sufficient to determine
the unknown material parameters. We derive the number of measured input states and conditions for
these measured input states which secure determinability of the numerical solution. We also deal with
numerical experiments. Since input data is measured in the case of practical problems, we also study
its influence on the stability of the numerical solutions. This approach is generalization of the methods
derived in Brilla [1]. Another approaches are derived in Grebennikov [2] and Grebennikov [3].

2 Problem formulation

Governing equations of plane anisotropic solids have the following form

(cijkluk,l),j + fi = 0in Ω, i, j, k, l = 1, 2, (1)

where cijkl are elastic coefficients, ui are displacements and fi are volume forces. We assume that Ω

is a two dimensional Lipschitz domain. We apply the summation and differentiation rule with respect
to indices. The elastic coefficients are symmetric. It holds cijkl = cklij = cjikl = cijlk .

The equation (1) can be written in the following forms in Ω

(E1ux,x + E4ux,y + E4uy,x + E3uy,y),x+

(E4ux,x + E2ux,y + E2uy,x + E5uy,y),y + fx = 0,

(E4ux,x + E2ux,y + E2uy,x + E5uy,y),x+

(E3ux,x + E5ux,y + E5uy,x + E6uy,y),y + fy = 0, (2)

where we use following notations c1111 = E1 , c1212 = E2 , c1122 = E3 , c1112 = E4 , c1222 = E5 ,
c2222 = E6 .

In the case of the inverse problems we have to determine the elastic coefficients we need for their
determination boundary conditions

E1(s) = a1(s),E2(s) = a2(s),E3(s) = a3(s),

E4(s) = a4(s),E5(s) = a5(s),E6(s) = a6(s),

s ∈ ∂Ω. (3)

In the case of the boundary inverse problems we have also to determine the displacements ux and
uy using measured values of the displacements ux and uy on the boundary ∂Ω. We consider for the
displacements ux and uy Dirichlet boundary conditions

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



Numerical solution of boundary inverse problems for anisotropic solids 79

ux(s) = g1(s), uy(s) = g2(s), s ∈ ∂Ω (4)

and over specified Neumann boundary conditions

ux,n(s) = g3(s), uy,n(s) = g4(s), s ∈ ∂Ω, (5)

where (.),n denotes the differentiation in direction of the outer normal.
In our approach we consider Neumann’s boundary problem (2), (5) in the following way. We consider

Hooke’s law

τij = cijklεk,l,

where τ is stress tensor and ε is strain tensor. Hooke’s law can be written for our 2D anisotropic
problem in the following forms

uτxx = E1ux,x + E4 (ux,y + uy,x) + E3uy,y,

uτxy = E4ux,x + E2 (ux,y + uy,x) + E5uy,y,

uτyy = E3ux,x + E5 (ux,y + uy,x) + E6uy,y.

(6)

Using (6) relations (2) and (5) can be written in the forms

uτxx,x +
uτxy,y + fx = 0, uτxy,x +

uτyy,y + fy = 0 in Ω,

uτxx(s) =
uj1(s),

uτyy(s) =
uj2(s),

uτxy(s) =
uj3(s), s ∈ ∂Ω. (7)

However, in the case of 2D anisotropic problem, the system of equations (2) - (4), (6), (7) does not
form a complete system of equations and is not sufficient for determination of the unknown elastic
coefficients. We show that for determination of the unknown elastic coefficients, it is necessary to add
input data measured from next two state of the displacements vx , vy and wx , wy. For these next
states of input data we consider the equations and boundary conditions analogical to (2) and (4)

(E1vx,x + E4vx,y + E4vy,x + E3vy,y),x+

(E4vx,x + E2vx,y + E2vy,x + E5vy,y),y + px = 0,

(E4vx,x + E2vx,y + E2vy,x + E5vy,y),x+

(E3vx,x + E5vx,y + E5vy,x + E6vy,y),y + py = 0; (8)

vx(s) = g5(s), vy(s) = g6(s), s ∈ ∂Ω; (9)
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(E1wx,x + E4wx,y + E4wy,x + E3wy,y),x+

(E4wx,x + E2wx,y + E2wy,x + E5wy,y),y + qx = 0,

(E4wx,x + E2wx,y + E2wy,x + E5wy,y),x+

(E3wx,x + E5wx,y + E5wy,x + E6wy,y),y + qy = 0; (10)

wx(s) = g7(s), wy(s) = g8(s), s ∈ ∂Ω (11)

corresponding equations of Hooke’s law

vτxx = E1vx,x + E4 (vx,y + vy,x) + E3vy,y,

vτxy = E4vx,x + E2 (vx,y + vy,x) + E5vy,y,

vτyy = E3vx,x + E5 (vx,y + vy,x) + E6vy,y;

(12)

wτxx = E1wx,x + E4 (wx,y + wy,x) + E3wy,y,

wτxy = E4wx,x + E2 (wx,y + wy,x) + E5wy,y,

wτyy = E3wx,x + E5 (wx,y + wy,x) + E6wy,y

(13)

and corresponding equations and boundary conditions for stresses

vτxx,x +
vτxy,y + px = 0, vτxy,x +

vτyy,y + py = 0 in Ω,

vτxx(s) =
vj1(s),

vτyy(s) =
vj2(s),

vτxy(s) =
vj3(s), s ∈ ∂Ω; (14)

wτxx,x +
wτxy,y + qx = 0, wτxy,x +

wτyy,y + qy = 0 in Ω,

wτxx(s) =
wj1(s),

wτyy(s) =
wj2(s),

wτxy(s) =
wj3(s), s ∈ ∂Ω. (15)

Now the question of whether the states ux, uy and vx, vy and wx, wy can be chosen arbitrarily
arises. We show that these states cannot be chosen arbitrarily.

3 Problem solution

For solving boundary inverse problem (2) – (4), (6) – (15) we can use the following iterative procedure
which is generalization of the method for the solution of 2D orthotropic boundary inverse problems
derived in Brilla [1]:
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• determination of an initial approximation of the elastic coefficients E10, E20, E30, E40, E50, E60

as the linear interpolation of the boundary conditions (3);
• determination of the displacements u0x, u0y ; v0x, v0y and w0

x, w0
y from (2), (8), (10);

• determination of the stresses uτ0xx, uτ0xy, uτ0yy from (7) rewritten in the following forms

uτ0xx,x = −fx −
[
E40u0x,x + E20

(
u0x,y + u0y,x

)
+ E50u0y,y

]
,

uτ0xy,y = −fx −
[
E10u0x,x + E40

(
u0x,y + u0y,x

)
+ E30u0y,y

]
,

uτ0yy,y = −fy − uτ0xy,x inΩ

and vτ0xx,
vτ0xy,

vτ0yy,
wτ0xx,

wτ0xy,
wτ0yy using similar equations which we obtain from (14) and (15).

All these equations we can consider as ordinary differential equations of the first order;
• determination of new state of the elastic coefficients E11, E21, E31, E41, E51, E61 from (6), (12)

and (13) using following formulas

E11 =
b01d

0
4 − b02d02

d01d
0
4 − d02d03

, E21 =
b03d

0
8 − b04d06

d05d
0
8 − d06d07

,

E31 =
b05d

0
12 − d06d010

d09d
0
12 − d010d011

, E41 =
b02d

0
1 − b01d03

d01d
0
4 − d02d03

,

E51 =
b04d

0
5 − b03d07

d05d
0
8 − d06d07

, E61 =
b06d

0
9 − b05d011

d09d
0
12 − d010d011

,

(16)

where
d01 = u0x,xw

0
y,y − u0y,yw0

x,x, d02 =
(
u0y,x + u0x,y

)
w0
y,y − u0y,y

(
w0
y,x + w0

x,y

)
,

d03 = v0x,xw
0
y,y − v0y,yw0

x,x, d04 =
(
v0y,x + v0x,y

)
w0
y,y − v0y,y

(
w0
y,x + w0

x,y

)
,

d05 =
(
u0y,x + u0x,y

)
w0
x,x − u0x,x

(
v0y,x + v0x,y

)
, d06 = u0y,yw

0
x,x − u0x,xw0

y,y,

d07 =
(
v0y,x + v0x,y

)
w0
x,x − v0x,x

(
w0
y,x + w0

x,y

)
, d08 = v0y,yw

0
x,x − v0x,xw0

y,y,

d09 = u0x,x
(
w0
y,x + w0

x,y

)
−
(
u0y,x + u0x,y

)
w0
x,x,

d010 = u0y,y
(
w0
y,x + w0

x,y

)
−
(
u0y,x + u0x,y

)
w0
y,y,

d011 = v0x,x
(
w0
y,x + w0

x,y

)
−
(
v0y,x + v0x,y

)
w0
x,x,

d012 = v0y,y
(
w0
y,x + w0

x,y

)
−
(
v0y,x + v0x,y

)
w0
y,y,

b01 = uτ0xxw
0
y,y − wτ0xxu

0
y,y, b02 = vτ0xxw

0
y,y − wτ0xxv

0
y,y,

b03 = uτ0xyw
0
x,x − wτ0xyu

0
x,x, b04 = vτ0xyw

0
x,x − wτ0xyv

0
x,x,

b05 = uτ0yy
(
w0
y,x + w0

x,y

)
− wτ0yy

(
u0y,x + u0x,y

)
,

b06 = vτ0yy
(
w0
y,x + w0

x,y

)
− wτ0yy

(
v0y,x + v0x,y

)
;
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• we can continue with determination of u1x, u1y, v1x, v1y, w1
x, w1

y, uτ1xx, uτ1xy, uτ1yy, vτ1xx, vτ1xy, vτ1yy,
wτ1xx, wτ1xy, wτ1yy, E12, E22, E32, E42, E52, E62, and etc.
From (16) we can see that the iterative procedure can be used only if

di1d
i
4 − di2di3 ̸= 0, di5d

i
8 − di6di7 ̸= 0,

di9d
i
12 − di10di11 ̸= 0,

i = 0, 1, . . . , in Ω,

it means that the displacements ux, uy; vx, vy and wx, wy cannot be chosen arbitrarily.
For determination of new states of the elastic coefficients we use the system of equations (6), (12)

and (13). If we consider only the system of equations (6) and (12) we have six equations with six
unknown elastic coefficients. However the determinant of the system (6) and (12) is equal zero, it
means that this system is not sufficient for determination of six unknown elastic coefficients. It is the
reason why we add input data measured from the third state of the displacements wx, wy .

4 Numerical analysis

For numerical analysis we can apply discrete methods. They are very convenient because in the case
of practical problems we have to measure input states in discrete points. We assume that the domain
Ω is rectangle. Using central differences we can rewrite the iterative procedure from previous part to
discrete form.

We deal with numerical experiments from mathematical point of view. This means that we construct
the problem with the exact solution, afterwards we compute the numerical solution of this problem
using discrete form of the iterative procedure and in the end we compare the computed solution with
the exact one.

We use discrete form of the iterative procedure with stopping condition such that the difference of
two computed consecutive states of the elastic coefficients is less than 10−7. We consider the following
domain Ω = ⟨0, 2⟩ × ⟨0, 1⟩. For example for the following constant elastic coefficients

E1 = 10, E2 = 5, E3 = 2,

E4 = 1, E5 = 3, E6 = 8 (17)

the displacements

ux = (x+ 1)2 + (y + 1), uy = (y + 1),

vx = (x+ 1), vy = (x+ 1) + (y + 1)2,

wx = (x+ 1) + 2(y + 1), wy = 3(x+ 1) + (y + 1) (18)

and corresponding stresses and volume forces
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uτxx = 20(x+ 1) + 3, uτxy = 2(x+ 1) + 8, uτyy = 4(x+ 1) + 11,

vτxx = 4(y + 1) + 11, vτxy = 6(y + 1) + 6, vτyy = 16(y + 1) + 5,

wτxx = 17, wτxy = 29, wτyy = 25; (19)

fx = −20, fy = −2,

px = −6, py = −16,

qx = 0, qy = 0 (20)

using (20) and the boundary conditions constructed from (17) - (19), using discrete form of the iterative
procedure we obtain on all meshes results at once with the error about 10−7% . Similar situation is
also for the linear material parameters.

Different situation is for the nonlinear material parameters. For example for

E1 = (x+ 1)(y + 1)2, E2 = (x+ 1)(y + 1), E3 = (x+ 1) + (y + 1),

E4 = (y + 1), E5 = (x+ 1), E6 = (x+ 1)2(y + 1) (21)

the displacements given by (18) and corresponding stresses and volume forces

uτxx = 2(x+ 1)2(y + 1)2 + (x+ 1) + 2(y + 1), uτxy = 3(x+ 1)(y + 1) + (x+ 1),

uτyy = (x+ 1) + (x+ 1)2(y + 1) + 2(x+ 1)2 + 2(x+ 1)(y + 1),

vτxx = (x+ 1)(y + 1)2 + 2(y + 1)2 + 2(x+ 1)(y + 1) + (y + 1),

vτxy = 3(x+ 1)(y + 1) + (y + 1), vτyy = 2(x+ 1)2(y + 1)2 + 2(x+ 1) + (y + 1),

wτxx = (x+ 1)(y + 1)2 + (x+ 1) + 6(y + 1),

wτxy = 5(x+ 1)(y + 1) + (x+ 1) + (y + 1),

wτyy = (x+ 1)2(y + 1) + 6(x+ 1) + (y + 1); (22)

fx = −4(x+ 1)(y + 1)2 − 3(x+ 1)− 1, fy = −(x+ 1)2 − 2(x+ 1)− 3(y + 1)− 1,

px = −(y + 1)2 − 3(x+ 1)− 2(y + 1)− 1, py = −4(x+ 1)2(y + 1)− 3(y + 1)− 1,

qx = −(y + 1)2 − 5(x+ 1)− 2, qy = −(x+ 1)2 − 5(y + 1)− 2 (23)

in the Table 1 we are able to see the percentage of errors in the computed solutions in the second
column with respect to the exact solutions of the meshes given in the first column. In the third column
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we report the numbers of iterations after which we obtain the numerical solution with the specific
stopping condition on the given mesh. We can see from the results that we obtain very small errors
for a course mesh and when the number of grid points increases, errors also increase slightly but are
still small.

Table 1: Results for the problem (18), (21)-(23).

Mesh Errors
(%)

Number of
iterations

8 x 4 2.7 10−5 111

12 x 6 8.2 10−5 258

16 x 8 1.6 10−4 465

If we change the displacements

ux = (x+ 1) + 2(y + 1), uy = (y + 1),

vx = (x+ 1), vy = 3(x+ 1) + (y + 1),

wx = (x+ 1) + (y + 1), wy = 2(x+ 1) + 3(y + 1) (24)

for corresponding stresses and volume forces

uτxx = (x+ 1)(y + 1)2 + (x+ 1) + 3(y + 1),

uτxy = 2(x+ 1)(y + 1) + (x+ 1) + (y + 1),

uτyy = (x+ 1)2(y + 1) + 3(x+ 1) + (y + 1),

vτxx = (x+ 1)(y + 1)2 + (x+ 1) + 3(y + 1),

vτxy = 3(x+ 1)(y + 1) + (x+ 1) + (y + 1),

vτyy = (x+ 1)2(y + 1) + 4(x+ 1) + (y + 1),

wτxx = (x+ 1)(y + 1)2 + 3(x+ 1) + 6(y + 1),

wτxy = 3(x+ 1)(y + 1) + 3(x+ 1) + (y + 1),

wτyy = 3(x+ 1)2(y + 1) + 4(x+ 1) + (y + 1); (25)
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fx = −(y + 1)2 − 2(x+ 1)− 2, fy = −(x+ 1)2 − 2(y + 1)− 2,

px = −(y + 1)2 − 3(x+ 1)− 2, py = −(x+ 1)2 − 3(y + 1)− 2,

qx = −(y + 1)2 − 3(x+ 1)− 4, qy = −(x+ 1)2 − 3(y + 1)− 4 (26)

we obtain similar results for the same elastic coefficients as it is shown in the Table 2.

Table 2: Results for the problem (21), (24)-(26).

Mesh Errors
(%)

Number of
iterations

8 x 4 1.9 10−5 88

12 x 6 6.5 10−5 198

16 x 8 1.3 10−4 356

For another elastic coefficients

E1 = (x+ 1)2(y + 1), E2 = (x+ 1)(y + 1), E3 = (x+ 1) + (y + 1),

E4 = (y + 1), E5 = (x+ 1), E6 = (x+ 1)(y + 1)2 (27)

the displacements given by (18) and for their corresponding stresses and volume forces

uτxx = 2(x+ 1)3(y + 1) + (x+ 1) + 2(y + 1), uτxy = 3(x+ 1)(y + 1) + (x+ 1),

uτyy = (x+ 1) + (x+ 1)(y + 1)2 + 2(x+ 1)2 + 2(x+ 1)(y + 1),

vτxx = (x+ 1)(y + 1)2 + 2(y + 1)2 + 2(x+ 1)(y + 1) + (y + 1),

vτxy = 3(x+ 1)(y + 1) + (y + 1), vτyy = 2(x+ 1)(y + 1)3 + 2(x+ 1) + (y + 1),

wτxx = (x+ 1)2(y + 1) + (x+ 1) + 6(y + 1),

wτxy = 5(x+ 1)(y + 1) + (x+ 1) + (y + 1),

wτyy = (x+ 1)(y + 1)2 + 6(x+ 1) + (y + 1); (28)
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fx = −6(x+ 1)2(y + 1)− 3(x+ 1)− 1, fy = −2(x+ 1)(y + 1)− 2(x+ 1)− 3(y + 1)− 1,

px = −2(x+ 1)(y + 1)− 3(x+ 1)− 2(y + 1)− 1,

py = −6(x+ 1)(y + 1)2 − 3(y + 1)− 1,

qx = −2(x+ 1)(y + 1)− 5(x+ 1)− 2, qy = −2(x+ 1)(y + 1)− 5(y + 1)− 2 (29)

as it is obvious from the Table 3 the accuracy of computation is not so good. This fact is caused by
the discretization error, which is in this case rather greater than in previous cases.

Table 3: Results for the problem (18), (27)-(29).

Mesh Errors
(%)

Number of
iterations

8 x 4 3.6 123

12 x 6 4.7 277

16 x 8 6.1 575

However using the displacements given by (24) we obtain for the same elastic coefficients and
corresponding stresses and volume forces very good results as we can see from the Table 4 because
now the finite approximation of our problem has improved.

uτxx = (x+ 1)2(y + 1) + (x+ 1) + 3(y + 1),

uτxx = (x+ 1)2(y + 1) + (x+ 1) + 3(y + 1),

uτyy = (x+ 1)(y + 1)2 + 3(x+ 1) + (y + 1),

vτxx = (x+ 1)2(y + 1) + (x+ 1) + 4(y + 1),

vτxy = 3(x+ 1)(y + 1) + (x+ 1) + (y + 1),

vτyy = (x+ 1)(y + 1)2 + 4(x+ 1) + (y + 1),

wτxx = (x+ 1)2(y + 1) + 3(x+ 1) + 6(y + 1),

wτxy = 3(x+ 1)(y + 1) + 3(x+ 1) + (y + 1),

wτyy = 3(x+ 1)(y + 1)2 + 4(x+ 1) + (y + 1); (30)
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fx = −2(x+ 1)(y + 1)− 2(x+ 1)− 2, fy = −2(x+ 1)(y + 1)− 2(y + 1)− 2,

px = −2(x+ 1)(y + 1)− 3(x+ 1)− 2, py = −2(x+ 1)(y + 1)− 3(y + 1)− 2,

qx = −2(x+ 1)(y + 1)− 3(x+ 1)− 4, qy = −6(x+ 1)(y + 1)− 3(y + 1)− 4 (31)

Table 4: Results for the problem (24), (27), (30), (31).

Mesh Errors
(%)

Number of
iterations

8 × 4 8.7 10−6 108

12 × 6 2.3 10−5 225

16 × 8 1.4 10−5 594

Until now we considered that all input data are exact numbers but when measured they turn
out to have numerous errors in measurement. We determine condition number only by numerical
experiments. The dependence of the condition number on the number of grid points is shown in Table
5. This means that the iterative procedure is stable.

Table 5: Range of the condition number.

Mesh Condition
number

8 x 4 2.2 – 9.9

12 x 6 3.9 – 17.7

16 x 8 6.4 – 29.1

5 Conclusion

In this paper we have elaborated iterative procedure to the numerical solution of plane anisotropic
boundary inverse problems when the input data measured from three suitable states are sufficient for
determination of six unknown elastic coefficients.
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From computed examples we can see that the errors of computed solutions depend on the discretiza-
tion errors. If we want to obtain better results we have to use better discretization scheme. We also
study influence of measured input data on stability of the numerical solutions and we obtain that the
iterative procedure is stable.

This work was supported by the grant VEGA 1/0687/09 of the Grant Agency of Slovakia.
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Abstract

Flat and curved panel elements constitute a major portion of the aircraft structure. They are found in the
aircraft components as primary load carrying structures (such as wing surfaces), horizontal and vertical sta-
bilizers, and fuselage sections. With the advent of the new joining techniques such as Friction Stir Welding
(FSW) and their incorporation in the aircraft structures there is an imperative need for a better understanding
of their behavior. To this end, more adequate methods of analysis, taking into account their specific features,
have to be developed and implemented in order to exploit the considerable load bearing capacity of these
panels in the postbuckling regime.

Within this context, this paper presents a numerical model for postbuckling analysis of aeronautical panels
manufactured using friction stir welding joining technology (FSW). The proposed model takes into account
material and geometric nonlinearties, geometric imperfections, failure as well as the mechanical interaction
between skin and stiffener in the welding zone. The predicted postbuckling performance of the FSW panels
was compared with numerical results obtained for similar riveted panels. The simulations indicated that the
FSW panel has a better postbuckling performance with respect to the riveted panel. It was also found that
theoretical predictions significantly underestimate the buckling load of aeronautical stiffened panels.

Keywords: FSW, stiffened panels, postbuckling, finite elements.

1 Introduction

Stiffened panels are widely used in fuselages and wings to build structurally optimized and lightweight
airplanes. Buckling and post-buckling are major concerns for those parts. In most applications it is
required that those panels resist buckling and support loads in the range of post-buckling in order
to save some structural weight. Thus, the understanding of buckling and post-buckling is essential in
aircraft design.

Panels are composed by a board member (skin) and stiffeners. They are very simple to manufacture
and can endure a high load-to-weight rate. Therefore they are very attractive for aerospace and
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shipbuilding industries. Although they represent only a small fraction of the total structural weight,
they contribute substantially to the stability and load bearing. Stiffeners are used for both to increase
the buckling tension of the plate, so as to bear some of the compression loads. The stiffeners are sized
to buckle at approximately the same tension that the skin. In that way, structures are more efficient
and keep the aerodynamic softness until higher levels of loading.

Four forms of instability may occur if the stiffened panels are subjected to compression loading:
plate induced overall buckling (PI), stiffener induced overall buckling (SI), stiffener tripping (ST) and
plate buckling (PB). According to Wang et al. [1], it is common for the panel to start buckling with a
local buckling of the skin. When tensions reach very high values the local buckling evolves into global
buckling. The most critical condition for the panel takes place precisely in this passage from local to
global buckling. At this time, the panel completely loses strength and that’s when final failure occurs.
The presence of rivets or the material characteristics of the joint may reduce the panels resistance and
change the failure modes [2].

There is no theoretical solution for the local failure tension. The constraints in the boundary between
flange and plate elements are unknown and it is not precisely understood how the tension increases in
the regions of the corners [3]. Therefore, solving the problem using the finite element code is more than
welcome. The correct modeling of the problem and the numerical solution allow us to solve problems
which would only be possible experimentally.

Since the mechanical properties of FSW joints were superior to those of the rivets, the FSW joint is
able to replace without change the rivets in a wide range of applications. However, for the aerospace
industry, it is not only important that the FSW joints are mechanically superior to the rivets. It is
as important that the joints are equally or more efficient than rivets in buckling and post-buckling
loading in order to guarantee lighter structures. This work aims to study the replacement of rivets by
FSW in aeronautical stiffened panels. It intends to benchmark the performance of two similar boards
- a riveted and welded by FSW – in buckling and post-buckling because these are the most critical
situations for these structures. In this work the finite element method has been used for this purpose.
The finite element method is available in several commercial software. Here we opted for the use of
ABAQUS which has shown satisfactory results in similar studies [4].

To simplify the simulations, plate and stiffeners were modeled as Reissner-Mindlin plate elements.
The FSW joint was modeled as solid element with the properties proposed by Marques [5] and Fio-
ravanti [6] and the rivets were modeled as beam elements. We proved that these simplifications can
consistently represent the actual panels and provide good estimates on the behavior of both panels
under buckling and post-buckling.

2 Finite element modeling

2.1 Skin/stiffener interface model

The proposed skin/stiffener interface model was developed based on pull-out tests for the two repre-
sentative samples of the panels to be studied – one using FSW joint and the other rivets for comparison
purposes. The first step in the finite element modeling was to recreate such pull-out tests in Abaqus
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and verify if the simulation results provided by the software were consistent with the experimental data
available in the literature. The dimensions of the specimens used for the pull-out tests and simulations
are represented in Figure 1.

(a) Riveted junction (b) FSW junction

Figure 1: Specimen dimensions for pull-out tests.

The skin and the stiffeners are the major tangential load carriers. Therefore they could be modeled
as plate elements in Abaqus. Rivets were modeled as beam elements and the FSW joint as a solid
element. It was firstly intended to model the rivets as fasteners – a property that is available on
Abaqus. The fasteners determine a kinematic connection between two nodes and allow the definition
of boundary conditions for the six degrees of freedom for each node. However, it is not possible to add
models of plasticity and failure which made the use of this feature impossible. Instead we used beam
element with constraints in its outer nodes. This works exactly as the fasteners, with the advantage
that it is possible to impose models of plasticity and failure. The setting of the rivets to the skin and
the stiffeners is represented by Abaqus constraint * TIE*, as we can see in Figure 2. The TIE constraint
restricts movement of the nodes in the six degrees of freedom, working similarly to the rivet’s head.
The skin of the panels is constructed in AA-2024 and the stiffeners are in AA-7075. The properties of
both alloys can be found in [7, 8]. The rivets used in the studied panels are MS14218AD4-4 rivets. This
means that they are AA-2117 rivets with 4 mm diameter and 4 mm length. The properties of AA-2117
alloy were also extracted of [7, 8]. Marques [5] modeled the mechanical properties of FSW joints in
aluminum alloys. In the present paper, the mechanical properties of the joint’s ZAT region studied
in the aforementioned work are used to model the solid element that represents the FSW joint in the
panels. Fioravanti [6] obtained the mechanical properties of FSW joints welded in aluminum alloys
with different tools and provided important information about the failure of the joint. To represent the
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failure behavior of the FSW joint of this work, we found appropriate to assume use of tools with 12 mm
shoulder, 1250 rpm, 10 mm/min feed rate, according to Fioravanti’s work [6]. It was also important
to model the contact between the stiffener and the skin to avoid penetration of the stiffeners in the
skin during the simulation. The modeling of contact in Abaqus is done by applying the iteration of
contact between surfaces (surface-to-surface contact) one desires to establish contact. In this work, it
was sufficient to define property contact as tangential and frictionless, but Abaqus has several options
for more complex needs.

Figure 2: Skin/stiffener mechanical interaction.

The modeling of the specimens includes plastic behavior of materials, failure models and iterations
of contact. However, not all methods of analysis for Abaqus are able to deal with these peculiarities.
To represent nonlinear problems like these, we chose to use the method of analysis * DYNAMIC
EXPLICIT. The * DYNAMIC option was chosen precisely because it is capable of dealing with
nonlinear problems. EXPLICIT refers to the method of solution. In this case, ABAQUS uses small
increments of time that allow the solution to proceed without iterations and therefore without the need
to recalculate the tangent stiffness matrix at each iteration. The DYNAMIC EXPLICIT * procedure
was designed for the analysis of dynamic events, but also applies to quasi-static processes, as happened
here.
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The analyses were carried out under displacement control by using the dynamic relaxation method.
This method consists in loading the structure quasi-statically in a way that the dynamic effects are
minimized. To minimize the dynamic oscillations, a Rayleigh proportional damping is defined as a
linear combination between the tangential stiffness matrix and mass matrix [9].

The pull-out problem boundary condition is the restriction of all six degree of freedom of the skin.
At the upper end of the stiffener, a displacement of 2.5 mm was prescribed, so to have as output of
the simulation the load of that same end.

2.2 Stiffened panel model

The panels studied in this work are represented in Figure 3 and their dimensions are shown in Figure
4 and Table 1.

Figure 3: FE model of the pull-out specimens.

In the second round of simulations, the whole panels were compressed by imposing longitudinal
(y direction) uniform displacement in one of its transverse edges (y = L). In y = 0, the condition
of support is assumed to be simply supported. The longitudinal edges are free. In the central panel,
rotation in Z is restricted in order to force symmetric displacements with respect to the free edges.
Figure 5 illustrates those boundary conditions.

One of the panels has its stiffeners attached by rivets using the same spacing between the rivets
as in the pull-out model. The second panel has the stiffeners attached to the skin by the FSW joint
with the same characteristics as the FSW joint of its respective pull-out model. ABAQUS assumes
that the geometry of the panels is perfect. Therefore, the direction of buckling which develops in
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Figure 4: Typical fuselage panel and stiffeners.

Table 1: Panel dimensions.

Skin Stiffener
AA2024 AA7057

L (mm) 224 L (mm) 224

bs (mm) 163 tg (mm) 18

bsf (mm) 70 bg (mm) 1.2

ts (mm) 1.00 bw (mm) 17

tpad (mm) 0,27 tw (mm) 1,2

bpad (mm) 23 bf (mm) 5

tf (mm) 3

the nonlinear analysis is arbitrary, and small changes in the numerical formulation of the problem
can cause the buckling direction to change. The only way to prescribe the direction of buckling is
to insert imperfections into the models. For each of the panels, this was done using the result of a
previous analysis of linear buckling. The linear buckling analysis is performed using the method of
analysis * LINEAR BUCKLE available in Abaqus. The loads and their buckling modes were obtained
by solving the eigenvalue buckling problem [9]. The determination of eigenvalues and eigenvectors was
numerically solved using algorithms of subspace iterations available in the software. The post-buckling
simulations were performed similarly to the pull-out simulations. Materials, constraints and contact
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Figure 5: FE model of a typical fuselage panel and stiffeners.

surfaces were modeled as previously. The method chosen was also * DYNAMIC EXPLICIT applied
quasi-statically. The meshes allocated to the various elements were the same. In the input file we
added the command line * Imperfection, FILE = linear_buckling, 1e-6. This adds to the panel an
imperfection with the shape of the first linear buckling mode (available on our linear_buckling output
file) and maximum amplitude 1e-6 mm.

Abaqus uses the Updated Lagrangian formulation to create the mesh. It divides the domain into
nodes and elements which deform and move with the deformation of the material. For the skin, rivets
and stiffeners, a square structured mesh was chosen. For the solid representing the FSW joint, it was
chosen a solid hexahedral structured mesh.

3 Numerical simulations

3.1 Pull-out tests

The results of the pull-out simulations are shown in Figure 6 and Figure 7. We can see that the
adopted models provide a good match with the experimental test, confirming that they are sufficiently
representative of the real scenario.
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Figure 6: Comparison between numerical predictions and experimental results for the riveted junction.

Figure 7: Comparison between numerical predictions and experimental results for the FSW junction.

3.2 Postbuckling and collapse analyses

The postbuckling analyses were performed using a two-step procedure. Firstly, we obtained the results
for the linear buckling analysis. As said before, the important issue here was not to determine the
buckling load, but get the buckling mode to serve as imperfection for nonlinear analysis. Table 2 and
Figure 8 show the results of linear buckling analysis of the two panels.
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Table 2: Eigenvalues comparison.

Eigenvalues
Riveted panel 12.79

FSW panel 14.17

(a) Riveted junction (b) FSW junction

Figure 8: Buckling modes.

The riveted panel’s eigenvalue is slightly smaller than the one for the FSW panel, indicating that in
the linear analysis the second one resists a little more loading before losing its stiffness. The panels have
approximately the same stiffness module until the failure. The stiffness module decreases drastically
when buckling starts – at a load of approximately 40 kN for both panels. The initial buckling mode is
local, so buckling occurs only in skin members between rivets. The collapse of the panels occurs when
the buckling mode changes from local to global – then, the stiffeners also buckle. The FSW panel
requires a load slightly higher than the riveted panel for the inversion and the consequent collapse to
occur. Figure 9 and Figure 10 show the evolution of buckling until failure of riveted panel and FSW
panel, respectively.

In both panels, the failure starts with the skin’s local buckling and evolves onto global buckling
along the post-buckling range, finally crashing when the weld or rivet yield. We can see that less stable
members (skin) suffer elastic buckling and the most stable portions of the panel section (stiffeners)
suffer an axial inelastic compression.

The most critical condition for the panel buckling occurs in the transition from local buckling to
global buckling. At this point, the panels loose all resistance, failing. This happens immediately after
the inversion, approximately 153 kN to FSW panel and 149 kN to the riveted panel. This values are
summarized in Table 3.

The riveted panel is the first to loose stiffness, enter plastic deformation mode, global buckling, and
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Figure 9: Predicted buckling evolution for riveted panels.
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Figure 10: Predicted buckling evolution for panels manufactured using FSW.
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therefore failing. Its failure loading is very close to the theoretical failure load of 150kN, predicted
according the methods of reference [2]. The FSW panel failure loading is 3% higher than the failure
loading of the riveted panel. When buckling occurs, the stiffness moduli decrease, and tensions grow
slowly with respect to the increase in the displacements. This indicates that the panels have lost
stiffness, but still are capable of sustaining the loading. The structural performance of both panels in
the post-buckling regime was evaluated based on the Global Stiffness Degradation Parameter (DG) [10],
which is defined as DG = 1−KS/K0 where K0 is the initial stiffness defined by the linear portion of
the load-displacement curve and KS is the secant stiffness extracted from the load-displacement curve
in the post-buckling regime. Figure 11 shows a comparison in terms of load-displacement and global
stiffness degradation parameter between riveted and FSW panels.

Table 3: Failure load comparison.

Theoretical [2] Abaqus riveted Abaqus FSW
Failure load (kN) 133 149 153

(a) (b)

Figure 11: Structural performance comparison between riveted and FSW panels: (a) Load-
displacement curve, (b) Global stiffness degradation parameter.

The failure of the riveted panel is abrupt. When the first rivet fails, the panel loses completely its
stiffness, and it is not able to bear any more loading. FSW panel fails more smoothly. Only a small
portion of the joint breaks, and the panel does not fail immediately. It is only when a larger share of
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the joint breaks that the panel fails completely. Thus, a larger load is required to trigger the failure
of the FSW panel. Besides, the FSW panel behaves much better after failure than the riveted panel
does, because it supports some load after the initial rivet failure.

4 Conclusions

The development of FSW joint promises a technology that can replace the rivets in aircraft appli-
cations. This study aimed to evaluate the buckling behavior of an aircraft stiffened panel with FSW
joints compared to the equivalent riveted panel to prove the benefits of using FSW instead of rivets.
Two flat stiffened panels, typical of the fuselage structure were modeled and simulated in the finite
element software Abaqus. The skin and the stiffeners were modeled as plate elements. The rivets were
modeled as beam elements, and the FSW joint as a solid. The mechanical properties of FSW joint
were modeled as suggested in [2] and [3]. The first step of the study was to validate the junction model.
This was done by comparing pullout tests simulated in ABAQUS with experimental values available
for both panels. The simulation results were close to the available experimental data, proving to be
possible to adopt the proposed simplifications in the buckling analysis. Once validated, the full panel
models were simulated for nonlinear buckling. This was done using the *EXPLICIT DYNAMIC mode
of Abaqus. The panels were simply supported at y = 0. A 2.5 mm displacement was prescribed at
y = L, which was responsible for the buckling and failure of the panel. The edges x = 0 and x = L

were free. The plasticity and failure modes of materials were included in this modeling strategy. The
simulation results showed that the FSW panel has a higher buckling load with respect to the riveted
panel. The FSW panel failure load was 27% greater than the theoretical value provided by the Boeing
method of [2], and 3% higher than the simulated riveted panel. In addition to collapsing at a higher
load, the FSW panel did not immediately lose all of its ability to bear loading after initial failure.
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Abstract

In this work, the mechanical response of a composite material based on glass fiber reinforced polymer (GFRP)
was analytically predicted as a function of strain rate and temperature and subsequently compared with
experimental data. It was shown that for the temperature range from 20 to 80 ◦C at varying strain rates,
the predicted elastic properties of the composite agreed closer. The agreements between the analytically
predicted and experimentally determined stress–strain curves of the composite were found to be dependent on
temperature and strain rate. The experimental and analytical research data and the approaches presented in
this work should significantly extend our knowledge of the effect of elevated temperatures on the mechanical
behavior of high temperature polymer matrix composites.

Keywords: mechanical response, GFRP, strain rate effect, temperature effect, experiments, modeling.

1 Introduction

Over the last decade, composite materials have been used to repair damaged gas and liquid trans-
mission pipelines. Mechanical damage involving dents with gouges is one of the leading causes of
transmission pipeline failures in terms of both static and cyclic pressure loading. Because of the
severity of this defect type, pipeline companies are required to respond to these anomalies by either
removing damaged sections or repair using welded sleeves. Since in some fields repair work cannot be
performed using heat, composite materials gain a significant importance. Composite materials have
been used to repair corroded pipelines and their use has gained wide acceptance across the pipeline
industry. However, the mechanical responses of fiber-reinforced polymeric composites are sensitive to
the rate at which they are loading and temperature operation. In many technological applications,
under dynamic loading conditions, the response of a structure designed with static properties might
be too conservative. The main reason is that mechanical properties of composites vary significantly
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with changing the strain rate and temperature. Unlike metals, which have been studied extensively
over a wide range of strain rates and temperatures, only limited amount of information is available
on the effects of strain rate and temperature on the response of fibrous composites.

Many researchers studied composite materials at different strain rate and others have studied their
behavior at different temperature but few combined both.

The work performed by Rotem and Lifshitz [1] investigated the tensile behavior of unidirectional
glass fiber/epoxy composites over a wide range of strain rates from 10−6 to 30s−1 and found that
the dynamic strength is three times higher than the static strength and the dynamic modulus is 50%
higher than the static modulus. However, while investigating angle ply glass/epoxy laminates, Lifshitz
[2] found that the elastic modulus and failure strain were independent on the strain rate and the
dynamic failure stress was only 20–30% higher than the static failure stress.

Tensile tests were performed on a glass epoxy laminate at different rates (1.7 10−2-2000 mm/s) by
Okoli and Smith [3, 4] to determine the effects of strain rate on Poisson’s ratio (ratio of transverse
strain to the corresponding axial strain below the proportional limit) of the material. Poisson’s ratio
was found to be rate insensitive. It was suggested that the rate insensitivity in Poisson’s ratio of the
laminates tested is due to the presence of fibers in the composites. The effect of strain rate on the
tensile properties of a glass/epoxy composite was investigated by Okoli and Smith [5] strain rate was
attributed to the increased strength of the glass fibers with strain rate. In other studies the effects of
strain rate on the tensile, shear, and flexural properties of glass/epoxy laminate was investigated by
Okoli and Smith [3–6].

Tensile modulus increased by 1.82%, tensile strength increased by 9.3%, shear strength increased
by 7.06%, and shear modulus increased by 11.06% per decade increase in log of strain rate. The above
observation was in agreement with the results of the investigation conducted by Armenakas and
Sciamarella [7] that suggested a linear variation of the tensile modulus of elasticity of unidirectional
glass/epoxy composites with the log of strain rate.

A systematic study ofthe strain rate effects on the mechanical behavior ofglass/epoxy angle ply
laminates was done by Staaband and Gilat [8, 9] using a direction tension split Hopkinson bar appa-
ratus for the high strain rate tests and aservo hydraulic testing machine for the quasi-statictests. The
tensile tests at higher strain rates (in theorder of 1000 s−1) showed a marked increase in the maximum
normal stress and strain when compared to the values obtained in the quasi-static tests. Although
both fibers and matrix are strain rate sensitive, the fibers were thought to influence laminate rate
sensitivity more than the matrix.

To achieve the high performance required in the material’s projected applications, a good under-
standing of the dynamic deformation of GFRP under different temperatures is essential.

The aim of this paper is first to present experimental results illustrating the effect of strain rate and
temperature on the mechanical response for GFRP under a wide range of strain rates and temperatures
and then compare to analytical models.
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2 Experimental work

The apparatus and procedure used to obtain the tensile properties in the GFRP laminates are
described below.

The tensile tests were performed according to the method prescribed in ASTM D3039 [10]. The
test specimens were cut from hand lay-up sheets. The glass was a cross-ply plain weave e-glass [0/90]
fabric with 326 g/cm2 weight. The composite had a fiber weight fraction of 70% with 8 layers of glass.
The epoxy resin system used was RR515 from SILAEX§based on a diglycidyl ether bisphenol A and
an aliphatic amine hardener, being processed with a maximum mix ratio of 4:1 (with low viscosity).
The resin systems properties provided by the manufacturers are presented in Table 1.

Table 1: Properties of the epoxy resin.

Property Epoxy

Viscosity at 25◦C µ (cP) 12000-13000

Density ρ (g/cm3) 1.16

Heat Distortion Temperature HDT (◦C) 50

Modulus of Elasticity E (GPa) 5.0

Flexural Strength (MPa) 60

Tensile Strength (MPa) 73

Maximum Elongation (%) 4

The specimens were cut 250 mm by 25 mm, leaving a gauge section of 200 mm. The tensile tests
were performed on a Shimadzu AG-X tensile testing machine at 3 different strain rates, 1.6 10−5,
1.6 10−4, 1.6 10−3s−1. Attached to the testing machine a thermostatic chamber was used to set the
temperature test environment. The test temperature used was, 20◦C, 40◦C, 60◦C and 80◦C. These
temperatures were chosen since heat distortion temperature is 50◦C, so tests were performed at HDT±
30◦C.For each temperature the GFRP specimens were tested at all strain rates.

3 Results and discussion

3.1 Experimental results

Experimental data determining the dynamic response of a composite structure loaded at different
strain rates is limited by the range of strain rates, which can practically be applied for a particular
test method. It is desirable to obtain information about strain rates outside the range that can be
achieved experimentally, in order to predict the behavior of materials over very long loading times.
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Figure 1 presents the typical stress vs. strain results of GFRP at 20◦C, 40◦C, 60◦C and 80◦C and
at all strain rates used (1.6 10−5, 1.6 10−4, 1.6 10−3s−1).

Figure 1: Stress vs. strain curves for GFRP at 20◦C, 40◦C, 60◦C and 80◦C at 1.6 10−5, 1.6 10−4, 1.6
10−3 s−1 strain rates.

Analyzing the stress-strain curves presented in figure 1 it is clear that only the temperature affects
the modulus of elasticity. Increasing temperature, modulus of elasticity decreases making GFRP less
stiff. The modulus of elasticity, E, measured at 20◦C, 40◦C, 60◦C and 80◦C were 70.3 GPa, 66.5 GPa,
45.2 GPa and 32.11 GPa, respectively.

Figure 2 displays the stress vs. strain curves for GFRP at 20◦C, 40◦C, 60◦C and 80◦C at all strain
rates used in the research where 1, 2 and 3 means 1.6 10−5, 1.6 10−4, 1.6 10−3 s−1 strain rates,
respectively.

Analyzing the stress vs. strain curves presented in figure 2 at all temperatures tested the ultimate
tensile strength are significantly affected by the strain rates, i.e. high strain rates, elevated ultimate
tensile strength and lower strain rate contributes to lowering the ultimate strength. Also, at 80◦C,
softer failure occurs, GFRP becomes less brittle as temperature increases. Table 2 presents the ultimate
strength in MPa of GFRP at different temperatures at 1.6 10−5, 1.6 10−4, 1.6 10−3 s−1 strain rates.

From table 2 it can be seen that at higher loading rate leads to high ultimate strength. At 20◦C,
laboratory temperature, a decrease of 15.5% is observed when loading rate decreases 10 times compared
to standard strain rate. Also an increase of 5.8% is computed for 10 times higher strain rate. This
behavior follows all tested temperatures, i.e., increasing loading rate, higher ultimate strength and the
opposite occurs for strain rate decrement.
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Figure 2: Stress vs. strain curves at 20◦C, 40◦C, 60◦C and 80◦C at all strain rates.

Table 2: Ultimate Tensile Strength (MPa) at different temperatures at 1.6 10−5, 1.6 10−4, 1.6 10−3

s−1 strain rates.

Strain
rate (s−1)

Test Temperature (◦C)

20 40 60 80

1.6 x 10−5 227.46 ± 12.46 214.92 ± 12.73 113.44 ± 11.87 72.61 ± 7.06

1.6 x 10−4 269.23 ± 15.98 240.44 ± 14.32 141.85 ± 4.96 86.21 ± 11.23

1.6 x 10−3 284.95 ± 5.1 273.24 ± 5.83 153.61 ± 3.36 101.61 ± 10.39
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3.2 Temperature dependency

According to the test results, see figure 2, the modulus of elasticity decrease substantially with tem-
perature, lowering GFRP stiffness. Figure 3 displays the modulus of elasticity as function of test
temperature. This behavior can be predicted following a polynomial function of the third degree
displayed in equation 1.

E = 0.004θ3 − 0.00607θ2 + 2.4218θ + 42.677 (1)

where E is the modulus of elasticity in GPa and θ represents the test temperature in ◦C.

Figure 3: GFRP modulus of elasticity at different temperatures.

3.3 Ultimate Tensile Strength dependency of strain rate at different temperature.

The experimental results showed that the modulus of elasticity are not affected by strain rate, ε̇, in a
tensile test. However, the ultimate tensile strength are highly sensible to strain rate variations. The
main objective of this section is to propose a simple analytical model which describe the strain rate
influence in the ultimate tensile strength, σu, at different temperatures, θ.

For the ultimate tensile strength σu, is proposed

σU (ε̇) = K(θ)ε̇N (2)

where K(θ) is a function of the test temperature and N is a constant in which both can be exper-
imentally determined using the least square method from the σ × ε̇ or, in a simple form, from
the log(σU ) vs. log(ε̇) supposing σU is equal to σU obtained in a test at ε̇ = 1.6 × 10−4. Under
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this approach the experimental curve is approximated to a straight line in a log vs. log where
N is the slope of this straight line and log (K(θ)) the vertical axis cross point, since log(σU ) vs.
log(ε̇) = log(K(θ)ε̇N ) = logK(θ) +N log(ε̇).

Figure 3 presents the experimental results (σU , ε̇) at different test temperature.

Figure 4: Ultimate strength vs. strain rate. Experimental and model.

The values used for K(θ) followed equation 3 and N was 0.06.

K(θ) = 0.006θ3 − 0.9405θ2 + 38.97θ − 26.696 (3)

The comparison between the proposed model with experimental results are presented in table 3.
According to table 3 we can evaluate that the experimental results are within or close to the ana-

lytically predicted ranges for the entire temperature and strain rate range considered.The maximum
variation observed was 7.9% at 60◦C at 1.6 x 10−4s−1.

4 Conclusions

The mechanical response of a cross-ply glass fiber reinforced plastic (GFRP) composite was exper-
imentally measured for temperatures ranging from 20 to 80 ◦C at three different strain rates (1.6
10−5, 1.6 10−4, 1.6 10−3 s−1) and predicted based on the fundamental properties of its constituents
using an analytical and approach. These results showed that GFRP is strongly affected by strain rate
and temperature. In particular the ultimate tensile strength is only dependent from strain rate and
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Table 3: Comparison between proposed model and experimental test results.

Temperature
(◦C)

Strain
Rate
(s−1)

σuEXP
(MPa)

σuMOD
(MPa)

%
variation

20
1.6 x
10−5 227.46 230.02 +1.1

1.6 x
10−4 269.23 264.09 -1.9

1.6 x
10−3 284.95 303.22 +6.4

40
1.6 x
10−5 214.92 212.53 -1.1

1.6 x
10−4 240.44 244.02 +1.5

1.6 x
10−3 273.24 280.17 +2.5

60
1.6 x
10−5 113.44 114.43 +0.9

1.6 x
10−4 131.38 141.85 +7.9

1.6 x
10−3 150.85 153.61 +1.8

80
1.6 x
10−5 72.61 73.90 +1.8

1.6 x
10−4 86.21 84.85 -1.6

1.6 x
10−3 97.42 101.61 +4.3

temperature affects the GFRP stiffness. Good agreements were observed between the predictions of
the elastic properties and the experiment. The predict model represented an excellent possibility to
estimate the stress vs. strain curves of any constant strain rate ranging from 0 to 1.6 10−3 s−1.
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Abstract

The present work is concerned with the analysis of special hydrostatic tests performed in metallic pipelines
used to convey produced water in offshore oil and gas platforms. Burst and long-term hydrostatic tests are
generally recommended for assessing the structural integrity of theses pipelines. Nevertheless, since a real
pipeline is not a closed-ended cylinder, misleading conclusions can be made if the perturbations caused by
the closed ends of the specimen are neglected in the analysis. Elastoplasticity theory and thermodynamics
are used in the modelling of these tests. Model predictions are compared with experimental results showing a
good agreement.

Keywords: produced water pipelines, burst tests, long-term hydrostatic tests, elasto-plasticity, epoxy repair
systems, failure analysis.

1 Introduction

In a recent paper [1] it was presented a new methodology to repair localized corrosion damage in
metallic pipelines with epoxy resins. The main motivation for the use of such kind of repair system
is corrosion defects in produced water pipelines used in offshore oil exploitation [2]. Since offshore
platforms are hydrocarbon atmospheres, any repair method using equipment that may produce heat
and/or sparkling is forbidden. Although the operation pressure of these pipelines is not very high,
the water temperature is between 60◦C to 90◦C, which can be a major shortcoming for the use of
polymeric material as repair systems.

The petroleum as found in the nature is actually a mixture, basically composed of oil, gas and
water. Oil reservoirs frequently contain large volumes of water, while gas reservoirs tend to produce
only small quantities. At the surface, produced water is separated from the hydrocarbons, treated to
remove as much oil as possible, and then either discharged into the sea or injected back into the wells. In
addition, some installations are able to inject produced water into other suitable geological formations.

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



114 H.S. da Costa Mattos, L.M. Paim and J.M.L. Reis

After treatment, produced water still contains traces of oil and, thus, discharge into the sea is strictly
controlled by legislation. Produced water contains various chemicals such as heavy metals, polynuclear
aromatic hydrocarbon, and radionuclides, is one of the most significant wastewater discharges in the
offshore oil industry.

The present paper is concerned with the analysis of some special tests developed for analysing the
structural integrity of metallic pipelines used convey produced water in offshore oil and gas platforms:
(i) yield and burst test performed to check the strength of undamaged specimens, and (ii) long-term
tests performed at constant pressure (generally above 3 MPa) with water temperature between 60◦C
to 90◦C in damaged specimens to check the durability some kind of epoxy repair system.

Hydrostatic tests are normally conducted under industry and/or customer requirements or speci-
fications. They are usually performed taking as specimen cylindrical vessels closed at the ends and
are often used to assess information about the mechanical strength of a given pipeline (or about the
effectiveness of a given repair or reinforcement system in a damaged pipeline). The material, diameter
and wall thickness of the specimen are normally the same than the pipeline. The cylinder is closed at
the extremities using a welded cap or a bolted pressure flange. Nevertheless, since the real pipeline is
not a closed vessel, mistaken conclusions can be made if the perturbation caused by the closed ends
of the specimen is not taken into account.

In order to identify and eventually “correct” or even eliminate the perturbation caused by the closed
ends of the specimen on experimental results, a theoretical analysis is performed making use of a
particular set of elasto-plastic constitutive equations and also a special state law for liquid water at
high pressures.

In the case of yield and burst tests, the axial stress induced by the pressure applied at the extremities
of the specimen can be important. In the present work the problem is modelled in the context of elasto-
plasticity as a thin-walled cylinder closed at the extremities under pressure. An analytical solution is
obtained and it is shown that both yield and burst pressures obtained experimentally for the specimen
is approximately 2/

√
3 (1.155) higher than the one obtained in a long pipeline. The particular nature of

the specimens may lead to mistaken conclusions. Real pipelines are long and the effect of axial stresses
in straight lines is almost negligible, what is not the case of the specimens for hydrostatic testing.
Hence, such a difference must be taken into account or the strength of the pipeline is overestimated.
The predictions of burst pressures of different specimens using the elasto-plastic model are in good
agreement with experimental results. The predicted results are closer to the experimental results that
the obtained using the ASME Boiler and Pressure Vessel Code [3].

In the case of long-term tests (over 1000 hours) under higher fluid temperatures, wrong predictions
may occur depending on how the testing system is prepared. In these tests, specimens with through-
wall corrosion defects repaired with some epoxy system are submitted to a constant pressure (generally
above 3 MPa) under temperatures between 60 ◦C and 90 ◦C. The idea is to check the durability of
the repair. Experimentally it is verified that, in a closed pressure vessel with water under similar if
a pressure relief valve is not used (hence, the specimen is completely closed and the mass of fluid is
constant inside it), a very small temperature variation (even 1 K) may induce a huge pressure variation,
eventually leading the repair to failure. In the present study, a simple constitutive equation is proposed
for water at very high pressures. It is a very simple state law that extends the Tait equation of state

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



Analysis of special hydrostatic tests performed in produced water pipelines 115

for barotropic fluids (or called the Murnaghan equation of state in the context of an elastic solid [4–6])
to account for small temperature variations. The predictions of pressure variations caused by small
temperature variations using the proposed state law are in agreement with experimental results. With
this state law, it is also possible to verify the pressure peak induced by a small temperature variation.
Therefore, long-term hydrostatic tests must be performed with the use of a pressure relief system.
Without a relief valve, the durability and effectiveness of the repair system may be underestimated
due to failure caused by undesirable and unexpected pressure peaks induced by very small temperature
variations admitted by the temperature control system.

2 Modelling the burst pressure of elasto-plastic cylinders

The axial stress induced by the pressure applied at the extremities of the specimen can be important in
the case of burst tests of pressurized cylinders. Although a variety of papers concerned with this subject
have been developed within the framework of modern continuum plasticity [7–10], the goal of this
section is to propose a theoretical analysis restricted to thin-walled pipes and considering a particular
set of elasto-plastic constitutive equations in order to obtain a simple expression useful for failure
pressure estimates. Curiously, one of the main motivations for carrying experimental investigations on
the burst tests of pressurized cylinders is the evaluation of the failure behaviour of steel rocket motor
cases under internal pressure [11, 12].

2.1 Summary of the elasto-plastic constitutive equations

The following set of elasto-plastic constitutive equations is a particular case of the constitutive equa-
tions discussed in [13] but restricted to isotropic hardening. These equations are adequate to model
the monotonic inelastic behaviour of metallic material at room temperature.

In the framework of small deformations and isothermal processes, besides de stress tensor σ and
the strain tensor ε = 1

2 [∇u+ (∇u)T ] (u is the displacement at a given material point), in this theory
it is considered the following auxiliary variables: the plastic strain tensor εp, the cumulated plastic
strain p and another variable Y , related to the isotropic hardening. A complete set of elasto-plastic
constitutive equations is given by:

σ =
νE

(1 + ν)(1 − 2ν)
tr(ε− εp)1 + E

(1 + ν)
(ε− εp)⇒ (ε− εp) = (1 + ν)

E
σ − ν

E
tr(σ)1 (1)

ε̇p =
3

2J
S ṗ (2)

Y = σy + v1[1− exp(−v2p)] (3)

ṗ ≥ 0; F = (J − Y ) ≥ 0; ṗF = 0 (4)

with
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J =

√
3

2
(S : S) =

√√√√3

2

3∑
i=1

3∑
j=1

(Sij)2 (5)

Figure 1: Elasticity domain in the space of the principal directions of the deviatoric stress tensor.

Where E is the Young modulus, ν the Poisson’s ratio and σy, v1, v2 are positive constants that
characterize the plastic behaviour of the material. 1 is the identity tensor, and tr(•) is the trace of a
tensor (•). σ is the stress tensor and S is the deviatoric stress tensor given by

S =

[
σ −

(
1

3

)
tr(σ)1

]
(6)

J is the von Mises equivalent stress. Y is an auxiliary variable related with the isotropic hardening.
Noting the eingenvalues of S by {S1, S2, S3}, the elastic domain can be represented in the space of the
principal directions of the deviatoric stress as a sphere centred at the origin with radius R =

√
2/3Y

(see Fig. 1).
p is usually called the accumulated plastic strain and ṗ can be interpreted as Lagrange multiplier

associated to the constraint F ≤ 0. Function F characterizes the elasticity domain and the plastic
yielding surface. From eq. (2) it is possible to verify that

ṗ =

√
2

3
ε̇p : ε̇p ⇒ p(t) = p(t = 0) +

∫ t

t=0

(√
2

3
ε̇p(ζ) · ε̇p(ζ)

)
dζ (7)

If F < 0, from the second relation in (4) it follows that J < Y . Hence, from relation ṗF = 0, it
is possible to conclude that ṗ = 0. If ṗ ̸= 0, from condition ṗF = 0 it comes that necessarily F = 0.
Besides, from eqs. (2) and (3) it is possible to verify that, in this case ε̇p ̸= 0 and Ẏ ̸= 0, Therefore, the
elasto-plastic material is characterized by an elastic domain in the stress space where yielding doesn’t
occur (,ṗ = Ẏ = 0 if F < 0). Generally the following initial conditions are used for a “virgin” material
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p(t = 0) = 0, εp(t = 0) = 0 (8)

From now on, initial conditions (8) are assumed to hold in the analysis. It is also important to
remark that the evolution law (2) with boundary condition (9) and definition (6) imply that the
principal directions the stress tensor, of the deviatoric stress tensor and of the plastic strain tensor
are the same. From evolution law (2) and considering initial conditions (8), it is possible to verify that
the following relation always holds

Si
Sj

=
εpi
εpj

∀(i, j = 1, 2, or 3) (9)

With Si(i = 1, 2 or 3) and εpi (i = 1, 2 or 3) being the principal components (eigenvalues) respectively
of S and εp.

2.2 Thin-walled elasto-plastic cylinder under internal pressure

This section it is considered an elasto-plastic cylinder with internal radius ri, thickness e submitted
to an internal pressure P . The internal radius ri and the thickness e are such that

ri
e
> 10 (10)

The components of the stress tensor σ in cylindrical coordinates for a thin-walled cylinder are
classically approximated in the framework of membranes theory by the following expressions:

σ =


σr 0 0

0 σθ 0

0 0 σz

 with σr = 0; σθ =
Pri
e

; σz =

{
0, for open− ended cylinders
Pri
2e = σθ

2 , for closed− ended cylinders

(11)
σr is the radial stress component, σθ the circumferential stress component and σz the axial stress

component. All other components are considered to be equal to zero. Since the circumferential and
axial components are not independent in the case of closed-ended pipes (σz = σθ/2), additional
simplifications can be obtained. The trace of the stress tensor is then given by

1

3
tr(σ) =

1

3
(σr + σθ + σz) =

{
σθ

3 , for open− ended cylinders
σθ

2 , for closed− ended cylinders
(12)

Introducing eqs. (11), (12) in eq. (6), it is possible to conclude that the radial, circumferential
and axial components Sr, Sθ, Sz of the deviatoric stress tensor S are its only non-zero components:
Sr = (σr − σθ

3 ) = −σθ

3 ; Sθ = (σθ − σθ

3 ) = 2σθ

3 , Sz = (σz − σθ

3 ) = −σθ

3 for open-ended cylinders and
Sr = 0− σθ

2 = −σθ

2 ; Sθ = σθ − σθ

2 = σθ

2 ; Sz = σθ

2 −
σθ

2 = 0, for closed-ended cylinders. Hence
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S =


Sr = −1

3σθ 0 0

0 Sθ =
2
3σθ 0

0 0 Sz = −1
3σθ


︸ ︷︷ ︸

open-ended cylinders

; S =


Sr = −σθ

2 0 0

0 Sθ =
σθ

2 0

0 0 Sz = 0


︸ ︷︷ ︸

closed-ended cylinders

(13)

It is important to observe that the principal components of the deviatoric stress and of the plastic
deformation are not independent, what allows introducing additional simplifications in the equations.
From eq. (9), it comes that

Sr
Sθ

=
εpr
εpθ

(14)

In particular, from eqs. (13) and (14), it is possible to verify that the following relations always hold

εpr = εpz = −
1

2
εpθ, for open-ended cylinders (15a)

εpr = −ε
p
θ, εpz = 0, for closed-ended cylinders (15b)

Therefore, using eq. (2) and the initial conditions (8), it is possible to conclude that the plastic
strain tensor is given by

εp =


εpr = −1

2ε
p
θ 0 0

0 εpθ 0

0 0 εpz = −1
2ε
p
θ


︸ ︷︷ ︸

open-ended cylinders

; εp =


εpr = −ε

p
θ 0 0

0 εpθ 0

0 0 εpz = 0


︸ ︷︷ ︸

closed-ended cylinders

(16)

Using the definition (5) and eq. (13) it is possible to obtain the von Mises equivalent stress

J = |σθ| =
Pri
e

; for open-ended cylinders (17a)

J =

√
3

2
|σθ| =

√
3

2

Pri
e

; for closed-ended cylinders (17b)

Introducing eqs (11), (16), (17) in (1) – (4), it is possible to obtain the following set of constitutive
equations for thin-walled cylinders
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(εθ − εpθ) =
1

Ee
Pri, for open-ended cylinders (18a)

(εθ − εpθ) =
(2− ν)
2Ee

Pri, for closed-ended cylinders (18b)

ε̇pθ = ṗ, for open-ended cylinders (19a)

ε̇pθ =

√
3

2
ṗ, for closed-ended cylinders (19b)

ṗ ≥ 0; F ≤ 0; ṗF = 0 with (20)

F =
Pri
e
− Y ≤ 0, for open-ended cylinders (21a)

F =

√
3

2

Pri
e
− Y ≤ 0, for closed-ended cylinders (21b)

Y = σy + v1[1− exp(−v2p)] (22)

The set of equations (18), (19), (20), (21), (22) models the behaviour of an elasto-plastic cylinder
(close-ended or open-ended). The radial and axial strains are not independent and can be obtained
from the circumferential strains as follows

(εr +
εpθ
2
) = (εz +

εpθ
2
) = −ν(εθ − εpθ), for open-ended cylinders (23a)

(εr + εpθ) = −
3ν

(2− ν)
(εθ − εpθ); εz =

(1− 2ν)

(2− ν)
(εθ − εpθ), for closed-ended cylinders (23b)

For a monotonic loading (i.e. P = αt, α> 0), the behaviour of the cylinder is elastic (εpθ = 0) while
F ≤ 0. From condition ṗF = 0 in (20) , it is possible to conclude that F = 0 when ṗ > 0 (and hence
when yielding occurs: ε̇pθ > 0). Using the definition of F in eqs. (21a) and (21b), it comes that

F = 0⇒ Pri
e
− Y = 0⇒ P =

e

ri
[σy + v1[1− exp(−v2εpθ)]] , for open-ended cylinders

F = 0⇒
√
3

2

Pri
e
− Y = 0⇒ P =

2e√
3ri

[σy + v1[1− exp(−v2εpθ)]] , for closed-ended cylinders

As a consequence, since the load is monotonic, pressure P is related with the circumferential plastic
strain component εpθ by the following relation

P =
e

ri
[σy + v1[1− exp(−v2εpθ)]] , if

Pri
e
≥ σy – for open-ended cylinders (24a)

P =
2e√
3ri

[σy + v1[1− exp(−v2εpθ)]] , if
√
3

2

Pri
e
≥ σy – for closed-ended cylinders (24b)

The yield pressure Py is obtained taking εpθ = 0
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Py = σy
e

ri
, for open-ended cylinders (25a)

Py =
2√
3
σy

e

ri
, for closed-ended cylinders (25b)

The rupture pressure is the maximum pressure Pmax is obtained taking the limit of P as εpθ →∞.
Hence

Pmax = lim
εpθ→∞

[
e

ri
[σy + v1[1− exp(−v2εpθ)]]

]
=

=
e

ri
(σy + v1) =

e

ri
(σmax)

, (for open-ended cylinders) (26a)

Pmax = lim
εpθ→∞

[
2e√
3ri

[σy + v1[1− exp(−v2εpθ)]]
]
=

=
2√
3

e

ri
(σy + v1) =

2√
3

e

ri
(σmax)

, (for closed-ended cylinders) (26b)

It is possible to show [13] that σmax = (σy+v1) is the rupture stress obtained in a tensile test. Since
σ = [σy + v1[1− exp(−v2εpθ)]], if σ ≥ σy then

σmax = lim
εpθ→∞

[σy + v1[1− exp(−v2εpθ)]] = (σy + v1) (27)

Eqs. (25a), (25b) and (26a), (26b) show that, in order to determine both yield pressure and burst
pressure for a given cylinder with internal radius ri and wall thickness e (with ri ≥ 10e), it is only
necessary to know the yield stress σy and the rupture stress σmax (also named the ultimate stress)
obtained experimentally in a tensile test of the pipe material. Besides, eqs. (25a), (25b) and (26a),
(26b) show that both the yield pressure and burst pressure in a close-ended cylinder are 2√

3
times

higher (1.155 times – 15.5 %) than in an open-ended cylinder.
Long straight thin-walled pipelines are reasonably modelled by the open-ended cylinder model.

Hydrostatic specimens are better modelled by the closed-ended cylinder model. Hence, both yield
pressure and burst pressure of a metallic specimen measured in a laboratory test tend to be higher than
the ones of a long straight thin-walled pipeline with same material, diameter and wall thickness. This
means that the results of burst tests may be used with care since they may lead to an overestimation
of the strength of a real line.

3 Modelling the effect of small temperature variations of the water in long-term hydrostatic tests

The rehabilitation of corroded pipelines with epoxy repair systems is becoming a well accepted engi-
neering practice and an interesting alternative to the classical repair methods for metallic pipes, mainly
in the oil industry, saving time and allowing safer operations.

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



Analysis of special hydrostatic tests performed in produced water pipelines 121

In these repair systems, a piping or vessel segment is reinforced by wrapping it with concentric coils
of composite material after the application of epoxy filler in the corrosion defect. Corroded pipelines
with through-walls defects can also be repaired with different epoxy systems (see [1], for instance). In
this case, the challenge is to assure a satisfactory level of structural integrity and to assure that the
pipe won’t leak after repair.

In the case of through-walls corrosion defects in produced water pipelines used in offshore oil
exploitation, the water temperature is a major shortcoming for the use of polymeric material as
repair systems. In this case, it is usual to perform long–term hydrostatic tests (between 1000 to 2000
hours) with constant internal pressure and temperature (between 60 ◦C to 90 ◦C) to check the repair
effectiveness to avoid leaking.

Long-term hydrostatic tests at this temperature range (between 60 ◦C to 90 ◦C) may be performed
whether using a pool with hot water in which the specimen in immersed or a system especially designed
for this procedure (see [1]) in which the whole system (including the electrical resistance) is threaded
at one extremity of the specimen.

No matter the long-term hydrostatic test apparatus adopted, to accurately control temperature
without extensive operator involvement, a temperature control system relies upon a controller, which
accepts a temperature sensor such as a thermocouple or RTD as input. It compares the actual tem-
perature to the desired control temperature, or set point, and provides an output to a control element.
The controller is one part of the entire control system, and the whole system should be analyzed in
selecting the proper controller. There are a few different types of controllers but the simplest and most
usual in this kind of testing is the “on-off” controller. Generally the temperature oscillations are small
compared to the control temperature (set point). Nevertheless, in a closed vessel with liquid water at
high pressure, a small variation of the temperature above the desired control temperature may cause
a huge pressure variation. In the case of a long-term test in a damaged pipe repaired with an epoxy
system, very small variations of temperature due to the control systems may cause a pressure peak
leading to failure. Generally this kind of the pressure peak is very fast and eventually is not recorded,
what may cause mistaken conclusions about the durability of the epoxy repair system. The failure
of the repair may be caused by pressure variation and not because of the temperature effect on the
polymer behaviour.

3.1 Summary of the equation of state for liquid water at high pressures

The goal of this section is to present an equation of state for liquid water at high pressures. The
proposed equation is a generalization of Tait equation of state to include very small temperature
variations. Tait equation of state for compressible liquids (or called the Murnaghan equation of state
in the context of an elastic solid [4, 6]) models a liquid such as water as a compressible, barotropic
liquid whose bulk modulus is an affine function of pressure. Hence, this equation of state involves only
the density and pressure variables. However, it is a highly non-linear equation of the form

P = (Po +B)

(
ρ

ρo

)γ
−B ⇒ ρ = ρo

[
P +B

Po +B

](1/γ)
(28)
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where P and ρ denote the pressure and the density, respectively. Po and ρo are the pressure and
density at a reference state. B and γ are positive parameters.

Two alternative constitutive equations are suggested to extend the state law (28) in order to account
very small temperature variations from a reference temperature θo

ρ

ρo
=

[
P +B

Po +B

](1/γ)
[1− η (θ − θo)]⇒ P = (Po +B)

(
ρ

ρo
[1− η(θ − θo)]−1

)γ
−B (29a)

or
ρ

ρo
=

[
P +B

Po +B

](1/γ)
− η (θ − θo)⇒ P = (Po +B)

(
ρ

ρo
+ η(θ − θo)

)γ
−B (29b)

With η being a positive pressure dependent parameter.

4 Results and discussion

4.1 Burst tests

This section aims at comparing the model prediction of the burst pressure of close-ended cylindri-
cal pressure vessels with some experimental results. The following expression to compute the burst
pressure is found at the ASME Boiler and Pressure Vessel Code [3]

Pmax =
ωe

ri + 0.6e
(σmax) (30)

Where σmax is the rupture stress obtained in a tensile test; ω (0 < ω ≤ 1) is the efficiency of the
welded joint = 1 (for seamless pipe); ri is the internal radius (in) and e the wall thickness (in). From
now on, the burst pressure of a specimen will be approximated by using two different approaches:
(i) multiply the rupture stress obtained in tensile test by a factor ωe

ri+0.6e (ASME standard) or (ii)
multiply the rupture stress obtained in tensile test by a factor 2ωe

ri
√
3

(elasto-plasticity model).
Hydrostatic tests performed by Loureiro in [14] in seamless pipes were chosen as a preliminary step

to evaluate the adequacy of the model prediction of the burst pressure. The internal radius and wall
thickness of the pipe were, respectively, ri = 2.52” (64.01 mm) and e = 0.258” (6.55 mm) and pipe
material was an aluminium alloy SB – 241 6063 –T5 whose composition is shown in table 1

Table 1: Aluminium alloy chemical composition [14].

Al Si Fe Cu Mn Mg Zn Ti

98.83 0.41 0.07 0.003 0.004 0.19 0.006 0.003

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



Analysis of special hydrostatic tests performed in produced water pipelines 123

The average value for σmax was 25762 psi (177.62 MPa), obtained after 5 tensile tests performed
according to ASTM B557 standard [15]. In these burst tests, pressure was gradually raised until rup-
ture. Table 2 presents the experimental and predicted burst pressures. The burst pressure for this
seamless pipe predicted using ASME standard eq (26) is ≈82.5% of the pressure measured experimen-
tally (respectively 17.13 MPa and 20.76 MPa). The burst pressure predicted using the elasto-plasticity
model was 20.99 MPa (≈1.0% above than experimental). The ASME code prediction is more conser-
vative, while the elasto-plastic theory result is closer to reality. Predictions using expression provided
by the ASME code are more adequate for long lines which can be modelled as open-ended pipes. In
the case of closed-ended pipes, the estimate burst pressure from ASME code and from elasto-plasticity
can be used respectively as lower and upper limits for designers.

Table 2: Predicted burst pressures.

Experimental burst pressure [13] 3011 psi (20.76 MPa)

ASME burst pressure prediction 2485 psi (17.13 MPa)

Model burst pressure prediction 3044 psi (20.99 MPa)

Burst tests of rocket motor cases made performed by Beena et al [11] were also used to check the
adequacy of the model prediction. The internal radius wall thickness of the pipe were ri = 103.3
mm and e = 2.6 mm and pipe material was a 15CDV6 steel with σmax = 1010.0 MPa. The name
15CDV6 is a French designation in which the first number is equal to 100 times the concentration
of carbon. The letters which follow indicate the other elements present, in the decreasing order of
concentration. The last digit is equal to four times the concentration of chromium. In this French
notation, C stands for chromium, D for molybdenum, and V for vanadium. It therefore follows that,
in 15CDV6 steel, the concentration of carbon is 0.15%, while that of chromium is 1.5%, and the
concentrations of molybdenum and vanadium are less than 1.5% each. Hence, it is a low-alloy steel,
in which the proportion by weight of all the alloying elements combined is less than 5%.

The experimental burst pressures obtained in two tests were 28.86 MPa and 29.23 MPa (average
29.05 MPa). The burst pressure predicted using eq. (28) is 25.48 MPa. The predicted burst pressure
using the elasto-plasticity model is 29.39 MPa (1.15 times the ASME standard) which is in good
agreement with the two burst test results of the rocket motor cases. The experimental 0.2% yield
stress measured in a tensile test was 915.27 MPa. The experimental yield pressure was 26.49 MPa.
The predicted yield pressure using the elasto-plasticity theory is 26.63 MPa.

As it can be verified, once again ASME predictions of the burst pressures are closer to the ones
obtained using the elasto-plasticity theory for open-ended pipes (the burst pressure for a close-ended
pipe is 15.5% times higher than in an open-ended pipe). Therefore ASME predictions are more ade-
quate for long lines that can better be modelled as open-ended cylinders.

In the results presented in table 3 it was adopted and efficiency ω = 1, but the cases are not seamless
pipes and the authors in [11] affirm that the weld efficiency is 93.5-98% (0.935 ≤ ω ≤ 0.98). With this
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correction, the burst pressure predicted using the elasto-plastic model is even closer than the obtained
experimentally.

Table 3: Predicted burst pressures.

Experimental burst pressure [11] 29.05 MPa

ASME burst pressure prediction 25.48 MPa

Model burst pressure prediction 29.39 MPa

Finally, results of burst tests in maraging steel rocket motor cases performed in [16] and presented
in [12] were considered. The internal radius of the pipe was ri = 45 mm and the maximum strength
σmax = 2155 MPa. The tests results for 5 different values of the wall thickness are presented in table
4 (each column corresponds to a different test)

Table 4: Predicted burst pressures for different values of the wall thickness.

Wall thickness (mm) 1.630 1.735 1.756 1.763 1.793

Experimental burst pressure (MPa) [12] 86.62 92.30 94.50 94.00 94.00

ASME burst pressure prediction (MPa) 76.72 81.28 82.23 82.56 83.93

Model burst pressure prediction (MPa) 90.13 95.94 97.10 97.49 99.14

The difference between the predicted results from elasto-plasticity theory and experimental is higher.
However it is important to explain that the steel pipes used to perform those tests were not seamless
and the efficiency ω of the welded joint is lower than 1. In this specific case it is recommended, in
analogy with the ASME code, a correction factor due to the welded joint

Pmax =
2ωe

ri
√
3
(σmax) (31)

In the previous case this factor would be approximately ω =0.96 (efficiency of 96%).

4.2 Long-term hydrostatic tests

Long-term hydrostatic tests were performed with a constant internal pressure Po = 1500 psi (≈ 10.34

MPa) at 80◦C. An experimental set up was conceived to check the effectiveness of the methodology,
trying to approximate a real repair operation. 2” (50.8 mm) diameter schedule 80 API 5L grade B
steel pipes, normally used in offshore platform for produced water, with a circular hole of 10 mm were
used to build the specimens for hydrostatic tests. The epoxy repair system is described in details in
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[1]. A commercial fast curing polymer-based system (called System II in [1]) consisting of a mixture of
epoxy resin and aluminium powder was used to perform the repair of the through-thickness damage
in each specimen. The whole system to control water temperature (including the electrical resistance)
is threaded at one extremity of the specimen. Fig. 2 and 3 shows the basic set-up apparatus and
temperature control system. The control system allows a ± 1 ◦C temperature variation.

Figure 2: Basic test set-up apparatus.

Figure 3: Temperature control system. 1 is the pressure water machine connection, 2 is the temperature
control thermostat and 3 is the electrical resistance.
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Fig 4 shows a curve pressure versus time in a typical test without an automatic system that relieves
liquid pressure above a pre-set limit (a pressure relief valve). It can be verified peaks of pressure even
with such a limited temperature variation. Rupture has occurred after 6 days, when a pressure peak
much above the static strength of the repair occurred. The pressure peaks can be explained using
constitutive eqs (29a) or (29b) that are proposed for small variations of temperature of liquid water
at high pressures. Considering the initial state: Po = 1054604 Kg.m−2 (≈1500 psi ≈10.34 MPa); ρo=
958 Kg.m−3; θo= 353.15 K, a reasonable approximation for the parameters B and γ that appear in
Tait equation [15] is B = 2.9 × 108 Kg.m−1.s−2 and γ = 7.15. In order to identify the additional
parameter η that appears in eqs (29a) and (29b) it is interesting to observe Fig. 5, that shows how
density varies with pressure for a constant pressure of 1 atm (≈0.1 MPa).

Figure 4: Typical pressure versus time curve at average pressure of 1500 psi (≈ 10.34 MPa) and
temperature of 80 ◦C. The temperature control system allows a ± 1 ◦C variation. Test performed
without a pressure relief valve.

Although curve ρ × θ shown in Fig. 5 presents a non-linear behaviour, it can be approximated by
a linear function in the neighbourhood of the reference temperature θo (see Fig. 6). η is a pressure
dependent parameter. Nevertheless, from Fig. 6, assuming small temperature variations from the
reference temperature θo it is reasonable to assume a constant value η = 6.5× 10−4 K−1.

In the case of a vessel without a pressure relief valve, the density ρ tends to increase when a higher
pressure is applied:

(
ρ
ρo

)
> 1. Table 5 presents the pressure variation obtained using eqs. (29a) and

(29b), the material parameters presented in Table 6 and assuming
(
ρ
ρo

)
≈ 1. The pressure predicted

using eqs. (29a) and (29b) are very close, what means that, for a very small temperature variation from
the reference temperature, it is almost indifferent to consider any of them. For very small temperature
variation, the pressure variation (P − Po) increases almost linearly with (θ − θo) as shown in Fig. 7.
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Figure 5: Curve ρ× θ. Water at a constant pressure of 1 atm.

Figure 6: Detail of the curve ρ× θ presented in Fig. 5. thetao = 80 ◦C.

Table 5: Pressure variation with temperature from the reference state, using eqs (29).

Temperature Pressure Pressure
◦C Eq. (29a) Eq.(29b)
80.0 1500.00 psi (10.34 MPa) 1500.00 psi (10.34 MPa)

80.5 2463.25 psi (16.98 MPa) 2462.94 psi (16.98 MPa)

81.0 3429.06 psi (23.64 MPa) 3427.81 psi (23.63 MPa)
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Table 6: Water. Material parameters.

B( Kg.m−1.s−2) γ η(K−1)

2.9× 108 7.15 6.5× 10−4

Figure 7: Curve (P − Po)× (θ − θo) obtained using eq. (28.1).

The mean failure pressure measured in hydrostatic tests in which a monotonically increasing load
is applied until the failure of the repair is Pf = 1465 psi (≈17 MPa). As it can be verified in the
test shown in Fig. 4, the internal pressure in the specimen reached the limit pressure Pr due to the
temperature oscillation admitted by the control system (always smaller than 1 ◦C). Therefore, the
prediction of a strong pressure variation made in table 5 is confirmed experimentally what indicates
that a very small temperature variation (around 0.5 ◦C) can eventually lead the repair to failure and
that the use of a pressure relief valve is essential in order to avoid big pressure oscillations during the
testing. All specimens repaired with the same epoxy system and tested under the same pressure and
temperature conditions (5 specimens) but using the relief valve did not fail after 2000 hours.

5 Concluding remarks

Hydrostatic tests are normally conducted under industry and/or customer requirements or specifi-
cations. They are usually performed taking as specimen cylindrical vessels closed at the ends and
are often used to assess information about the mechanical strength of a given pipeline (or about the
effectiveness of a given repair or reinforcement system in a damaged pipeline). The material, diameter
and wall thickness of the specimen are normally the same than the pipeline. The cylinder is closed at
the extremities using a welded cap or a bolted pressure flange. Nevertheless, since the real pipeline is
not a closed cylinder, mistaken conclusions can be made if the perturbation caused by the closed ends
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of the specimen is not taken into account.
The present paper uses elasto-plastic constitutive equations and also a thermodynamic framework

to correct special hydrostatic tests developed for analysing the structural integrity of produced water
pipelines used in offshore oil exploitation and to propose adequate test procedures to eventually
“correct” the perturbation caused by the closed ends of the specimen on experimental results. The
proposed theory allows a better understanding the differences between the strength of specimens used
in hydrostatic tests (better modelled as closed-ended cylinders) and of long pipelines (better modelled
as open-ended cylinders).

An interesting result is that burst and yield pressure in a pipe can be predicted through the knowl-
edge of the one-dimensional stress-strain curve and both burst pressure and yield pressures measured
in a typical hydrostatic test specimen are about 2√

3
times higher (15.5%) than the burst and yield

pressure of a long line.
It is also important to remark that wrong conclusions can be made if a pressure relief valve is not

used in long-term hydrostatic tests performed at temperatures between 60 ◦C and 90 ◦C. In these
cases, no matter the long-term hydrostatic test apparatus adopted, the temperature control system
relies upon a controller, which accepts a temperature sensor that compares the actual temperature
to the desired control temperature, or set point, and provides an output to a control element. It is
shown both experimentally and theoretically that, without a pressure relief valve, a small variation of
temperature above the desired control temperature may cause a huge pressure variation in a closed
vessel with liquid water at high pressure. In the case of a long-term test in a damaged pipe repaired
with an epoxy system, very small variations of temperature due to the control systems cause a pressure
variation that may lead the repair to failure. Generally this kind of the pressure peak is very fast and
eventually is not recorded, what may cause mistaken conclusions about the durability of the epoxy
repair system.
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Abstract

The objective of the work is to propose a dual visco-hypoelasticity model and a numerical procedure for
the analysis of Polymeric materials subjected to large displacements and rotations. In the proposed dual
approach, the Hencky’s logarithm strain measure is a function of the rotated Kirchhoff stress history in terms
of a convolution equation. The material is assumed to be isotropic and the kernel functions, associated with the
shear and bulk compliance moduli, are represented in Prony series. The problem is formulated within a Total
Lagrangian framework and employs the Galerkin finite element method in the discretization process. Finally
some numerical examples are presented in order to attest the proposed model and to verify the robustness
and performance of the proposed numerical scheme.

Keywords: dual visco-hypoelasticity model, total lagragian, finite element.

1 Introduction

Viscoelastic behavior is typical of a number of materials such as polymers and plastics. These materials
have memory, i.e., the stress depends on the entire history of the deformation and typically this memory
fades with time. In a dual formulation the strain can be represented as a functional of the stress history.
This hereditary constitutive equation, in order to be consistent, must satisfy the principle of material
frame indifference. This requirement leads to reasonably complex relations, even in the “simplest” of
constitutive relations.

The objective of this paper is to propose a dual finite visco-hypoelastic model based on the logarithm
Hencky strain and the rotated Kirchhoff stress measures, which may be employed in the viscoelastic
analysis of components undergoing large displacement and rotations. This paper is a continuation
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of the work presented in [1] where we present the fully implicit algorithm in detail and derive the
consistent tangent operator associated with the proposed implicit scheme.

1.1 Linear visco-hypoelastic constitutive model

Let’s consider, initially, linear viscoelastic materials. These materials have memory, i.e., the stress
depends on the entire history of the motion, and typically this memory fades with time. There are
a number of approaches for constructing constitutive models describing the viscoelastic behavior
of materials. Mathematical relations which describes how stress can depend on the history of the
deformation are either given in integral form or in differential form. In integral form the stress at time
t is given in terms of an expression which involves an integral over previous times. The integral in
such an expression is known as a history integral. In contrast, in the differential form of constitutive
model, the history of the deformation is taken into account by certain ordinary differential equations
which describe how certain quantities known as internal variables evolve in time. For a more detailed
presentation of both ways of representing viscoelastic constitutive responses see, [2–5].

To describe the linear viscoelastic response of components, one applies the Boltzmann superposition
principle, which follows by that in each strain step the stress evolution is given by Hooke’s law. In
this sense, the evolution in each strain step component is approximated with a piecewise continuous
step function. For sufficiently smooth fields, the general linear constitutive equation for the linear
viscoelastic (small deformation) solid is given by

σ(x, t) = D(t) ε(x, 0) + ∫ t0 D(t− s) ε(u̇(x, s))ds. (1)

Considering now a viscoelastic isotropic material

D = 2 G IIdev +K (I⊗ I) (2)

in which IIdev =
{
IIS − 1

3 (I⊗ I)
}

, (IIS)ijkl =
1
2 (δikδjl + δilδjk) and I is the identity tensor.

The kernel functions are represented in terms of Prony series and given by:

G(t) = G∞ +
∑nG

i=1
Gi exp

(
− t
τG
i

)
and K(t) = K∞ +

∑nK

i=1
Ki exp

(
− t
τK
i

)
(3)

in which G∞and Gi are shear elastic moduli, K∞ and Ki are bulk elastic moduli and τGi and τKi are
the relaxation times for each Prony component.

An a alternative formulation for the quasi-static rate model is the constitutive equation given, see
[6], as

ε(t) = C(t− t0)σ(t0) + ∫ tt0 C(t− ξ)σ̇(ξ)dξ (4)

where

C =
B

9
(I⊗ I) +

J

2
IIdev. (5)

The kernel functions are also represented in terms of Prony series [7], as follows:
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J(ξ) = J0 +
∑nj

i=1
Ji

(
1− exp

(
− ξ
τJ
i

))
and B(ξ) = B0 +

∑nB

i=1
Bi

(
1− exp

(
− ξ
τB
i

))
(6)

in which J0 and Ji are shear compliance moduli, B0 and Bi are bulk compliance moduli and τJi and
τBi are the relaxation times for each Prony component.

The objective of this paper is to extend the alternative formulation to large displacement and rota-
tion problems, defined in a Total Lagrangian framework. The motivation of using the total Lagrangian
description is due to its adequacy for the consideration of reinforced plastics resulting in anisotropic
viscoelastic responses.

In order to preserve objectivity of the integration process, in the hereditary constitutive equation,
one employs adequate stress and strain measures, defined here at the unrotated configuration of the
body, as will be properly defined. Here, one proposes a consistent extended hereditary constitutive
equation and develop an implicit algorithm, using the Galerkin Finite Element method, for the solution
of viscoelastic problems subjected to large displacements and rotations. The determination of the
consistent tangent operator, associated with the proposed implicit method, is also presented together
with the validation of the numerical scheme and proposed model.

2 Finite visco-hypoelasticity model

2.1 Motion and deformation of a body B

Let Pa be a particle of B that occupies a position xo in the reference configuration Ωo. The motion of
a body B is described by the position vector x = φ (xo, t) of the point xo, occupied by each particle
Pa of B, at each time instant t.

x = φ (xo, t) = φt (xo) and xo = φ−1
t (x) . (7)

The gradient of the deformation function is given as F (xo, t) = ∇φt (xo), whose polar decomposition
is given by F = RU. The displacement field is defined as

u (xo, t) = x− xo = φt (xo)− xo. (8)

The gradient of the displacement field, ∇u = ∇x−∇xo, leads to F = ∇u+ I.

2.2 Weak formulation of the problem: Reference configuration

Let Ωo, defined at to, be a bounded domain with a Lipschitz boundary ∂Ωo subjected to a prescribed
body force b, a prescribed surface traction to defined on Γto and a prescribed displacement defined on
Γuo , where ∂Ωo = Γuo ∪ Γto with Γuo ∩ Γto = ∅. The weak formulation of the problem, may be stated as:
Determine u (xo, t) ∈ Kinuo , for each t ∈ [0, tf ], such that
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ℑ (u; v̂) = ∫Ωo
P · ∇v̂dΩo − ∫Ωo

ρob · v̂dΩo − ∫Γt
o
to.v̂dΩo = 0 ∀v̂ ∈ V aruo . (9)

Here, ρo is the density at the reference configuration, P is the first Piola-Kirchhoff stress tensor,
P = JσF−T = τF−T , with J = det [F], σ is the Cauchy stress and τ the Kirchhoff stress tensor.

2.3 Work conjugation and stress measures

According to Hill, a stress-strain pair, (Σ,γ), defined at the reference configuration, is conjugate if the
rate of stress work per unit of mass is invariant, i.e.,

Ẇ =
1

ρ
(σ ·D) =

1

ρo
(Σ · γ̇) . (10)

where ρ is the current mass density, with Jρ = ρo. Moreover, see [1, 8], one has

Ẇ =
1

ρo
(Σ · γ̇) = 1

ρo
(τ ·D) =

1

ρo

(
P.Ḟ

)
=

1

ρo

(
τ̄Ė
)
, (11)

in which D is the symmetric part of L, L = ḞF−1 , τ̄ is the rotated Kirchhoff stress tensor, given by
τ̄ = RT τR and E is the Hencky’s logarithm strain measure, E = ln (U) .

2.4 Rotational-neutralized form of the constitutive model

Let us define the rotation tensor Λ (t), as the solution to the following initial value problem: Given
Ω (t), Find Λ (t) that solves

Λ̇ (t) = Ω (t) Λ (t) . (12)

with Λ (0) = I. Considering here, Ω = ṘRT , where R is determined from the polar decomposition of
F, F = RU, one derives by inspection that Λ (t) = R (t).

Definition Here, one defines the pull back transformation of v, A, and B as

v̄ (t) = Λ (t)
T
v (t) ,

Ā (t) = Λ (t)
T
A (t)Λ (t) ,

B̄ (t) = Λ (t)
T
Λ (t)

T
B (t)Λ (t)Λ (t) .

(13)

From continuum mechanics, one has F̄ (t) = Λ (t)
T
F (t) and D̄ (t) = Λ (t)

T
D (t)Λ (t). These pull

back (rotation neutralized) quantities with Λ (t) are used to define a convenient framework in which
the integration of the constitutive model is performed.

By applying the pull back operator to the conjugate stress-strain pair, (Σ,γ), one may extend the
hereditary constitutive equation as
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γ̄(t) = C̄(t)Σ̄(0) + ∫ t0 C̄(t− ξ)
·
Σ̄(ξ)dξ, (14)

in which Σ̄ (t) = Λ (t)
T
Σ (t)Λ (t) and γ̄(t) = Λ (t)

T
γ (t)Λ (t).

In the particular case where Λ (t) = R (t) the pull back of the Kirchhoff stress leads to the rotated
Kirchhoff stress, defined as τ̄ (t) = R (t)

T
τ (t)R (t). Also, one can show that ˙̄τ (t) = Λ (t)

T ⊙
τ (t)Λ (t),

where
⊙
τ (t) is the Green-Naghdi rate of the Kirchhoff stress. Moreover, D̄ = Ė, see [8], where D̄ (t) =

R (t)
T
D (t)R (t). As a result, the extended hereditary constitutive equation, may be written as

E(t) = C̄(t)τ̄(0) + ∫ t0 C̄(t− ξ) ˙̄τ(ξ)dξ. (15)

Considering the material to be isotropic, one has C̄ = C, which yields

E(t) = _
B(t)

3
p̄(0)I+

J(t)

2
τ̄D(0) + ∫ t0

{
B(t− ξ)

3

·
p̄(ξ)I+

J(t− ξ)
2

·
τ̄
D

(ξ)

}
dξ. (16)

in which
·
τ̄D(t) ≡ IIdev

·
τ̄(t) and

·
p̄(t) ≡ 1

3 tr
[ ·
τ̄(t)

]
are the deviator and hydrostatic part of

·
τ̄(t). Now,

decomposing the strain tensor as E(t) = e (t) I+ED(t) gives

e (t) =
B(t)

3
p̄(0) + ∫ t0

B(t− ξ)
3

·
p̄(ξ)dξ (17)

and

ED(t) =
J(t)

2
τ̄D(0) + ∫ t0

J(t− ξ)
2

·
τ̄
D

(ξ)dξ. (18)

Now, introducing the Prony series for J(t) and B(t) finally gives

ED(t) = _
J0
2
τ̄D(t) +

nj∑
i=1

Ji
2

(
1− exp

(
− t

τJi

))
τ̄D(0) +

nj∑
i=1

∫ t0
{
Ji
2

(
1− exp

(
− t− ξ

τJi

))}
.
τ̄
D
(ξ)dξ

(19)
and

e (t) = _
B0

3
p̄(t)+

nB∑
i=1

Bi
3

(
1− exp

(
− t

τBi

))
p̄(0)+

nB∑
i=1

∫ t0
{
Bi
3

(
1− exp

(
− t− ξ

τBi

))}
·
p̄(ξ)dξ. (20)
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3 Discretization of the visco-hypoelasticity model

3.1 Incremental weak formulation of the problem

Let un+1 = u (xo, tn+1), un = u (xo, tn), Fn+1 = I +∇un+1 and Fn = I +∇un. Assume now that
the configuration Ωn and the state variables are known at tn and enforce the equilibrium equations
at Ωn+1. As a result, one can determine the incremental weak formulation of the problem, between
tn and tn+1, stated by: Determine un+1 ∈ Kinuo so that

ℑ (un+1; v̂) = ∫Ωo
P (un+1) · ∇v̂dΩo − ∫Ωo

ρob.v̂dΩo − ∫Γt
o
to.v̂dAo = 0 ∀v̂ ∈ V aruo (21)

with un+1 = un +∆un.
Since the problem is non-linear, one applies Newton’s method leading to the solution of a sequence of

linearized problems, described as follows: Let ukn+1 be the estimator at the k-th iteration and consider
that ukn+1 = un at k = 0. For the k-th iteration of the solution procedure, one has

uk+1
n+1 = ukn+1 +∆ukn+1 (22)

The determination of ∆ukn+1 is obtained by assuming ℑ (◦) to be Gâteaux differentiable and by
enforcing ℑ

(
ukn+1 +∆ukn+1;w

)
= 0 ∀w ∈ Vu. As a result, one derives

Dℑ
(
ukn+1; w

) [
∆ukn+1

]
= −ℑ

(
ukn+1; w

)
(23)

where

Dℑ
(
ukn+1;w

) [
∆ukn+1

]
=

d

d ∈
[
ℑ
(
ukn+1+ ∈ ∆ukn+1;w

)]
∈=0

. (24)

Now, since Ωo is fixed and the prescribed loading are assumed to be independent of the displacement
field, one derives

d

d ∈

[
ℑ
(
ukn+1+ ∈∆ukn+1; v̂

)]∣∣∣
∈=0

= ∫Ωo

d

d ∈
[
P
(
ukn+1+ ∈ ∆ukn+1

)]∣∣
∈=0

.∇v̂ dΩo (25)

However, P = P
(
F
(
ukn+1+ ∈∆ukn+1

))
which leads to

Dℑ
(
ukn+1; v̂

) [
∆ukn+1

]
= ∫ΩoA

(
ukn+1

)
∇
(
∆ukn+1

)
: ∇v̂ dΩo (26)

with
[
A
(
ukn+1

)]
ijkl

=
∂Pij

∂Fkl

∣∣∣
uk
n+1

.

3.2 Determination of the consistent tangent modulus

Now, since PT
n+1 = τTn+1F

−T
n+1 one derives
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[
A
(
ukn+1

)]
ijkl

=
∂τip
∂Fkl

F−1
jp − τipF

−1
jk F

−1
lp (27)

However, τn+1 = Rn+1τ̄n+1R
T
n+1, which leads to

∂τn+1

∂Fn+1
=
∂Rn+1

∂Fn+1
τ̄n+1R

T
n+1 +Rn+1D̂n+1R

T
n+1 +Rn+1τ̄n+1

∂RT
n+1

∂Fn+1
(28)

where D̂n+1 = ∂τ̄n+1

∂Fn+1
, ∂Rn+1

∂Fn+1
= ∂Fn+1

∂Fn+1
(Un+1)

−1 − Rn+1
∂Un+1

∂Fn+1
(Un+1)

−1 and ∂Un+1

∂Fn+1
is determined

from the relation Cn+1 = FTn+1Fn+1 = U2
n+1.

The determination of D̂n+1 requires the computation of En+1, in which En+1 = en+1I+EDn+1 with
en+1 and EDn+1 denoting respectively the volumetric and deviator part of En+1. In fact,

EDn+1 = E
D(0)
n+1 +

nj∑
i=1

E
D(i)
n+1 with E

D(0)
n+1 = _

J0
2
τ̄Dn+1 (29)

and

E
D(i)
n+1 =

Ji
2

(
1− exp

(
− tn+1

τJi

))
τ̄D(0) + ∫ tn0

{
Ji
2

(
1− exp

(
− tn+1 − ξ

τJi

))}
∂τ̄D

∂ξ
(ξ)dξ

_ + ∫ tn+1

tn

{
Ji
2

(
1− exp

(
− tn+1 − ξ

τJi

))}
∂τ̄D

∂ξ
(ξ)dξ

(30)

Defining tn+1 = _tn +∆t, t
n+

1
2
= tn + ∆t

2 and τ̄Dn+1 = τ̄Dn +∆τ̄Dn one derives

E
D(i)
n+1 =

Ji
2
τ̄D0 −

Ji
2
exp

(
− tn
τJi

)
exp

(
−∆t

τJi

)
τ̄D0

+ ∫ tn0
Ji
2

∂τ̄D

∂ξ
(ξ)dξ −

{
∫ tn0

Ji
2
exp

(
− tn − ξ

τJi

)
∂τ̄D

∂ξ
(ξ)dξ

}
exp

(
−∆t

τJi

)
+ ∫ tn+1

tn

Ji
2

∂τ̄D

∂ξ
(ξ)dξ −

{
∫ tn+1

tn

Ji
2
exp

(
− tn − ξ

τJi

)
∂τ̄D

∂ξ
(ξ)dξ

}
exp

(
−∆t

τJi

)
.

(31)

Now, applying Euler’s method leads to the following approximation

E
D(i)
n+1 ≃

Ji
2
τ̄Dn+1 − ĔD(i)

n exp

(
−∆t

τJi

)
− Ji

2
∆τ̄Dn exp

(
− ∆t

2τJi

)
(32)

in which Ĕ
D(i)
n may be approximated by applying Euler’s method as

ĔD(i)
n = E

D(i)
n−1 exp

(
−∆t

τJi

)
+
Ji
2
∆τ̄Dn−1 exp

(
− ∆t

2τJi

)
(33)

Moreover,
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en+1 = e
(0)
n+1 +

nB∑
i=1

e
(i)
n+1 with e

(0)
n+1 =

B0

3
p̄n+1 (34)

and

e
(i)
n+1 =

Bi
3

(
1− exp

(
− tn+1

τBi

))
p̄0 + ∫ tn+1

0

{
Bi
3

(
1− exp

(
− tn+1 − ξ

τBi

))}
∂p̄

∂ξ
(ξ)dξ. (35)

Now, defining p̄n+1 = _p̄n +∆p̄n yields

e
(i)
n+1 =

Bi
3
p̄0 −

Bi
3

exp

(
− tn
τBi

)
exp

(
−∆t

τBi

)
p̄0

+ ∫ tn0
Bi
3

∂p̄

∂ξ
(ξ)dξ −

[
∫ tn0

Bi
3

exp

(
− tn − ξ

τBi

)
∂p̄

∂ξ
(ξ)dξ

]
exp

(
−∆t

τBi

)
+ ∫ tn+1

tn

Bi
3

∂p̄

∂ξ
(ξ)dξ −

[
∫ tn+1

tn

Bi
3

exp

(
− tn − ξ

τBi

)
∂p̄

∂ξ
(ξ)dξ

]
exp

(
−∆t

τBi

) (36)

Applying Euler’s method one derives the following approximation

e
(i)
n+1 ≃ __

Bi
3
p̄n+1 − ĕ(i)n exp

(
−∆t

τBi

)
− Bi

3
(∆p̄n) exp

(
− ∆t

2τBi

)
1

2
. (37)

in which ĕ(i)n is approximated as

ĕ(i)n = __e(i)n−1 exp

(
−∆t

τBi

)
+
Bi
3
∆p̄n−1 exp

(
− ∆t

2τBi

)
. (38)

Now, since τ̄n+1 = p̄n+1I + τ̄Dn+1 one has D̂n+1 = _ ∂τ̄n+1

∂Fn+1
= ∂p̄n+1

∂Fn+1
I +

∂τ̄D
n+1

∂Fn+1
. However, since

en+1=en+1

(
p̄n+1, τ̄

D
n+1

)
and EDn+1 = EDn+1

(
p̄n+1, τ̄

D
n+1

)
one may differentiate both equations with

respect to Fn+1, apply the chain rule of differentiations and derive a set of equations that is solved
for ∂p̄n+1

∂Fn+1
and ∂τ̄D

n+1

∂Fn+1
.

4 Problem cases and conclusion

4.1 Example 1

Consider here a rectangular domain, as depicted in Fig. 1.
The body is submitted to a prescribed displacement condition, under a plane strain state, given

by _u(1, y, t) = ū ∗ t, with _ū = 0.1in. The numerical solution is compared with an analytical
solution derived as follows: Let _x( t) = λ1(t)xo and _y( t) = λ2(t)yo. By a simple computation from
the boundary condition and considering _J( t) = 3.2386 ∗ 10−8(1 − exp(− 1

20.2599 t) + 5.8578 ∗ 10−7

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



A finite displacement visco-hypoelasticity model 139

Figure 1: Description of the problem.

psi−1and supposing the block is composed by a polymer with B( t) = 4.7279∗10−8(1−exp(− 1
19.8283 t)+

8.7867 ∗ 10−7 psi−1 one may compute the exact solution for this homogeneous deformation problem
and compare it with the numerical solution derived by the proposed numerical scheme.

Figure 2 shows a comparison of the exact and numerical values regarding the evolution of the σxx
Cauchy stress component.

Figure 2: Evolution of the σxx Cauchy stress component (psi) versus time (days).

4.2 Example 2

Consider the problem depicted in Fig. 3, subjected to a plane strain condition. The dimensions in Fig.
3 are given all in inches.

The body is submitted to a prescribed displacement condition on the right side, as shown. The
remaining boundary conditions are stress free conditions. The prescribed displacement is applied by
a linear ramp and given by _ux( t) = ū ∗ t, with ū=-0.3 in. The polymer is the same as in example 1
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Figure 3: Description of the problem. Figure 4: Description of the finite element mesh
Tri 6 element.

and the time scale is taken in days. The mesh employed 337 elements and has 755 nodes as shown in
Fig. 4.

Figure 5 shows the distribution of the σxx Cauchy stress component.
Figure 6 shows the distribution of the σxy Cauchy stress component.
Figure 7 shows the distribution of the σyy Cauchy stress component.

Figure 5: Distribution of the σxx Cauchy stress
component at t=1 day.

Figure 6: Distribution of the σxy Cauchy stress
component at t=1 day.
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Figure 7: Distribution of the σyy Cauchy stress component at t=1 day.

5 Conclusion

A viscoelastic model for large displacement and rotations has been proposed. The hereditary consti-
tutive equation is defined in terms of a stress and a strain measure defined both at the unrotated
configuration of the body. An implicit algorithm was also proposed and the consistent tangent oper-
ator associated with the implicit algorithm was determined. The proposed algorithm was tested and
compared with an exact analytical solution. The integration of the hereditary relation preserves objec-
tivity so may be used to properly simulate the viscoelastic behavior of components subjected to large
displacements and rotations.
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Abstract

A particular implementation of the hybrid boundary element method is presented for the two-dimensional anal-
ysis of potential and elasticity problems, which, although general in concept, is suited for fracture mechanics
applications. Generalized Westergaard stress functions, as proposed by Tada et al in 1993, are used as the
problem’s fundamental solution. Problems of general topology, such as in case of unbounded and multiply-
connected domains, may be modeled. The formulation, which is directly applicable to notches and generally
curved, internal or external cracks, is specially suited for the description of the stress field in the vicinity of
crack tips and is an easy means of evaluating stress intensity factors and of checking some basic concepts laid
down by Rice in 1968. The paper focuses on the mathematical fundamentals of the formulation. One validating
numerical example is presented.

Keywords: Westergaard stress functions, Hellinger-Reissner potential, variational methods, hybrid boundary
element.

1 Introduction

Tada et al [1] proposed a simple and efficient method of developing Westergaard stress functions for
the analysis of displacement-prescribed and stress-prescribed crack problems. Their intervention was
restricted to the mathematical means of arriving at the stress functions and the illustration of several
forms of crack openings – always in terms of analytical developments.

The present paper makes use of Tada et al’s method and shows that such stress functions may be
implemented as fundamental solutions of a generalized, two-dimensional boundary element method,
and applied to problems that can be completely unrelated to fracture mechanics. On the other hand,
the formulation can be directly and advantageously applied to fracture mechanics [2, 3].

Tada et al’s basic idea is extremely simple [1], as shown in Section 3. Although there is no claim
of originality in the developments of the next Sections [4], they highlight some relevant mathematical
aspects that Westergaard-like potential functions must satisfy to be applicable in the framework of an
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integral statement. Next, a fundamental solution for potential problems is constructed and singularity
issues are discussed.

In the present outline, Tada et al’s method is used to define a non-dimensional potential function Φ

that may have an in principle arbitrary configuration, depending on the local geometrical assumptions
that are made, with all developments obtained in terms of Φ and its derivatives. Several configuration
possibilities of Φ have been previously studied for the modeling of potential problems in a variational
framework [4]. In an extended manuscript [5], the potential function corresponds to the superposition of
two elliptical half cracks, for a homogeneous slab of constant thickness under plane strain. The locally
generated stresses and displacements (the latter ones evaluated except for rigid body displacements)
tend to zero at a point that goes increasingly farther from the crack (σ∞ = 0). In this paper, the
developments of interest are particularized to potential problems, which present exactly the same
mathematical issues as in elasticity.

This paper starts with a very brief outline of the hybrid boundary element method, as a representa-
tive formulation that can make use of the generalized Westergaard stress functions. Then, Tada et al’s
proposition is briefly presented and developed for a general, rotated (semi-)crack configuration, which
includes the assessment of all possible singularities. The formulation is applied to the solution of the
Laplace equation, which is per se relevant, but turns out to be the simplest framework for the outline
of all mathematical aspects and issues related to a code implementation of the more general problem
of elasticity. One numerical example is shown in order to validate the proposed developments.

2 Problem solution with the hybrid boundary element method

The hybrid boundary element method (HBEM) was introduced in 1987 on the basis of the Hellinger-
Reissner potential and as a generalization of Pian’s hybrid finite element method [6, 7]. The formulation
requires evaluation of integrals only along the boundary and makes use of fundamental solutions
(Green’s functions) to interpolate fields in the domain. Accordingly, an elastic body of arbitrary shape
may be treated as a single finite macro-element with as many boundary degrees of freedom as desired.
In the meantime, the formulation has evolved to several application possibilities, including time-
dependent problems, fracture mechanics, non-homogeneous materials and strain gradient elasticity [2,
8–10].

2.1 Problem formulation

Let an elastic body be submitted to tractions t̄i on part Γσ of the boundary Γ and to displacements
ūi on the complementary part Γu. For the sake of brevity, body forces are not included [11]. One is
attempting to find the best approximation for stresses and displacements, σij and ui, such that

σji,j = 0 in the domain Ω, (1)

ui = ūi along Γu and ti = σij nj = t̄i along Γσ (2)

in which nj is the outward unit normal to the boundary. Indicial notation is used.
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2.2 Stress and displacement assumptions

Two independent trial fields are assumed [6, 7]. The displacement field is explicitly approximated along
the boundary by udi , where ( )d means displacement assumption, in terms of polynomial functions uim
with compact support and nodal displacement parameters d = [dm] ∈ Rnd

, for nd displacement
degrees of freedom of the discretized model. An independent stress field σsij , where ( )s stands for
stress assumption, is given in the domain in terms of a series of fundamental solutions σ∗

ij m with
global support, multiplied by force parameters p∗ = [p∗m] ∈ Rn∗

applied at the same boundary nodal
points m to which the nodal displacements dm are attached (n∗ = nd).1 Displacements usi are obtained
from σsij . Then,

udi = uim dm on Γ such that udi = ūi on Γu; (3)

σsij = σ∗
ijm p

∗
m such that σ∗

jim,j = 0 in Ω (4)

⇒ usi = u∗im p
∗
m + uris Csm p

∗
m in Ω (5)

where u∗im are displacement fundamental solutions corresponding to σ∗
ijm. Rigid body motion is

included in terms of functions uris multiplied by in principle arbitrary constants Csm [11, 12].

2.3 Governing matrix equations

The Hellinger-Reissner potential, based on the two-field assumptions of the latter section, as imple-
mented by Pian [6] and generalized by Dumont [7], leads to two matrix equations that express nodal
equilibrium and compatibility requirements. Dumont [11] shows that the simplest, and still mathe-
matically consistent, means of laying out these equations is in terms of two separately virtual work
principles.

One obtains from a displacement virtual-work statement the matrix equilibrium equation

Hmn p
∗
m = pn or HT p∗ = p (6)

in which H = [Hnm] ∈ Rnd×n∗
is the same double layer potential matrix of the collocation boundary

element method [13], and p = [pn] ∈ Rnd

are equivalent nodal forces obtained as in the displacement
finite element method.

Moreover, a stress virtual-work statement leads to

F ∗
mnp

∗
n = Hmndn or F∗p∗ = Hd (7)

where H, which already appeared in Eq. (6), is recognized as performing a kinematic transformation,
and F∗ = [F ∗

nm] ∈ Rn∗×n∗
is a symmetric, flexibility matrix. The matrices H and F∗ may be compactly

1For Kelvin fundamental solutions, as in the conventional boundary element method and in the basic version of the
HBEM, p∗m are point forces. In the present outline, p∗m are the resultants of forces applied at crack faces. The problem
has the same mathematical format, although with different singularity issues. In a more generalized formulation, p∗m
may be just parameters with no special mechanical meaning [11].
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defined as

[Hmn F ∗
mn] =

∫
Γ

σ∗
ijmnj ⟨uin u∗in⟩ dΓ (8)

Solving for p∗ in Eqs. (6) and (7), one arrives at the matrix system

HTF∗(−1)Hd = p (9)

where HTF∗(−1)H ≡ K is a stiffness matrix. The inverse F∗(−1) must be evaluated in terms of
generalized inverses, as F∗ is singular for a finite domain Ω [11]. Results at internal points are expressed
in terms of Eqs. (4) and (5) after evaluation of p∗ in either Eq. (6) or (7).

3 Dislocation-based formulation by Tada et al

Tada et al [1] show that, for a prescribed crack opening of the shape f(x) in the interval [x1, x2] along
the x axis and symmetric with respect to this axis in the Cartesian coordinate system (x, y), one can
define a potential function Φ(z) of the complex argument z = x+ iy,

Φ(z) = − 1

2π

∫ x2

x1

f(x)

z − x
dx (10)

and then obtain the corresponding stress and displacement functions, as a generalization of West-
ergaard’s initial proposition in the frame of the fracture mechanics. Several crack and stress config-
urations are investigated by Tada et al [1], as translation and superposition of effects can always
be applied to compose intrincated crack patterns. Westergaard’s developments for an elliptic crack
opening of length 2a are obtained if one chooses the function

f(x) =

√
a2 − x2
a

(11)

and then carries out the integration of Eq. (10) in the interval [−a, a].

4 Basics on a rotated semicrack

A very simple, although apparently original generalization of the above developments is obtained for
a semicrack of length a1 along a straight line that is rotated in the counter clock direction by an angle
θ1, Fig. 1, with which it is possible to compose kinked cracks of any length [4], as developed in the
rest of this paper. To make calculations as simple as possible, the crack shape function of Eq. (11),
or any other shape, is initially defined for a semicrack length a = 1 and the integration of Eq. (10) is
carried out in the interval [0, 1]. Although the crack shape may be rather general, as given by Tada
et al [1] and as already explored in the present framework [4], the ensuing developments are given
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for the elliptic semicrack corresponding to Eq. (11). The corresponding expression of Eq. (10) for the
semicrack 1 is

Φ1 ≡ Φ(Z1) = −
Z1

4
− 1

2π

(
1−

√
1− Z2

1 ln

(
−1 +

√
1− Z2

1

Z1

))
(12)

already given as argument of Z1 = zT1 ≡
z

a1
e−iθ1 ≡ x+ iy

a1
e−iθ1 ≡ r

a1
ei(θ−θ1), from which the

definition of the rotation and normalization term T1 is inferred. The leading terms of Φ1 at Z1 = 0

 

x 

y 
x1 

y1 

�1 

a1 

0.5 

0.5 

Figure 1: Semicrack of length a1 rotated by an angle θ1.

are

lim
r→0

ReΦ1 =
− ln (r)− 1 + ln (2a1)

2π
; lim

r→0
ImΦ1 =


π − θ + θ1

2π
for θ1 ≤ θ ≤ θ1 + π

−π − θ + θ1
2π

for θ1 + π < θ < θ1 + 2π

(13)
The first derivative of Φ(Z1) with respect to Z1 is

Φ′
1 ≡

∂Φ(Z1)

∂Z1
= − 1

2π

(
Z1 ln

(
−1 +

√
1− Z2

1

Z1

)
1√

1− Z2
1

+
1

Z1
+
π

2

)
(14)

with corresponding real and imaginary parts of the leading terms at Z1 = 0:

lim
r→0

Re Φ′
1 = −cos (θ − θ1) a1

2πr
− 1

4
; lim

r→0
Im Φ′

1 =
sin (θ − θ1) a1

2πr
(15)

The second derivative of Φ(Z1) with respect to Z1 is only required for elasticity problems and is not
developed [3, 5].
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5 Developments for a potential problem

The above developments are now applied to the derivation of a fundamental solution that can be used
in the context of a hybrid boundary element method for potential problems. The developments in this
Section are per se relevant and self contained. However, they also serve as motivation to the more
involved – and less intuitive – problem of elasticity [3, 5].

5.1 Construction of a fundamental solution

A solution of the Laplace equation
∂2u

∂x2
+
∂2u

∂y2
= 0, say, for the steady-state heat transfer in a

homogeneous plate of uniforme thickness t with coefficient of conductivity k, can be obtained from
Φ1, as introduced in Eq. (12), in terms of the potential

u1 =
1

k
ImΦ1 (16)

with fluxes referred to the global Cartesian system (x, y)

qx1 = −k∂u1
∂x

= −Im (T1Φ
′
1) ; qy1 = −k∂u1

∂y
= −Re (T1Φ

′
1) (17)

and normal flux

qn1 = −qx1nx − qy1ny along Γ (18)

Let two segments of lengths a1 and a2 rotated by angles θ1 and θ2, respectively, compose lines of
potential jumps (which correspond to lines of displacement discontinuities – cracks – in the elasticity
case) along the boundary Γ of a body of domain Ω, with segment 1 coming before segment 2, in such
a way that all phenomena along Γ are described in terms of a local variable ξ that runs in the counter
clock direction, as illustrated in Fig. 2. The combined effect of the potential field is proposed as
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5 
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4 
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3 

Figure 2: Representation of two semicracks that compose the crack element # 3 related to node # 4.
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u = u1 − u2 (19)

with mathematical justification that follows immediately. According to Eq. (13), the latter equation
leads to

lim
r→0

u ≡ 1

k
lim
r→0

Im(Φ1 − Φ2) =


θ1 − θ2
2πk

for a point outside Ω

1 +
θ1 − θ2
2πk

for a point inside Ω

(20)

The practical way to evaluate lim
r→0

u =
1

k
+
θ1 − θ2
2πk

for a point inside Ω, and for θ1 and θ2 in any

quadrant, whenever required, is by writing lim
r→0

u = frac

(
1 +

θ1 − θ2
2π

)
1

k
, observing that 0 < lim

r→0
u <

1

k
.
One checks that, for the superposition of effects given in Eq. (19),

lim
r→0

(T1Φ
′
1 − T2Φ′

2) = −
e−iθ1

4a1
+

e−iθ2

4a2
(21)

which is not only finite, but also single valued.
The projections of the outward unit normal n⃗, for Γ rotated by θ1, are nx = sin θ1 and ny = − cos θ1.

Then, for the combined effect of the potential field, as in Eq. (19), the normal flux qn on Γ is

lim
r→0

qn = lim
r→0

(−qxnx − qyny) =
1

4a1
− cos(θ2 − θ1)

4a2
along segment 1 (22)

lim
r→0

qn = lim
r→0

(−qxnx − qyny) =
1

4a2
− cos(θ2 − θ1)

4a1
along segment 2 (23)

Observe that there is a jump in the value of qn as one goes from one segment to the other. If θ2 = θ1+π,

that is, segments 1 and 2 constitute a straight boundary, both limits above result in lim
r→0

qn =
1

4a1
+

1

4a2
,

which means that there is no longer a jump, although qn varies along the segments. Additionally, if
a1 = a2, qn is constant along the entire boundary segment and the integration of qn along the segment
results in a source of unit intensity, Q/t = 1.

Although there are no singularities at r = 0, the expressions of the potential u and of the flux qn
must be carefully assessed around the origin and at the opposite extremities of the segments 1 and
2, as numerical integrations are to be ultimately carried out for the evaluation of the matrices that
result from a boundary element formulation [5].

5.2 Numerical integration of the double-layer potential matrix H for potential problems

The general expression of the double-layer potential matrix H is

H ≡ Hki = −
∫
Γ

(qxk
nx + qykny)Ni|J |dξ (24)
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where k is the node of application of the potential source, i. e., the common node of two adjacent
boundary segments, k−k on the left (segment 1, rotated by an angle θ1) and kk+ on the right (segment
2, rotated by an angle θ2), as described in Section 5.1. The applied boundary potential varies linearly,
according to the interpolation function Ni, from node i to the adjacent nodes on the left and on
the right. Then, the integration interval indicated in the above equation comprehends, for the matrix
coefficient Hki, the two boundary segments that have i as common node (see Fig. 3). In this particular
case, |J | is the corresponding element length, for the natural boundary variable ξ ∈ [0, 1].

The following Section consists in an algorithm for the numerical evaluation of Eq. (24) step by
step along a segment ij, for i varying from 1 to nn, the total number of boundary nodes, and j

characterizing the node that succeeds i when one moves counterclockwise around the domain.
When k = i or k = j, the segment ij coincides with either kk+ or k−k and there are in principle

singularities on both extremities of the segment ij. However, a simplification occurs for potential
problems (as well as for elasticity [5]). For segment 1, for instance, the projections of the outward
unit vector n⃗ are nx = sin θ1 and ny = − cos θ1. Then, one checks that, in Eq. (24), −qx1nx −
qy1ny = qy1(0) = − 1

a1
Re (Φ′

1), which presents an implicit logarithmic singularity at x1 = 0, but can

be approximated by a low-order polynomial as x1 = a1 is approached. The fact that no singularity
exists either at x1 = a1 along the segment 1 or at x2 = a2 along the segment 2 leads to the simple
algorithm to be outlined in the following for the cases that k = j or k = i.

In general, all functions Φ(Z), Φ′(Z) and Φ′′(Z) present ln ξ singularity about Z = 0 and 1/
√
ξ

singularity about Z = 1. For the purpose of numerical integration, as detailed in [5], these functions,
whether in terms of Z1 or Z2, are expanded about the singularity points as, illustratively for Φ(Z),

Φ(Z) ≈ Φln(Z) ln ξ +Φreg(Z) about Z = 0 (25)

Φ(Z) ≈ Φsqrt(Z)/
√
ξ +Φreg(Z) about Z = 1 (26)

In these equations, Φreg(Z) are regular parts of the general functions that are not affected by singu-
larities, although they cannot be represented by low-order polynomials and be integrated in the frame
of a Gauss-Legendre quadrature. Two simple routines, lnproc() and sqrtproc(), have been developed
to carry out integration along an interval [0, 1] by using subintervals that increase geometrically from
ξ = 0 to ξ = 1, as referred to in the next Section [5].

5.2.1 Algorithm for the numerical integration of H

Let nn be the total number of nodes of a discretized model, which coincides with the total number of
discretized boundary segments, as illustrated in Fig. 3. A body of any topology, with reentrant corners,
holes and, after a slight modification of the basic code, also one-dimensional internal obstacles (which
correspond to cracks in an elastic medium), can be simulated. The simulation of an internal crack is
obtained as the modeling of a hole in the domain (similarly to the general numerical example of Fig.
6), then with node numbering running clockwise. However, as illustrated in Fig. 4 for a crack with
n nodes, an arbitrarily placed, fictitious node n + 3 is introduced. After the numerical evaluation of
all matrices, the rows and columns corresponding to nodes 1, n + 2 (which are only needed in the
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definition of the crack configuration) and n + 3 are removed and the effect of the internal crack is
consistently taken into account.
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Figure 3: Illustration of a body discretized with 12 linear boundary elements and the corresponding
definition of the crack segments.

Define the matrices of potential functions and the matrix N of shape functions

Φ′ =
[
Φ′

1 Φ′
2

]
, Φ′

ln =
[
Φ′

1 Φ′
2

]
ln
, Φ′

sqrt =
[
Φ′

1 Φ′
2

]
sqrt

(27)

N =
[
Ni Nj

]
≡
[
1− ξ ξ

]
(28)

The subscripts ( )ln and ( )sqrt indicate that the functions in the matrix coefficients are the ones defined
as in Eqs. (25) and (26). Moreover, define the nn × nn matrix H with all coefficients initially set as
zero.

For the purpose of having the following algorithm as ready as possible for code writing, the coeffi-
cients of all matrices are referred to in brackets, whereas the primary variable is given in parentheses,
such as Φ′(ξ)[c], where c = 1, 2 for the first matrix in Eq. (27).
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Figure 4: Fictitious node n+3 for the simulation of a curved crack with n nodes and n+1 segments.

5.2.1.1 External loop for the potential jumps – corresponding to the source cracks in elastiticy –
with k varying from 1 to nn. Determine the adjacent nodes k− and k+, for the nodes numbered
counterclockwise. Next, obtain cos θ1, sin θ1, cos θ2, sin θ2, according to Section 4.

Define the array of constants

C =
[
T1 −T2

]
(29)

5.2.1.2 Internal loop for the integration segments with i varying from 1 to nn. Determine the sub-
sequent node j, as integration will be carried out along the segment ij.

Evaluate x(ξ) and y(ξ) along the segment ij as well as the projections dx and dy and the Jacobian
|J |. Observe that, in Eq. (24), nxdΓ = dy and nydΓ = −dx. Next, evaluate Z1(ξ) and Z2(ξ), according
to the text after Eq. (12).

Carry out the numerical evaluation of the 2× 2 complex array h in the following logical if structure
using the procedures lnproc( ) and sqrtproc( ) given in Reference [5]. In the loops to be presented,
c = 1, 2 refers to either semicrack 1 or 2, and n = 1, 2 refers to either extremity i or j of a segment.

5.2.1.3 If i = k, then there is an embedded logarithmic singularity at the extremity ξ = 0 of the
segment ij caused by the potential jumps along both segments kk+ and k−k: case (a) of Fig. 5.

For c and n varying from 1 to 2 in two nested loops,
Define f = Φ′(ξ)[c]N(ξ)[n], fln = Φ′

ln(ξ)[c]N(ξ)[n], freg = f − fln(ξ) ln ξ and obtain h[n, c] using
the procedure lnproc(h[n, c]).

End of the nested loops with control variables c, n.

5.2.1.4 Else if j = k, then there is an embedded logarithmic singularity at the extremity ξ = 1 of
the segment ij caused by the potential jumps along both segments kk+ and k−k: case (b) of Fig. 5.

For c and n varying from 1 to 2 in two nested loops,
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Figure 5: Illustration of the five cases to be taken into account in the numerical evaluation of the
integral of Eq. (24).

Define f = Φ′(1− ξ)[c]N(1− ξ)[n], fln = Φ′
ln(1− ξ)[c]N(1− ξ)[n], freg = f − fln(ξ) ln ξ and obtain

h[n, c] using the procedure lnproc(h[n, c]).
End of the nested loops with control variables c, n.

5.2.1.5 Else if i = k+, then there is a square-root singularity at the extremity ξ = 0 of the segment
ij caused by the potential jump 1 along the segment kk+: case (c) of Fig. 5. There is no singularity
associated with the potential jump 2.

For n varying from 1 to 2,
Define f = Φ′(ξ)[1]N(ξ)[n], fsqrt = Φ′

sqrt(ξ)[1]N(ξ)[n]/
√
Z1(1)− 1, freg = f − fsqrt(ξ)/

√
ξ and

obtain h[n, 1] using the procedure sqrtproc(h[n, 1]).
Define f=Φ′(ξ)[2]N(ξ)[n] and carry out the Gauss-Legendre quadrature h[n, 2]=

∑ng

ig=1 f(ξg[ig])wg[ig].
End of the loop with control variable n.

5.2.1.6 Else if j = k−, then there is a square-root singularity at the extremity ξ = 1 of the segment
ij caused by the potential jump 2 along the segment k−k: case (d) of Fig. 5. There is no singularity
associated with the potential jump 1.

For n varying from 1 to 2,
Define f = Φ′(1 − ξ)[2]N(1 − ξ)[n], fsqrt = Φ′

sqrt(1 − ξ)[2]N(1 − ξ)[n]/
√
Z2(0)− 1, freg = f −

fsqrt(ξ)/
√
ξ and obtain h[n, 2] using the procedure sqrtproc(h[n, 2]).

Define f=Φ′(ξ)[1]N(ξ)[n] and carry out the Gauss-Legendre quadrature h[n, 1]=
∑ng

ig=1 f(ξg[ig])wg[ig].
End of the nested loops with control variable n.

5.2.1.7 Else there is no singularity: case (e) of Fig. 5.
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For c and n varying from 1 to 2 in two nested loops,
Define f=Φ′(ξ)[c]N(ξ)[n] and carry out the Gauss-Legendre quadrature h[n, c]=

∑ng

ig=1 f(ξg[ig])wg[ig].
End of the nested loops with control variables c, n.

5.2.1.8 End if End of the structured logical if.
Define the matrix of boundary unit projections referred to the segment ij, as introduced in Eq.

(22),

n =
[
nx ny

]
(30)

The coefficient Hcoef of the matrix H in Eq. (24) is obtained in the following loop, according to Eq.
(18), for nodes i and j given in the array i ≡ [i, j].

5.2.1.9 Loop for extremities i and j, with n varying from 1 to 2. Evaluate the matrix expression (an
inner product, for potential problems)

Hcoef =

[
2∑
c=1

C[c, 1] Im(h[n, c]) +C[c, 2]Re(h[n, c])

]
nT (31)

The matrix H, whose coefficients may already have contribution from a preceding integration over an
adjacent segment, is obtained as

H[k, i[n]] = H[k, i[n]] +Hcoef (32)

5.2.1.10 End of loops with control variables n, i, k.

6 A numerical example

A logarithmic potential source Φ = ln
√
(x+ 10)2 + (y − 25)2/(2π) is applied at node F of an unbounded

two-dimensional continuum, as illustrated in Figure 6. One cuts out the depicted irregular figure and
applies the generated potential and gradients to the drawn boundaries, thus creating a problem (for
the Laplace equation) of simple, known analytical solution. However, the reentrant corner and the
internal hole of the figure pose some topological difficulties to the numerical simulation of the poten-
tial problem. The figure is composed of a total of 104 nodes and linear segments, which are equally
spaced between the indicated corner nodes, whose coordinates are given in Table 1. A series of 51 point
along the line segment AB are also generated for the representation of numerical results at internal
points.

The simplest problem that can be solved in this example is for Neumann boundary conditions, when
only the matrix H of Eq. (6), as developed in Eq. (24) for potential problems, needs be evaluated.
Although H is a singular matrix for a bounded domain, the equivalent nodal gradients p of Eq. (6)
are in balance and the posed linear algebra problem admits of just one solution p∗, to be obtained in
the frame of generalized inverse matrices [2, 3, 5, 7]. Once p∗ is evaluated, gradients and potentials can
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Node 1 17 27 50 69 87 93 99 A B F

x 0 10 20 15 0 10 11 12 5 15 -10

y 0 15 10 35 20 20 21 20 20 18 25

Table 1: Cartesian Coordinates of the nodes that constitute Fig. 6.

 

17 

50 

69 87 

93 

99 

F 

A 

B 

1 

27 

x 

y 

Figure 6: Cut-out model for the numerical modeling of a multiply connected body.

be obtained according to Eqs. (4) and (5). Figure 7 shows on the left both analytical and numerical
values of the potential, as obtained along the line segment AB. Since this is a Neumann problem,
a constant potential was added to the numerical results in order that both analytical and numerical
values best coincide. Analytical and numerical values of gradients are also shown in Fig. 7.

Comparisons with a code developed using Kelvin fundamental solution (Φ = ln r, for potential
problems) have been already carried out. The accuracy is matched for internal points that are far
from the boundary. However, the boundary layer effect is larger in the case of fundamental solutions
defined in terms of generalized Westergaard functions. This is expected, as the gradient singularity
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Figure 7: Comparison of some analytical and numerical results for the example of Fig. 6.

1/r for Kelvin’s solution is more pronounced and localized than the singularity
√
1/r of the Wester-

gaard function dealt with in this paper. In spite of this more pronounced boundary layer effect, good
accuracy can be still achieved with some post-processing of the results, as done for the case of Kelvin
fundamental solutions [11].

7 Conclusions

The paper presents a novel development of fundamental solutions that are based on generalized West-
ergaard stress functions and are suited for boundary element applications. Although this outline has
used a variational framework – the hybrid boundary element method – as reference for the numerical
implementations, it is possible to use these fundamental solutions in the conventional, collocation
boundary element method, provided only that some concepts be borrowed from the hybrid bound-
ary element method to allow for the evaluation of results at internal points (in order to circumvent
resorting to the time-consuming Somigliana’s identity). The evaluation of stress intensity factors in
fracture mechanics problems – a paramount issue and the primary motivation to the present work –
can be carried out easier and more accurately in the present context than using existing finite element
and boundary element codes. The analytical nature of the singularity of the stress gradients around
a crack tip, as dealt with in terms of Westergaard functions, offers some conceptual possibilities of
better assessing the fracture mechanics problem, too.
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Abstract

The prebuckling enhancement of composite plates equipped with piezoelectric actuators is the subject of this
paper. Piezoelectric actuators are used to induce in-plane traction stiffening stresses in a composite plate,
thereby counteracting external compressive stresses that render the structure unstable. The objective is to
create in-plane piezoelectric stiffening stresses to enhance buckling loads of laminated plates. The idea is to
completely restrain in-plane displacements on its boundary and to apply voltage to piezoelectric actuators
symmetrically bonded to the top and bottom surfaces. This voltage is applied such that the piezoelectric
actuators shrink generating traction stresses in the plate plane. Therefore, if external compressive stresses
destabilize the structure the stiffening piezoelectric traction stresses will act, re-stabilizing the structure.
Analytical approximations and the finite element method are used to compute the piezoelectric stiffening
stresses whereas the finite element method is used to solve the buckling problem. The results presented consider
bifurcation buckling, although the formulation proposed is general enough to be applicable for nonlinear
analysis and critical point type of buckling.

Keywords: buckling, piezoelectric, stress stiffening, composites.

1 Introduction

Composite structures are usually thin in order to save weight, what makes them prone to buckling
caused by several types of loadings (mechanical, thermal, etc.). The incorporation of sensors and
actuators to composite structures is a way of increasing buckling loads. These systems, composed
of host structure and active elements, are then controled to achieve greater buckling capacity. The
active control may be implemented using a variety of materials. Piezoelectric materials, extensively
investigated in the last three decades [1–3], are again becoming popular. These material are applicable
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in areas such as shape control, noise suppression, mitigation of residual vibrations and maximization
of buckling loads.

One of the first studies addressing stability of laminated plates with piezoelectric sensors and actu-
ators attached was carried out by Chandrashenkhara and Bathia [4]. They developed finite element
models, based on the theory of Reissner-Mindlin, to conduct the study. In the same year Meressi
and Paden [2] obtained linearized governing equations of motion of flexible beams with piezoelectric
actuators. Their conclusion was that the beam could have its buckling load increased through the use
of electromechanical effects.

Piezoelectric stiffening effects, also used to advantage in the present work, were shown to significantly
affect the natural frequencies of composite plates as reported by Donadon et al. [5]. Electromechanical
finite elements were developed to numerically analyze composite plates with piezoelectric actuators
and sensors bonded. Several plate configurations were investigated, numerically and experimentally.

Piezoelectric stiffening was used to increase buckling loads of axially restrained composite beams
[6]. Nonzero traction forces generated by piezoelectric actuators along the beam are shown to increase
stiffness elevating the loading capacity of the structure against buckling.

Kundun et al. [7] used the theory of nonlinear large deformations to study post-buckling of piezo-
electric laminated shells with double curvature through the finite element method. Batra and Geng
[8] and Shariyat [9] present proposals to enhance dynamic buckling of flexible plates.

Recently more sophisticated plate theories that consider piezoeletric effects have been developed
[10–12]. Basically these theories adopt improved kinematic relations for the displacement and electric
fields. In the present work a thin composite plate is investigated due to its applicability in the aerospace
industry. Thus, the traditional Mindlin plate theory [13] is simple and precise enough for the purpose
of this investigation and therefore has been chosen as the basis of the finite element formulations
developed.

This work addresses buckling load improvement of composite plates equipped with piezoelectric
actuators. These actuators generate nonzero traction forces in the plate plane which, through stress
stiffening, increase the plate bending stiffness. The plate has its edges constrained in the plane and
negative voltages are applied to the piezo actuators. The actuators tend to shrink inducing traction
forces over the plate plane. Hence, if external compressive forces destabilize the plate, the stiffening
piezoelectric traction stresses will restabilize it. Piezoelectric stiffening stresses are evaluated analyti-
cally for a simple configuration and numerically through the finite element method in more complex
scenarios. The major concern is with the bifurcation type of buckling encountered in plates. However,
the present formulation is general enough to be extended to nonlinear analyses and critical point type
of buckling.

2 Problem formulation

The electromechanical behavior of a plate containing layers of the piezoelectric actuators bonded on
its top and bottom surfaces is described by differential governing equations. In these equations the
electric potential is assumed constant over the surface of the piezoelectric layers and varying linearly
along the thickness of these layers wheareas the buckling analysis of the laminated plate is based on
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the Mindlin plate theory.
A rectangular plate equipped with an arbitrary number of patches of piezoelectric actuators sym-

metrically bonded to its top and bottom surfaces is taken as the basic configuration. Three possible
configurations are shown in Fig. 1.

In the prebuckling regime only in-plane displacements u and v arise due to two mechanisms: (i)
application of in-plane forces Nxx0, Nyy0, Nxy0 or (ii) application of equal and nonzero voltages to
the top and bottom piezoelectric patches. In this phase the plate has its four edges restrained such
that u = v = 0. This is a typical situation of a plate mounted on a primary structure. Moreover, if
the plate was free-free (completely unrestrained), there would be no piezoelectric stiffening stresses.

Figure 1: Basic configurations.

Assuming that the piezoelectric layers are polarized along the z direction (perpendicular to the
plate) the constitutive equations are given in Eq. (1).

σ = Qϵ− eTE, τ = QSγ, d = eϵ+ ξE, (1)

where σ are in-plane stresses, τ are out-of-plane shear stresses, ϵ are the in-plane strains including
nonlinear components, γ are the out-of-plane shear strains, Q is the ply in-plane stiffness matrix in
the structural coordinate system, QS is the ply out-of-plane shear stiffness matrix in the structural
coordinate system, d is the electric displacement, E is the electric field, e is the electro-mechanical
coupling matrix and ξ is the permitivitty matrix. It can be seen that τ is unaffected by piezoelectric
effects [10]. Both composite and piezoelectric materials obey Eq. (1) but the pure composite layer has
e = 0.

The total potential energy of the conservative system is

Π =
1

2

∫
V

σT ϵdV +
1

2

∫
V

τTγdV − 1

2

∫
V

dTEdV −W, (2)

where the work of external forces Nxx0, Nyy0, Nxy0 is represented by W .
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The kinematic assumption for the Mindlin plate displacement reads:

ũ(x, y, z) = u(x, y) + zψx(x, y), ṽ(x, y, z) = v(x, y) + zψy(x, y), w̃(x, y, z) = w(x, y), (3)

where u, v, w are the mid plane displacements (z = 0), ψx, ψy are the mid plane rotations and ũ,
ṽ, w̃ are the displacements of an arbitrary point in the plate. The strains ϵ are composed of three
components: membrane strains ϵ0, curvature κ and nonlinear von Karman strains ϵN such that

ϵ = ϵ0 + zκ+ ϵN =


u,x

v,y

u,y + v,x

+ z


ψx,x

ψy,y

ψx,y + ψy,x

+
1

2


w2
,x

w2
,y

2w,xw,y

 ,

γ =

{
w,x + ψx

w,y + ψy

}
. (4)

Vectors N = { Nxx Nyy Nxy }T , M = { Mxx Myy Mxy }T , Q = { Qxx Qyy }T and

F = { Fxx Fyy Fxy }T , and matrices A, B, D and AS are defined in Eq. (5) in order to facilitate
manipulation of Eq. (2).

(A,B,D) =
∫ h/2
−h/2(1, z, z

2)Qdz, AS =
∫ h/2
−h/2 QSdz, Q = ASγ,

F =
∫ h/2
−h/2 e

TEdz,

{
N

M

}
=

[
A B

B D

]{
ϵ0 + ϵN

κ

}
, (5)

where the integrals are computed over the plate total thickness h. Notice that N, F are in-plane
forces per unit length, Q are shear forces per unit length, and M are bending moments per unit
length but, consistently with usual terminology, these will be simply referred to as forces or moments,
respectively. It is important to remark that the thickness h is total, including possibly piezoelectric
layers. Therefore, piezoelectric layers make a contribution to the laminate stiffness matrices A, B,
D and AS . However, vector F of piezoelectric force is nonzero only if there are piezoelectric layers
present in the laminate and an electric potential is applied. Instead of using the electric field Ez it is
common to introduce the voltage ϕ and piezolectric layer thickness t to write Ez = ϕ/t such that Eq.
(5d) becomes [14] 

Fxx

Fyy

Fxy

 =


e31(ϕT + ϕB)

e32(ϕT + ϕB)

0

 , (6)

where the voltages applied to the top and bottom surfaces of the plate are denoted respectively by
ϕT and ϕB . In practice e32 = e31, what leads to Fxx = Fyy.

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



On buckling enhancement of laminated plates with piezoelectric actuators via stress stiffening 163

Considering prescribed voltages (pure actuation) Eqs. (4) and (5) can be used in Eq. (2) to yield
the first variation of Π:

δΠ =

∫
Ω

(NT δϵ0 +NT δϵN +MT δκ+QT δγ − FT δϵ0 − FT δϵN )dΩ−∫
Γ

(Nxx0, Nxy0) · n⃗ δudΓ−
∫
Γ

(Nxy0, Nyy0) · n⃗ δvdΓ = 0, (7)

where Ω is the in-plane plate domain, Nxx0, Nyy0, Nxy0 are membrane forces applied along the plate
edge Γ (the boundary of Ω), n⃗ is the unit vector normal to Γ and the term containing zFT δκ was
abandoned since full symmetry (ϕT = ϕB) has been admitted. Notice that if ϕT ̸= ϕB then the
prebuckling problem would result in nonzero out-of-plane displacements (w ̸= 0) and no bifurcation
type buckling would occur.

Equations (4) can be substituted into Eq. (7) and, after application of Green’s theorem, allows one
to derive five governing equations

(Nxx − Fxx),x + (Nxy − Fxy),y = 0 , (Nxy − Fxy),x + (Nyy − Fyy),y = 0,

Mxx,x +Mxy,y = Qxx , Myy,y +Mxy,x = Qyy,

Qxx,x +Qyy,y + (Nxx − Fxx)w,xx + (Nyy − Fyy)w,yy + 2(Nxy − Fxy)w,xy = 0 (8)

and in-plane boundary conditions valid on the plate’s edges:

(Nxx − Fxx, Nxy − Fxy) · n⃗ δu = (Nxx0, Nxy0) · n⃗ δu

(Nxy − Fxy, Nyy − Fyy) · n⃗ δv = (Nxy0, Nyy0) · n⃗ δv. (9)

It must be clear that there are three additional boundary conditions associated with δw, δψx, δψy
that, although necessary to solve the buckling problem, are not present in Eq. (9).

The piezoelectric stiffening stress resultants (Nxx−Fxx), (Nxy−Fxy) and (Nyy−Fyy) are evident in
Eqs. (8) and (9). According to Eq. (8c-e), buckling never occurs if there are no piezoelectric stiffening
stresses. Actually, there are two possibilities for buckling to occur: (i) nonzero piezoelectric stiffening
stresses must exist or (ii) external in-plane mechanical forces Nxx0, Nyy0 or Nxy0 must be present,
what corresponds to the traditional buckling problem. Situation (i) is addressed in detail in the next
section.

3 Piezoelectric stiffening stresses

The distribution of piezoelectric stiffening stresses can be obtained through solution of the differential
equations (8a) and (8b) imposing the boundary conditions given in Eq. (9). A closed-form solution
does not exist specially due to the stiffness and piezoelectric force discontinuities on the plate caused
by piezoelectric patches. The addition of piezoelectric layers to the laminated plate obviously increases
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the in-plane laminate matrix A. Also, if nonzero voltages are applied to the patches, then nonzero
forces Fxx, Fyy, Fxy arise.

The purpose of this paper is to improve buckling behavior or to increase buckling loads of struc-
tures whose buckling is of bifurcation type. This can be achieved by proper tailoring of piezoelectric
stiffening stresses. Since composite plates exhibit bifurcation type of buckling they are investigated.
In the bifurcation type buckling of composite plates there is no out-of-plane displacements w in the
prebuckling regime when there is full symmetry on the actuators part (ϕT = ϕB and tT = tB) and
the laminate is symmetric (B = 0). Under these assumptions the linear differential equations in the
prebuckling regime can be obtained through specialization of Eq. (7):

δΠ =

∫
Ω


δu,x

δv,y

δu,y + δv,x


T 


A11 A12 A16

A12 A22 A26

A16 A26 A66




u,x

v,y

u,y + v,x

−


Fxx

Fyy

Fxy


 dΩ = 0. (10)

Even after simplification a closed-form solution to Eq. (10) is not possible. However, an approxi-
mate closed-form solution can be obtained if a symmetric configuration is investigated. If only one
piezoelectric patch aligned with the plate’s edges is bonded at the center of the rectangular plate (see
Fig. 2) then symmetry and boundary conditions read:
• Edge y = 0: v(x, 0) = v,x(x, 0) = v,xx(x, 0) = ... = 0, u,y(x, 0) = 0;
• Edge x = 0: u(0, y) = u,y(0, y) = u,yy(0, y) = ... = 0, v,x(0, y) = 0;
• Edge y = Ly: v(x, Ly) = v,x(x, Ly) = v,xx(x, Ly) = ... = 0, u,y(x, Ly) = 0;
• Edge x = Lx: u(Lx, y) = u,y(Lx, y) = u,yy(Lx, y) = ... = 0, v,x(Lx, y) = 0.
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Figure 2: Basic dimensions
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Symmetry of the problem allows one to conclude that v(x, 0) = 0, u(0, y) = 0, u,y(x, 0) = 0 and
v,x(0, y) = 0. v(x, Ly) = 0 and u(Lx, y) = 0 are enforced geometric boundary conditions. For a
balanced laminate (A16 = A26 = 0 in Eq. (10)) the conditions u,y(x, Ly) = 0 and v,x(Lx, y) = 0 result
from the requirements that Nxy(x, Ly) = Nxy(Lx, y) = 0. The boundary condition in Eq. (9) also
imposes that continuity on Nxx − Fxx and Nxy − Fxy along any line of constant y must be satisfied
as well as continuity on Nxy − Fxy and Nyy − Fyy along any line of constant x. Moreover, since no
fracture is assumed, continuity of displacements u and v throughout must be enforced.

The continuity conditions on Nxx − Fxx for point A and Nyy − Fyy for point B can be written,
along lines y = 0, x = 0, as in Eq. (11):

A∗
11u

∗
,x(lx, 0) +A∗

12v
∗
,y(lx, 0)− Fxx = A11u,x(lx, 0) +A12v,y(lx, 0),

A∗
12u

∗
,x(0, ly) +A∗

22v
∗
,y(0, ly)− Fyy = A12u,x(0, ly) +A22v,y(0, ly). (11)

where a superscript (∗) means that point on the xy plane has both plate and piezoelectric materials.
Discontinuity on u,x(x, 0) and v,y(0, y) can be inferred from Eqs. (11). Since discontinuity in the first
derivatives naturally arise in this particular problem a finite element formulation based on the classical
plate theory is not applicable since it would enforce continuity on u,x and v,y. Hence, Mindlin type of
elements constitute a better option for they are able to capture discontinuities on the first derivatives
of u and v. This element will be detailed in the next section.

Approximate solutions to Eq. (10) under boundary conditions of Eqs. (11) might be obtained using
the Navier method. However, the complexity introduced by the material and geometry discontinuities
would have to be properly treated. Since derivation of analytical solutions is not the main objective,
the approach adopted to find approximate closed-form solutions to Eq. (10) consists in assuming that
the plate depicted in Fig. 2 has a beam-like type of behavior along lines y = 0, x = 0. Obviously this
means that Poisson effects, that may be significant in plate problems, are completely neglected. Thus,
the in-plane differential equations simplify to u,xx(x, 0) = 0 and v,yy(0, y) = 0. Furthermore, Eqs. (11)
become

A∗
11u

∗
,x(lx, 0)− Fxx = A11u,x(lx, 0),

A∗
22v

∗
,y(0, ly)− Fyy = A22v,y(0, ly). (12)

When the boundary conditions u(0, 0) = u(Lx, 0) = 0 and v(0, 0) = v(0, Ly) = 0 and the jump
conditions of Eq. (12) are considered, u,xx(x, 0) = 0 and v,yy(0, y) = 0 may be solved leading to:

u∗(x, 0) =

(
1
Lx
− 1

lx

)
xFxx[

A∗
11

(
1
Lx
− 1

lx

)
−A11

1
Lx

] , u(x, 0) =
(
x
Lx
− 1
)
Fxx[

A∗
11

(
1
Lx
− 1

lx

)
−A11

1
Lx

] ,
v∗(0, y) =

(
1
Ly
− 1

ly

)
yFyy[

A∗
22

(
1
Ly
− 1

ly

)
−A22

1
Ly

] , v(0, y) = (
y
B − 1

)
Fyy[

A∗
22

(
1
Ly
− 1

ly

)
−A22

1
Ly

] . (13)
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The piezoelectric stiffening stress resultants given in Eqs. (11) simplify to:

Txx = A∗
11u

∗
,x(x, 0)− Fxx = A11u,x(x, 0) =

Fxx
A∗

11

A11

(
1− Lx

lx

)
− 1

,

Tyy = A∗
22v

∗
,y(0, y)− Fyy = A22v,y(0, y) =

Fyy
A∗

22

A22

(
1− Ly

ly

)
− 1

. (14)

A numerical example can be solved if one adopts a few properties. Typical physical properties are
given in Tab. 1. Geometric parameters are plate semi-length Lx = 0.2 m, plate semi-width Ly =
0.15 m, piezoelectric actuator semi-length lx = 0.15 m and semi-width ly = 0.05 m. The cross-ply
laminate [0/90]S (which is symmetric and balanced) has four layers of 0.15 mm thickness. Piezoelectric
layers (top and bottom) are 0.05 mm thick. A voltage of ϕT = ϕB = 50 V is applied. This voltage
corresponds to the depoling field given in Tab. 1 since 50 V / 0.05 mm = 1000 V/mm.

Table 1: Physical properties

Property G1195N T300/5208

Young modulus E11 (GPa) 63.0 154.5

Young modulus E22 (GPa) 63.0 11.13

Poisson ratio ν12 0.3 0.304

Shear modulus G12 = G13 (GPa) 24.2 6.98

Shear modulus G23 (GPa) 24.2 3.36

Piezoelectric constant e31 (N/V m) 17.6 -

Piezoelectric constant e32 (N/V m) 17.6 -

Depoling field EMAX (V/mm) 1000 -

Figures 3 and 4 present a comparison between the analytical solutions given in Eq. (13) and the FE
numerical solution, where ξ = x/Lx and η = y/Ly. It is clear that the analytical solution along y = 0

is a very good approximation to the actual displacements. Both u and u,x agree well. However, the
same is not true for analytical solution along x = 0. It can be observed that, although the patterns
for v and v,y are similar in shape, their magnitudes are completely dispair. The conclusion is that, in
this particular configuration, the plate behaves much like a beam in the x direction but not in the y
direction.

Closer observation of Eq. (14) reveals that the piezoelectric stiffening stress resultants depend
basically on two parameters: the relative stiffness a = A∗

11/A11 and the nondimensional actuator
length lx/Lx. In the particular example selected a = 1.14 and lx/Lx = 0.75. Figure 5 shows that,
the smaller a, the greater is the efficiency to generate piezoelectric stiffening stresses. Fortunately,
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Figure 3: Comparison FEM vs. analytical solutions along y = 0
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Figure 4: Comparison FEM vs. analytical solutions along x = 0

in aerospace applications, thin piezoelectric actuators are used leading to practical situations where
1.0 < a ≤ 1.2.

The stiffening stress resultants Nxx and Nyy are shown in Fig. 6 where the boundary of the piezo-
electric actuator is highlighted in black. Notice that Nxx is highly discontinuous along x = 0 and so is
Nyy along y = 0. The discontinuities observed numerically are consistent with Eq. (12). Additionally,
the region where there is compression in the x direction (Nxx < 0) is mostly limited to the region
underneath the actuators. However, the same cannot be said about Nyy. This suggests that long
piezoelectric film strips with large aspect ratios are able to orient stiffening stresses more efficiently
than those with aspect ratios close to unity.
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Figure 5: Stress stiffening efficiency varying with relative stiffness
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Figure 6: Stiffening stress distribution in terms of resultant forces

4 Piezoelectric stress stiffening and buckling

Considering that the membrane prebuckling problem given in Eq. (10) is satisfied, the FEM buckling
equations can be derived from Eq. (7) to yield

δΠ =

∫
Ω

(MT δκ+QT δγ)dΩ+

∫
Ω

(N− F)T δϵNdΩ. (15)
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The finite element method is used to solve the governing buckling problem Eq. (15). The element used
is biquadratic depicted in Fig. 7 whose interpolation functions are:

N1(ξ, η) =
1
4ξ(ξ − 1)η(η − 1) N2(ξ, η) =

1
2 (1− ξ

2)η(η − 1) N3(ξ, η) =
1
4ξ(ξ + 1)η(η − 1)

N4(ξ, η) =
1
2ξ(ξ − 1)(1− η2) N5(ξ, η) = (1− ξ2)(1− η2) N6(ξ, η) =

1
2ξ(ξ + 1)(1− η2)

N7(ξ, η) =
1
4ξ(ξ − 1)η(η + 1) N8(ξ, η) =

1
2 (1− ξ

2)η(η + 1) N9(ξ, η) =
1
4ξ(ξ + 1)η(η + 1)

(16)
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Figure 7: Biquadratic element

The interpolation functions given in Eq. (16) are used to interpolate five degrees of freedom per
node: u, v, w, ψx and ψy. Hence the element contains a total of 45 degrees of freedom per element.
When Eqs. (4), (5) and (16) are introduced into the first integral of Eq. (15) the finite element stiffness
matrix K arises. The biquadratic element is less prone to shear locking than the traditional bilinear
element. However, the reduced selective integration scheme is used to compute matrix K. The second
integral in Eq. (15) contains the membrane forces N and corresponds to a stiffening term (observe that
it involves the nonlinear strains δϵN ). There are two types of contributions to N: (i) the traditional
mechanical stresses N0 due to Nxx0, Nyy0, Nxy0, and (ii) piezoelectric stiffening stresses Np computed
through solution of Eq. (10), such that N = N0 + Np. Therefore, two geometric stiffness matrices
arise: KP

G from
∫
(Np − F)T δϵNdΩ and KG from

∫
NT

0 δϵNdΩ. Therefore, the complete FE buckling
equation becomes (

K+

p∑
i=1

ϕiK
P
Gi − λKG

)
q = 0, (17)

where K is the stiffness matrix, KP
Gi is the piezoelectric geometric stiffness matrix that incorporates the

piezoelectric stiffening stresses and is associated with piezoelectric pair i, KG is the geometric stiffness
matrix, λ is the buckling load and q is the buckling mode. Notice that the formulation presented in
Eq. (17) assumes that voltages of ϕi = 1 V are applied in order to form matrix KP

Gi.
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In order to obtain numerical results for buckling in the presence of piezoelectric stiffening stresses
consider the plate used in the previous section (Lx = 0.2 m and Ly = 0.15 m) and one rectangular
actuator with lx = 4 cm and ly = 3 cm placed in the center of the plate whose sides are parallel to the
sides of the plate. Two types of traditional loadings are applied: (i) uniform compressive loading along
the x direction (λxx) and uniform shear (λxy). The actuator voltage is varied within the limits of the
depoling field, i.e., -50 V ≤ ϕ ≤ +50 V. Figure 8 presents the curves obtained for the [0/90]S and
[±45]S laminates. Points on those curves are obtained through solution of Eq. (17) for different values
of ϕ. Theoretically, buckling occurs under no mechanical loading (either Nxx0 = 0 or Nxy0 = 0) for
some value of ϕ > +50 V for both types of loading. This conclusion agrees with the expectation that,
when positive voltages are applied, compressive stiffening stresses, as those illustrated in Fig. 6, arise,
impairing buckling behavior. Certainly this would not be the case in practice since ϕ > +50 V destroys
polarization of the piezoelectric material. The first buckling modes for the [0/90]S laminate subject to
λxx are presented in Fig. 9 for different values of voltage. The differences between the mode shapes are
not significant but the buckling load dramatically changes as seen in Fig. 8. However, the peaks of the
normalized buckling modes, given in terms of transverse displacements w, become increasingly higher
as the voltage is varied from -50 V to +50 V. The maximum λxx = 660 N/m and λxy = 870 N/m are
associated with ϕ = -50 V. It can be observed that the [±45]S laminate is less sensitive to variations
in ϕ. This is evidence that sensitivity to ϕ is associated with the laminate lay-up. The [±45]S laminate
will suffer from buckling due to stiffening stresses only for value of ϕ substantially above +50 V.
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Figure 8: Buckling load vs. voltage: one patch parallel to plate’s edges

A better understanding of Fig. 8 is gained if a perturbation analysis of the buckling eigenprob-
lem is performed. Assume that the voltage of pair i is slightly perturbed by δϕi such that the new
eigenproblem derived from Eq. (17) becomes
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Figure 9: Buckling modes: [0/90]S laminate under λxx loading

[
K+

p∑
i=1

(ϕi + δϕi)K
P
Gi − (λ+ δλ+ δ2λ+ ...)KG

]
(q+ δq+ δ2q+ ...) = 0, (18)

The zero-, first- and second-order problems derived from Eq. (18) are respectively(
K+

p∑
i=1

ϕiK
P
Gi − λKG

)
q = 0(

p∑
i=1

δϕiK
P
Gi − δλKG

)
q+

(
K+

p∑
i=1

ϕiK
P
Gi − λKG

)
δq = 0(

p∑
i=1

δ2ϕiK
P
Gi − δ2λKG

)
q+

(
p∑

i=1

δϕiK
P
Gi − δλKG

)
δq+

(
K+

p∑
i=1

ϕiK
P
Gi − λKG

)
δ2q = 0. (19)
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Multiplication of Eq. (19b) by qT and using Eq. (19a) yields

δλ =

p∑
i=1

qTKP
Giq

qTKGq
δϕi. (20)

Equation (20) shows that the sign of ∂λ/∂ϕi is related to the positive-definiteness of KP
Gi, KG

and the buckling mode q. In the case of uniform compressive forces matrix KG is positive-definite.
However, the same cannot be said about KP

Gi. In fact, Fig. 6 indicates that the term Nxx − Fxx is
positive in some regions over the plate and negative over others. Hence, the sign of qTKP

Giq depends
ultimately on q. Figure 8 just confirms this finding.

Multiplication of Eq. (19c) by qT and using Eqs. (19a) and Eqs. (19b) yields

δ2λ = −
δqT

(
K+

∑p
i=1 ϕiK

P
Gi − λKG

)
δq

qTKGq
. (21)

Matrix (K +
∑
ϕiK

P
Gi − λKG) is positive-definite provided buckling has not occurred. Therefore,

the sign of δ2λ given in Eq. (21) is certainly negative if KG is positive-definite. Notice that this may
not be the case when shear loadings are applied but it is true for the case where Nxx0 ̸= 0 and
Nxy0 = Nyy0 = 0. Figure 8 confirms that the concavity of the λ vs. ϕ curve is negative.

A network of piezoelectric actuators may be used to try to induce more favorable piezoelectric
stiffening stresses. Figure 1b shows a possibility where the only patch shown in Fig. 1a is split into
four smaller patches such that the total area is maintained constant. This procedure guarantees that,
provided the same voltage is applied, the electric energy required is also the same. Figure 10 presents
the λ vs. ϕ curves obtained assuming that equal voltages are applied to the four patches. Comparison
to Fig. 8 leads one to conclude that the normal and shear buckling loads were decreased for both the
[0/90]S and [±45]S laminates. Therefore, this particular procedure did not bring any improvement to
the buckling loads. However, this simulation suggests that the piezoelectric actuators should be placed
as far from the boundaries as possible in order to boost the potential benefits of the piezoelectric
stiffening stresses.

Figure 1c presents another possibility for placement of the actuators, i.e., patches with arbitrary
orientation. In Fig. 1c the same rectangular patch of Figure 1a is used but it is oriented parallel to
the plate diagonal. Figure 11 presents the λ vs. ϕ curves obtained. Comparison against Figs. 8 and
10 demonstrates that this configuration is the best one for both laminates whenever ϕ < 0 V and
it has good performance for ϕ > 0 V except for extreme values of ϕ very close to +50 V. Hence, if
permitted, the best strategy is to orient the patches along the diagonals, at least for the [0/90]S and
[±45]S laminates.

5 Conclusions

It was shown that piezoelectric actuators can be used to increase buckling loads of composite plates. A
new approach is proposed where stress stiffening effects are employed. Initially, an analytical solution
to the prebuckling in-plane differential equations is pursued. However, discontinuities inherent to the
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Figure 10: Buckling load × voltage: four
patches parallel to plate’s edges.
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Figure 11: Buckling load × voltage: one
patch parallel to plate’s diagonal.

problem preclude derivation of closed-form expressions. This initial exercise demonstrated that the
treatment of discontinuities required Mindlin type of finite elements. A tapered patch design would
certainly smooth out discontinuities but it is not considered because of the little practicableness.

The approximate closed-form solution obtained is applicable to patches of extreme aspect ratios
(length much larger than width). Thus, a numerical solution was proposed using Mindlin type finite
elements in order to compute the piezoelectric stiffening stress distributions. Even tough the governing
differential equations (8) cannot be analytically solved they serve to prove that buckling cannot occur
if there are no stiffening stresses Nxx − Fxx, Nyy − Fyy or Nxy − Fxy. In other words, for buckling
to occur, external in-plane forces (Nxx0, Nyy0, Nxy0) must be applied or else nonzero piezoelectric
stiffening stresses must be present, which are induced by nonzero voltages and geometric boundary
constraints.

Numerical simulations considered two symmetric laminates: [0/90]S and [±45]S . These were selected
because the former is a typical lay-up in aeronautical construction and the later is the optimal lay-up
against buckling in the normal direction (λxx). All the results show that buckling behavior is improved
for negative voltages and is impaired for positive voltages. This is obviously a result of piezoelectric
stiffening stresses over the composite plate. As a practical recommendation piezoelectric actuators
should have their orientations carefully chosen, but the most important finding is that they should be
placed as far as possible from the edges in order to maximize the beneficial effects of the piezoelectric
stiffening stresses.
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Abstract

When the stress accuracy is of extra interest, as in the case of topology optimization with stress constraints,
one has to address the known limitatons of the compatible finite element formulation. In this work we study
the use of patch-based stress recovery techniques and their application to topology optimization. Also, to
address the material variation innerent to topology optimization, we propose the use of a new displacement
based superconvergent stress recovery technique. The effectiveness of the proposed formulation is shown with
the used of two examples.

Keywords: topology optimization, stress constraints, superconvergent patch recovery.

1 Introduction

Nowadays the exponentially growth of industry and the fast advance of technological tools allied
with the need for the development of extreme structures and projects have pushed the structural
optimization to a new level of importance. Economical and ecological issues can be transposed by the
use of structural optimization tools, and more specifically the topology optimization has been playing
an important role related to such topics.

A mass minimization problem with local failure criterions is among the most practical and requested
applications but its proper setting is not straightforward due to theoretical and numerical difficulties. A
constraint in some measure of the maximum stress of a mechanical component is essential to guarantee
its safety, for example. Unfortunately, the imposition of such constraints has always been a challenging
topic in structural optimization, because of two main difficulties. The first one is the singularity that
appears after the relaxation of the original 0-1 problem, since as the density continuously decreases
to zero, the discontinuity of stress shows up. This phenomena was first reported by [1] and since then
several proposals have been presented in the literature to address this problem, such as the ε-relaxation
[2] and the use of smooth envelope functions [3]. The singularity associated to the continuous material
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parameterization is well understood and can be circumvented by changing the asymptotic behavior of
the stress with respect to a change in the material density [4] .

The second one is associated to the large number of local constraints. A precise control of the stress
field inside the design domain is of major concern when dealing with structural optimization. However,
due to its local nature, the stress field would have to be limited at each point of the design, and even
with a discrete domain this procedure leads to a huge number of constraints, typically as numerous as
the number of elements in the mesh. Despite of the high computational effort, some researchers have
successfully adopted this procedure and were able to generate feasible solutions [5] . On the other hand,
the use of just one constraint, or a reduced number of them, would be computationally attractive,
but one generally has to deal with a weak control of the stress level [6], as for example, the use of a
p-norm constraint of the von Mises stress field. Although it represents a stress field measure, it cannot
be related to the maximum stress unless the p parameter tends to infinity, which leads obviously to
numerical difficulties. In a recent work, [7] proposed the use of the following modified constraint

c ∥σeq∥p ≤ σY (1)

where σY is the yield stress,

∥σeq∥p =

(
np∑
e=1

σpeqe

) 1
p

(2)

is the Lp norm of the effective von Mises stresses over np stress points and c is given by

c(k) =
max (σeq)

(k−1)

∥σeq∥(k−1)
p

(3)

where (k−1) stands for the previous iteration number and the max(σeq) symbol means the maximum
value of the effective stress field. This proposal fixes a fundamental problem of the traditional norm
constraint (obtained for c = 1), as it only makes sense if p → ∞, and for low p values there is no
meaning in comparing the norm with the yield stress.

In addition to the previous presented approach, we propose the use of two superconvergent patch
recovery schemes to better evaluate the stress field, leading to a more reliable evaluation of the global
stress constraint.

2 Superconvergent patch recovery

The traditional compatible formulation for finite elements is commonly used to solve the equilibrium
problem in topology optimization. In this formulation, the primal variables are the node displacements,
such that strains and stresses are obtained by further differentiation of the displacement field inside
each finite element. When the quality of the stress values is of interest, as in the topology optimization
with stress constraints, one has to cope with two important aspects of the compatible finite element
formulation: the proper evaluation of stresses inside each finite element and the lack of continuity
among elements, specially on the boundary.
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Figure 1: Patch (light gray) around a central element (dark grey)

Stress evaluation in compatible finite elements has been studied by many researchers (See [8] for an
overview). Barlow [9], showed that there are specific points inside each element that give the best stress
values, known as Barlow points or superconvergent points. Although those points give the best stress
values inside a given element, there is no assessment on the quality of the stresses among elements or
on the boundary of the domain.

To overcome those difficulties, Hinton and Campbell [10] proposed a global stress smoothing. The
global smoothing has as its main drawback the increase in computational time as the number of nodes
increases, and the number of back-substitutions proportional to the number of stress components. To
avoid the global system of equations, one can use a patch recovery scheme proposed by Zienkiewicz
and Zhu [11, 12] . In this kind of local smoothing, stresses evaluated in the neighborhood of a given
element (hereafter called center element) or node are used to construct a surface that best fits the
stresses in this area, known as patch. Figure 1 shows a first order patch around a center element,
obtained by selecting all the elements that share at least one node with the center element. A second
order patch is obtained if we include all the elements that share at least one node with the set of first
order neighbors, and so on.

Using a local coordinate system inside a given patch and considering a bi dimensional problem, one
can define, for each stress component i = xx, yy, xy,

σ̃i(r, s) = p(r, s)
T
ai (4)

where ai
T

= [ ai1 ai2 .. ain ] is a set of coefficients used to adjust the i-th stress component

and p(r, s)
T
= [ 1 r s . . . ] is a polynomial base. In order to obtain the coefficients ai, the least

square method is used to fit a surface among every Barlow point residing inside the patch. The squared
difference between the interpolated stresses and the superconvergent stresses inside the patch is given
by

Πσi =
1

2

nsp∑
j=1

[σi(rj , sj)− σ̃i(rj , sj)]2 (5)
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where nsp is the number of superconvergent points inside each patch and i is the stress component.
The functional Πσi (5) attains its minimum value when

dΠσi
daik

=

nsp∑
j=1

[σi(rj , sj)− σ̃i(rj , sj)]
dσ̃i(rj , sj)

daik
= 0 (6)

defining the following system of linear equations

nsp∑
j=1

(
pjp

T
j

)
ai =

nsp∑
j=1

[pjσi(rj , sj)] (7)

or, in a more compact notation

Aσ
ea

i
e = fσe (8)

where e is the central element. This patch is known to provide quadratic convergence with respect to
mesh refinement and results in a better description of stresses when compared to other approaches [8].
Also, the superconvergent patch recovery is less sensitive to mesh distortion, an important source of
error when dealing with stresses. Unfortunately, when considering the spatial variation of the material
parameters that arise in the topology optimization, one should not use the direct stress interpolation
provided by Eq. (4).

Recently, [13] proposed a different kind of superconvergent patch recovery, based on the interpolation
of the primal field obtained by the Finite Element Method. For elasticity problems, the displacement
inside a patch is given by

ũe(r, s) = Ψ(r, s)Λe
n∑
l=1

ΨT (rl, sl)HlU (9)

where

Ψ(r, s) =

[
PT (r, s) [0]1×n

[0]1×n PT (r, s)

]
2×2n

,

is a matrix containing the polynomial evaluation of the point of interest

Λe =

[
A−1 [0]n×n

[0]n×n A−1

]
2n×2n

,

is a matrix formed by the inverse of
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An×n =

npp∑
l=1

P(rl, sl)P
T (rl, sl),

and H is a mapping matrix, such that

HlU =

[
ux(rl, sl)

uy(rl, sl)

]
, (10)

where
Hl = []2×nnodes

has 1 in the entries corresponding to the degrees of freedom of the l-th node and zero elsewhere. The
local coordinates (r, s) are related to the global (Cartesian) coordinates (x, y) by

r = 2
x− xl
xs − xl

− 1

s = 2
y − yl
ys − yl

− 1 (11)

where xl, xs,yl and ys correspond to the lower and upper x , y coordinates of the patch, respectively.
The strain in a given point of a patch with central element e is given by

ε̃e(r, s) = L [ũe (r, s)] (12)

where L is the differential operator that maps the displacement into the strain. Assuming that the
patch local reference system (r, s) corresponds to a scaled and translated version of the global reference
system (x, y), as shown in Eq.(11), and considering 2D elasticity, the differential operator L has the
form

L(◦) =


d(◦)
dx 0

0 d(◦)
dy

d(◦)
dy

d(◦)
dx

 =


d(◦)
dr

dr
dx 0

0 d(◦)
ds

ds
dy

d(◦)
ds

ds
dy

d(◦)
dr

dr
dx

 =


( 2
xs−xl

)d(◦)dr 0

0 ( 2
ys−yl )

d(◦)
ds

( 2
ys−yl )

d(◦)
ds ( 2

xs−xl
)d(◦)dr

 . (13)

As a given node in the mesh can be inside Np patches, the final strain is obtained by a simple
average

ε̃(r, s) =
1

Np

Np∑
e=1

ε̃e(r, s) (14)

and, thus, the stress in a given point is given by

σ̃(r, s) = C(r, s)ε̃(r, s). (15)

The effective von Mises stress may be expressed using matricial notation [14]

σ̃eq =
(
σ̃TMσ̃

) 1
2 (16)
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where

M =


1 −1/2 0

−1/2 1 0

0 0 3


for plane stress problems and

σ̃ =


σ̃xx

σ̃yy

σ̃xy


is a vectorial arrangement of the stress tensor, commonly used by the Finite Element Method theory.

Equation (9) has two advantages when compared to Eq. (4): the number of components to solve
for is smaller in the displacement based patch, as the number of displacements components is always
smaller than the number of stress components, and the constitutive relation C is used only when
evaluating the final stress σ̃, allowing arbitrary spatial variation of the constitutive tensor without
imposing any additional interpolation error. Also, as shown in [13], this patch retains the convergence
ratio of the traditional stress based patch, with the same low sensitivity for mesh distortion. Thus,
this method is preferred for topology optimization with stress constraints.

3 Formulation

As our goal is to minimize the mass of a design domain and we seek to use only one kind of material,
the method may be equivalently expressed as a volume minimization problem with a von Mises stress
constraint and subjected to an equilibrium variational equation

min
d
V =

∫
ρ (x) dΩ

s.t. σeq ≤ σy∫
σ (u) · ε (η) dΩ =

∫
η · tdΓ

We adopted the SIMP material parametrization for the constitutive tensor C = ρnC0 and a SIMP-
like parametrization for the stress tensor as described by [14]

σ = ρn−qC0ε (17)

where n is the SIMP exponent, q is a relaxation factor and C0 is the fourth order constitutive tensor
of the base material.

Moreover, Bruggi [15] has shown that the use of q < n in Eq. (17) leads to a domain relaxation
which is smoother if compared to the ε-relaxation method [2], therefore alleviating the singularity
phenomena.

Recalling the known issue realated to the number of stress constraints imposition, we basically
followed [7] methodology of using a modified von Mises stress p-norm constraint. However in order to
account for a better estimate of stresses, we propose the use of the stresses obtained by means of the
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superconvergent patch recovery scheme. This can be accomplished by using σ̃eq instead of σeq in Eq.
(1), such that it now reads

Φ =
max(σ̃eq)

(k−1)

∥σ̃eq∥(k−1)
p

∥σ̃eq∥(k)p ≤ σY (18)

This modification has two direct consequences: first, the stresses used to evaluate the constraint
are a better estimate than the direct centroidal stresses commonly used in the topology optimization
literature. Second, the stresses at different coordinates are now correlated throughout the entire patch,
making the problem even more nonlinear. This second consequence can make the computations more
involved, but have the benefit of making the recovered stresses less sensitive to the original stresses
fluctuations. Introducing the finite element method and its discrete domain in which all the calculation
is performed, the problem statement takes the following final form

min
d

V =
nelem∑
e=1

ρeVe

s.t. max(σ̃eq)
(k−1)

∥σ̃eq∥(k−1)
p

∥σ̃eq∥(k)p ≤ σY

KU = F

where K is the global stiffness matrix of the finite element mesh, U is the global displacement vector
and F is the global force vector.

In order to avoid the checkerboard phenomena and to generate a well-posed problem, we have
adopted the use of filtering techniques. The use of filters in topology optimization has some advantages,
such as the elimination of the checkerboard issue, as already mentioned, the solution is no longer mesh-
dependent and its dependency is now transferred to a physical parameter: the filter radius. A good
review about filtering techniques is given by Bruns and Tortorelli [16]. One direct consequence of
setting a filtering radius is that now it is possible to control the minimum size of members [17, 18]
and/or holes [19, 20] that can appear inside the design domain. We have decided to use the original
linear filter proposed by Bruns and Tortorelli due to its simplicity and efficiency, albeit other projection
methods or none filtering at all could be used. If the latter approach is chosen, the reader should be
aware of the consequences and exploit the available solutions.

4 Sensitivity analysis

In order to impose the stress constraint it is necessary to perform the sensitivity analysis with respect
to the design variables. In the following, we provide the full development of the sensitivity expres-
sions for the superconvergent displacement based patch, while in Appendix A the derivatives of the
superconvergent stress based patch are shown. Differentiating the R.H.S of Eq. (18) with respect to a
design variable xm and adopting an adjoint approach, we obtain

d
(
c(k) ∥σ̃eq∥(k)p + λT (KU− F)

)
dxm

= c(k)
d ∥σ̃eq∥(k)p

dxm
+ λT

(
dK

dxm
U+K

dU

dxm
− dF

dxm

)
(19)
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where λ is the adjoint vector and c(k) is a constant in iteration number k, since it depends of the
previous iteration.

Thus, evaluating the derivative of the p-norm we obtain

d ∥σ̃eq∥(k)p

dxm
=

1

p

(
N∑
i=1

σ̃peq(ri, si)

) 1
p−1 [ N∑

i=1

pσ̃p−1
eq (ri, si)

dσ̃eq(ri, si)

dxm

]
(20)

which can be written as

d ∥σ̃eq∥(k)p

dxm
=

(
N∑
i=1

σ̃peq(ri, si)

) 1
p−1 [ N∑

i=1

σ̃p−1
eq (ri, si)

dσ̃eq(ri, si)

dxm

]
= T1

[
N∑
i=1

σ̃p−1
eq (ri, si)

dσ̃eq(ri, si)

dxm

]
(21)

where

T1 =

(
N∑
i=1

σ̃peq(ri, si)

) 1
p−1

(22)

is a fixed term.
The derivative of the von Mises stress in Eq. (21) can be evaluated by means of Eq. (16), resulting

in
dσ̃eq(ri, si)

dxm
=

1

σ̃eq(ri, si)
σ̃T (ri, si)M

dσ̃(ri, si)

dxm
(23)

and the derivative in Eq. (23) can be evaluated by means of Eq. (15), such that

dσ̃(ri, si)

dxm
=

dC

dxm
ε̃(ri, si) +C(ri, si)

dε̃(ri, si)

dxm
. (24)

Evaluating the strain derivative,

dε̃(ri, si)

dxm
=

1

Np

Np∑
p=1

dε̃p(ri, si)

dxm
(25)

where
dε̃p(ri, si)

dxm
= L

dũp(ri, si)

dxm
(26)

we obtain
dũp(ri, si)

dxm
= Ψ(ri, si)Λ

e
n∑
l=1

ΨT (rl, sl)H l
dU

dxm
. (27)

Considering Eqs. (19) thru (27),
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dR

dxm
= c(k)T1

[
N∑
i=1

σ̃p−1
eq (ri, si)

1

σ̃eq(ri, si)
σ̃T (ri, si)M (28)

 dC

dxm
ε̃(ri, si) +C(ri, si)

1

Np

Np∑
e=1

LΨ(ri, si)Λ
e

n∑
l=1

ΨT (rl, sl)Hl
dU

dxm

+

λT
(
dK

dxm
U+K

dU

dxm
− dF

dxm

)
or, splitting terms

dR

dρm
= c(k)T1R1 +R2

dU

dxm
+ λT

(
dK

dxm
U− dF

dxm

)
where

R1 =
N∑
i=1

σ̃p−2
vm (ri, si)σ̃

T (ri, si)M
dC

dxm
ε̃(ri, si)

and

R2 = c(k)T1

N∑
i=1

σ̃p−2
vm (ri, si)σ̃

T (ri, si)MC(ri, si)
1

Np

Np∑
e=1

LΨ(ri, si)Λ
e

n∑
l=1

ΨT (rl, sl)Hl + λ
TK.

The evaluation of dU
dxm

is avoided if R2 = 0 , leading to the following adjoint system:

Kλ = −c(k)T1

 N∑
i=1

σ̃p−2
vm (ri, si)σ̃

T (ri, si)MC(ri, si)
1

Np

Np∑
e=1

LΨ(ri, si)Λ
e

n∑
l=1

ΨT (rl, sl)Hl

T

(29)

where the symmetry of K has been used. Once the adjoint system has been solved for the adjoint
vector λ, the sensitivity takes the following form

dR

dxm
= c(k)T1R1 + λ

T

(
dK

dxm
U− dF

dxm

)
. (30)

Introducing the qp approach (Eq.17), and recalling that

dC

dxm
(ri, si) = (n− q)ρn−q−1

i

dρi
dxm

C0 =
(n− q)
ρi

dρi
dxm

C(ri, si),

R1 can be further simplified to

R1 =
N∑
i=1

σ̃p−2
eq (ri, si)σ̃

T (ri, si)M
(n− q)
ρi

dρi
dxm

C(ri, si)ε̃(ri, si) =
N∑
i=1

(n− q)
ρi

σ̃peq(ri, si)
dρi
dxm
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so that Eq. (30) now reads

dR

dxm
= c(k)T1

N∑
i=1

(n− q)
ρi

σ̃peq(ri, si)
dρi
dxm

+ λT
(
dK

dxm
U− dF

dxm

)
(31)

Some considerations have to be made concerning the above expression (Eq. 31). The i-th element
density derivative dρi

dxm
depends on the chosen filtering technique, and must be evaluated after it has

been defined. Moreover, one should not fooled about the range of the summation in the first parcel of
the equation, once the term dρi

dxm
is not null only if the m-th design variable is inside the i-th element’s

filtering neighborhood. So the summation drastically reduces to a few elements. If one decides not to
adopt any filtering method, the derivative collapses to the Kronecker delta δim and the design variable
xm becomes the element’s centroidal density ρm, which, after the evaluation of the stiffness matrix
derivative, leads to

dR

dρm
= c(k)T1

(n− q)
ρm

σ̃peq(xm, ym) + nρn−1
m λTmK0mUm, (32)

where it was assumed that the design is load-independent. The subscript m corresponds to local
properties of the m-th element, and K0m is the m-th element’s solid stiffness matrix, i.e. ρm = 1.
One remarkable feature of Eq. (32) is that once the adjoint problem is solved, its evaluation depends
only on local properties, such as the density parameter ρm, the superconvergent recovered von Mises
stress σ̃vm, and the local entries of the adjoint and displacement vectors. Therefore the computer code
implementation can be easily parallelized resulting in an efficient and fast calculation of the sensitivity.

5 Results

To assess the use of the patch recovery schemes to evaluate the stress constraint in topology opti-
mization we address two examples. In all the examples we analyzed the following possibilities for the
computation of the stress constraint:
• DIRECT: the effective stress was evaluated directly in the centroid of each element, which is

commonly used in the current literature;
• SPR: the effective stress was evaluated in the centroid of each element, by means of the stress

based patch recovery;
• DPR: the effective stress was evaluated in the centroid of each element, by means of the dis-

placement based patch recovery,
also, for each one of those situations, we analyze the influence of the norm exponent, with p = 8

and p = 12. For all the examples the SIMP exponent is set to n = 3 and the relaxation exponent of
the qp parameterization is set to q = 2.5, as pointed out by [15]. An implementation of the original
MMA method [21] is used in all examples and in each case we assessed the convergence observing the
stabilization of the objective function and of the constraint. Thus, the number of iterations in all the
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Figure 2: L-SHAPE problem definition

examples is not fixed and can be different. We used first order patches in all examples along with the
four node bilinear isoparametric element and a linear density filter, as proposed by [16] and used by
[7]. The plane stress hypothesis is also considered.

The first example studied is the well known L-Shape problem, defined in Fig. 2, which has an
abrupt geometrical change leading to a stress concentration in its neighborhood. To overcome this
problem, the topology must distribute material in order to round that corner and to redistribute the
stress. In this example, we used a finite element mesh with 6400 bilinear isoparametric finite elements
(1mm× 1mm) and a filter radius of 2mm. The limiting stress was set to σy = 2MPa .

The results obtained with the different formulations for the stress recovery should be compared for
the same norm exponent. For p = 8, the final topologies and the von Mises stress field are shown
in Figs 3, 5 and 7 for the DIRECT, SPR and DPR cases. The convergence of the volume fraction
for the DIRECT, SPR and DPR cases are shown on the left in Figs 4, 6 and 8. The convergence of
the stress constraint is shown in the center of Figs. 4, 6 and 8, where for each example we show the
three estimates for the stress, although only one is used for imposing the constraint. In the right side
of Figs. 4, 6 and 8 we show the maximum von Mises stress in the last iterations of each one of the
studied strategies.

Analogously, the topologies and stress distributions obtained for p = 12 are shown in Figs 9, 11 and
13 for the DIRECT, SPR and DPR cases. The volume and stress constraint convergence for the three
cases are shown in Figs 10, 12 and 14.

As already mentioned, the use of patches highly increases the non-linearity and its use along with
the p-norm parameter p = 12 have resulted in strong oscilations during the optimization process, as
shown in Figs. 10, 12 and 14. The final volume for all cases, including p = 8 and p = 12, are quite
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Figure 3: Topology (left) and effective stress distribution (right) obtained without patch, p=8
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Figure 4: Volume fraction (left), Stress constraint (center) and and a comparison of different stress
recovery strategies in the final iterations (right) for the direct stress, p=8.

Figure 5: Topology (left) and effective stress distribution (right) obtained with stress patch, p=8
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Figure 6: Volume fraction (left), Stress constraint (center) and a comparison of different stress recovery
strategies in the final iterations (right) for the the stress based patch, p=8.

Figure 7: Topology (left) and effective stress distribution (right) obtained with displacement based
patch, p=8
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Figure 8: Volume fraction (left), Stress constraint (center) and and a comparison of different stress
recovery strategies in the final iterations (right) for the the displacement based patch, p=8.
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Figure 9: Topology (left) and effective stress distribution (right) obtained without patch, p=12
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Figure 10: Volume fraction (left), Stress constraint (center) and a comparison of different stress recov-
ery strategies in the final iterations (right) for the the direct stress , p=12.

Figure 11: Topology (left) and effective stress distribution (right) obtained with stress patch, p=12
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Figure 12: Volume fraction (left), Stress constraint (center) and and a comparison of different stress
recovery strategies in the final iterations (right) for the the stress based patch, p=12.

Figure 13: Topology (left) and effective stress distribution (right) obtained with displacement patch,
p=12
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Figure 14: Volume fraction (left), Stress constraint (center) and and a comparison of different stress
recovery strategies in the final iterations (right) for the the displacement based patch, p=12.
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similar and around 30%, but the latter presented a slightly lower volume fraction. Rigorously the
final topologies are different, but the overall designs are similar. Although the numerical issues, the
exponent p = 12 gives the best topologies with respect to the rounded corner and the stress saturation.

The second example is the volume minimization with stress constraint of a 8 × 5 cantilever beam,
defined in Fig. 15. The finite element mesh is composed by 16000 bilinear isoparametric elements
(5mm× 5mm) and the filter radius is set to 15 mm. The stress limit is set to 1 MPa.

800 mm

500 mm

E = 1 MPa

t = 1 mm

     = 1 MPay

P = 0.5MPa750 mm

ν = 0.3

σ

Figure 15: BEAM problem definition

In this example, only results obtained with p = 12 are shown, although the case p = 8 was also
investigated. Topologies and stress distributions obtained are shown in Figs 16, 18 and 20 for the
DIRECT, SPR and DPR cases respectively. The convergence history for each case is shown in Figs
17, 19 and 21,

Figure 16: Topology (left) and effective stress distribution (right) obtained without patch, p=12
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Figure 17: Volume fraction (left), Stress constraint (center) and a comparison of different stress recov-
ery strategies in the final iterations (right) for the the direct stress, p=12.

Figure 18: Topology (left) and effective stress distribution (right) obtained with the stress patch,
p=12.

The design domain does not possess the theoretical problems related to singularity as in the previous
example and the Figs.17, 19 and 21) show that the optimization process could generate feasible
solutions without the strong numerical oscilations in the stress constraint. Conceptually the final
topology has given special treatment to the upper and lower left corners of the design domain, where
the normal stresses due to bending are higher and the clamped region leads to an artificial stress
concentration. As mentioned before, the superconvergent patch recovery schemes were able to absorb
the numerical variations of the original stress field, illustrated in Figs. 19 and 21, where the DPR and
SPR stresses remained practically unchanged despite of the DIRECT centroidal stress oscilations.
Considering the DPR case, it can be seen that the DIRECT centroidal stress converged to a value
12% higher than the permissible stress, while the stress in the patch based approaches were no greater
than 1 MPa. Moreover, all topologies have converged to a approximately 28% of volume, and have
well satured the stress among its members.
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Figure 19: Volume fraction (left), Stress constraint (center) and a comparison of different stress recov-
ery strategies in the final iterations (right) for the the stress based patch, p=12.

Figure 20: Topology (left) and effective stress distribution (right) obtained with the displacement
based patch, p=12
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Figure 21: Volume fraction (left), Stress constraint (center) and a comparison of different stress recov-
ery strategies in the final iterations (right) for the the displacement base patch, p=12.
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6 Conclusions

We proposed the use of superconvergent stress recovery techniques to evaluate stress constraints in
topology optimization. Also, we presented the displacement based patch that is more consistent with
the spatial variation in the constitutive parameters that arise in topology optimization.

It was observed a strong variation during the iterations, due to the non-linearity of the stress
constraint and the coupling provided by the use of patches. The MMA parameters used in this work
must be refined to overcome this difficulty. The norm p = 12 showed the best compromise between
numerical stability and the efficacy of stress constraint.

It can be seen that although quite similar, the maximum effective stress evaluated by means of the
different schemes employed in this work are different for each topology. Also, strictly speaking, the
topologies obtained are different, although leading to the same overall design. The two patch based
approaches could handle the DIRECT stress oscilation and their associated stresses have remained
unaffected, as shown in the cantilever beam problem. Thus, as the displacement based patch has the
good convergence properties of the stress based patch recovery and is more consistent with respect
to the material variation along the domain, we suggest its use to evaluate the stress constraint.
Moreover, the displacement based stress recovery is prone to be used with topology optimization of
FGM structures, since the spatial variation of properties in this case is more pronounced.
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Appendix A – Sensitivity for the stress based patch

If the stress based patch is used to evaluate Eq. (18), then the stress in a given coordinate is obtained by an
average among the contributions of all patches that share this point

σ̃(r, s) =
1

Np

Np∑
p=1

σ̃(p)(r, s) (33)

where σ̃(p) is the stress tensor obtained with the stress based patch considering a central element p. Analogously
to Eq. (9), the stress obtained by the p-th patch σ̃(p)(r, s) is given by

σ̃(p)(r, s) = Ψ(r, s)Λp

nsp∑
b=1

ΨT (rb, sb)σb (34)

where

Ψ(r, s) =


PT (r, s) [0]1×n [0]1×n

[0]1×n PT (r, s) [0]1×n

[0]1×n [0]1×n PT (r, s)


3×3n

,
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Λp =


A−1 [0]n×n [0]n×n

[0]n×n A−1 [0]n×n

[0]n×n [0]n×n A−1


3n×3n

,

An×n =

npp∑
l=1

P(rl, sl)P
T (rl, sl),

and

σ =


σxx

σyy

σxy


share the same definitions of the already presented displacement based patch.

Introducing the stress parameterization Eq. (17)

σ̃(p)(r, s) = Ψ(r, s)Λp

nsp∑
b=1

ΨT (rb, sb)ρ
n−q
b C0BHbU (35)

where the summation is now performed among all the nsp superconvergent points inside the p-th patch, and
Hb is the mapping matrix of the correspondig element at which the barlow point is located.

Differentiating Eq. (18) with respect to a design variable xm and employing the chain rule of differentiation,

d(c(k)∥σ̃eq∥)
dxm

= 1
p
c(k)

(
n∑

e=1

σ̃p
eq

) 1
p
−1

{
n∑

e=1

pσ̃p−1
eq

1
σ̃eq

σ̃TM 1
Np

Np∑
p=1

Ψ(re, se)Λp

nsp∑
b=1

ΨT (rb, sb)
[
(n− q) ρn−q−1

b
dρb
dxm

C0BHbU+ ρn−q
b C0BHb

∂U
∂xm

]}
+λT

(
dK
dxm

U+K dU
dxm

− dF
dxm

)
(36)

Aiming at the avoidance of the displacement sensistivity dU
dxm

, the adjoint system can be defined and solved

λTK = −c(k)
(

n∑
e=1

σ̃p
eq

) 1
p
−1


n∑
e=1

σ̃p−2
eq σ̃TM

1

Np

Np∑
p=1

Ψ(re, se)Λp

nb∑
b=1

ΨT (rb, sb)ρ
n−q
b C0BHb

 (37)

The sensitivity is then given by

d
(
c(k) ∥σ̃vm∥p

)
dxm

= c(k)
(

n∑
e=1

σ̃p
eq

) 1
p
−1


n∑
e=1

σ̃p−2
eq σ̃TM

1

Np

Np∑
p=1

Ψ(re, se)Λp

nsp∑
b=1

ΨT (rb, sb)
(n− q)

ρb

dρb
dxm

σb


+ λT

(
dK

dxm
U− dF

dxm

)
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Abstract

This work presents the optimization of a composite plate subjected to non uniform loadings when two design
criteria are simultaneously taken into account. The design criteria considered are buckling load and funda-
mental frequency. These optimization criteria are important for practical applications, particularly in the
aeronautical industry. The use of minimax strategy as a bilevel procedure is proposed in order to solve the
optimization problem. Furthermore, the optimization process includes a mass optimization external loop that
yields efficient structures. The uncertain and non uniform loads are defined using a hypothetical aircraft load
envelope, with the condition that loads must be self equilibrating.

Keywords: multicriteria optimization, buckling, fundamental frequency, composite plate, uncertain loading,
non uniform loading.

1 Introduction

A commonly used approach for buckling and fundamental frequency simultaneous optimization is the
use of the design criteria as constraints [1] or to use as objective function a weighted sum of the design
criteria [2]. In order to use these approaches it is necessary to have some previous information so
that proper constraint values can be defined. Furthermore, it is required to have some idea about the
relative relevance of each criterion on the optimization problem to define a weighted sum of the design
criteria.

Another common approach of performing multicriteria optimization is using Pareto optimality [3].
The Pareto optimal design ensures that, at least, one criterion is optimized and the others are satisfied.
A similar strategy is the minimax strategy [4] which can either be used to minimize the maximum
loss or to maximize the minimal profit. The minimax strategy allows the determination of the best
design for the worst load condition.
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Among the new approaches for multicriteria optimization, the genetic algorithms have reached some
relevance [5]. The genetic algorithms are based on the natural evolution theory and the design variables
are the initial population that should evolve. These algorithms usually present good results but they
have high computational cost.

The methods described above can be combined among them or with some other optimization meth-
ods to solve multicriteria optimization problems. A good reference for traditional numerical optimiza-
tion methods is Vanderplaats [6].

The multicriteria optimization process used in this work combines the minimax strategy and Powell’s
method [6]. The minimax strategy as proposed here is a bilevel procedure where the design criteria
are maximized with respect to the design variables and minimized with respect to the load cases.
Initially, the criteria are minimized with respect to the loading parameters by a random search. In
a second step, the maximization with respect to the design variables is performed using Powell’s
method. Furthermore, a mass optimization external loop is included in the optimization process. This
external loop yields minimum mass structure within prescribed safety margins previously adopted.
The optimization process is described in Section III.

The use of uncertain and non uniform loads makes the design closer to real situations and, conse-
quently, more robust. The uncertain non uniform loading is defined herein from some physical load
cases combined with the condition that the loads applied to the structure must be self-equilibrating.
The procedure to extract self-equilibrating load cases from physical loads is described in Section II.
This type of loading representation was used in previous works [7–9]. The work of Conrado, Faria and
Almeida [7] yielded very conservative results as the optimal design was able to withstand an entire class
of linear piecewise loads along the rib boundary even those that are unrealistic. In the works of Gama
[8] and Ferreira [9] a novel procedure is proposed to compute self-equilibrating loads that represent an
arbitrary load envelope to which an aircraft could be subjected within a prescribed degree of fidelity.
Moreover, parameters are introduced to control the degree of robustness of the resulting load cases.
The procedure proposed in Conrado, Faria and Almeida [7] is too conservative; the present procedure
can be tailored by the user to exclude non realistic load cases from the optimization procedure thus
providing a solution that is applicable in actual design situations.

The structure chosen for optimization is a wing composite panel with two reinforcers. These struc-
tures are fundamental parts in aircraft design and manufacturing and their optimization is important
in order to design more efficient airplanes.

Buckling and fundamental frequency are numerically computed by the finite element method. The
finite element computation is done using software Abaqus R⃝ and the optimization algorithm was
developed using a Fortran code.

2 Non uniform loading representation

When dealing with preliminary design of aircraft structures, it is important to take advantage of
the fact that the structure may be considered to be in static equilibrium and possibly be statically
determined. For example, in the case of a wing panel, once the aerodynamic properties of the wing,
that depend only on the geometry of the wing, are known one can compute the pressure distribution
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on the wing for a given maneuver using a CFD code. From these data, the bending moment and
torsional moment distributions and vertical resultant stress resultants may be computed considering
the wing as a beam. Naturally, the stress and strain distributions depend on the material and stiffness
of the structural elements of the wing. However, with the assumptions previously stated the stress
resultant forces and moments do not depend on the stiffness distribution of the wing.

Figure 1 illustrates in a simplified way this procedure for the case of pure bending moment. In this
case, the stress resultant N on an arbitrary section along the wing does not depend on the stiffness
distribution. Therefore, for that particular physical load case the stress resultant on a particular section
of a wing panel must be N. That is, the integral of the stress distribution normal to the section along
the entire length of that section must be N regardless of the design variables. Similarly, the shear
stress resultant at any section along the wing may be computed from the torsional moment. These
information along with the fact that the panel is considered to be in a state of static equilibrium
provides a way to describe the non-uniform loading in a robust way [9].

Figure 1: Forces due to physical loading.

In this loading representation the non uniform loading is discretized by piecewise linear functions,
as shown in Fig. 2, defined at an arbitrary number of load control points placed on the structure
boundary. The larger the number of load control points is the better is the loading representation.

Since previous works [7–9] have already described the methodology for non uniform loading repre-
sentation, this work presents only the main equations. In the two dimensional case, vector {X} contains
the load magnitudes at each load control point in x and y directions:

{X}T =
[
fx1 fy1 fx2 fy2 ... fxm/2

fym/2

]
(1)

where m is twice the number of loading control points. Vector {X} may be computed by minimizing
the following expression:
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Figure 2: Load discretization [9].

ej =
(
pijF̄ij {n}Tj − {x}

T
j

) (
pijF̄ij {n}j − {x}j

)
(2)

subjected to the condition:

[G]j {x}j = {A}j (3)

where [G] is (3+k)×m matrix given in Ferreira [9]; (3+k) are the first three lines representing the sum of
forces and moments plus the k lines representing the forces acting on the edges where the physical loads
are applied. The first three lines of {A}j are zero because they define the static equilibrium conditions.
The other components (for j > 3) have a magnitude corresponding to the physical load integrals at
the load control point, as previously illustrated. The index j refers to the load case considered and
index i refers to the considered load control point. Finally, pij is a dimensionless parameter in the
range [0, 1] that represents the non uniform physical load in a way that is conservative, intermediate
or non-conservative.

It should be remarked that in a three dimensional case the above equations still hold but with some
changes. For example, the number of static equilibrium equation should be 6 rather than 3.

After some algebraic manipulations {X} vector can be shown to be [9]:

{X}j =
(

[I]−
[
Ḡ
]T
j

( [
Ḡ
]
j

[
Ḡ
]T
j

)−1 [
Ḡ
]
j

)
pijF̄ij {n}j +

[
Ḡ
]T
j

( [
Ḡ
]
j

[
Ḡ
]T
j

)−1

{A}j (4)

where [I] is the identity matrix and F̄ij is the magnitude of the load applied at the load control point.
It is defined from the load applied on the edge where load control point is located:

F̄ij =
2 A∫ i

i−1

√(
dx(s)
ds

)2
+
(
dy(s)
ds

)2
ds+

∫ i+1

i

√(
dx(s)
ds

)2
+
(
dy(s)
ds

)2
ds

(5)

where A is the load applied on the considered edge and x(s) and y(s) are parametric representations
of the geometry of the edge.

When pij is chosen to be 1 the load magnitude at load control point i corresponding to the j-
th physical load will tend to be very concentrated and the design is conservative because this type
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of loading is unrealistic. When pij is chosen to be zero the load magnitude at load control point i
corresponding to the j-th physical load will tend to be very uniform and the resulting design will
not be robust as some physically possible loads may not be taken into account in the optimization
procedure. Therefore, the robustness of the design may be controlled by parameters pij . For each load
control point i and a physical load case j, a convenient pij may be chosen in the interval between 0
and 1 to realistically represent all physically possible non uniform loading thus adjusting the desired
degree of robustness of the design for each load case.

3 Multicriteria optimization strategy

The buckling and fundamental frequency problems are described in matrix form in Eqs. (6) and (7),
respectively. The evaluation of buckling loads and fundamental frequency is based on a prebuckling
state and a linearized buckling problem that can be described in matrix form as:

([K]− λ [K]G) {q} = 0 (6)

(
[K]− λ [K]G − ω

2 [M ]
)
{q} = 0, (7)

where [K] is the stiffness matrix, [M] is the mass matrix and [K]G is the geometric stiffness matrix. In
order to solve these problems it is first necessary to compute the prebuckling displacements, given in
Eq. (8) by {q}p, {p} is the global vector of applied loads:

[K] {q}p = {p} (8)

The minimax strategy is used in this work with the goal of obtaining the best design for the
worst load condition. It is applied as a bilevel procedure since the idea is to maximize buckling and
fundamental frequency simultaneously.

max
{t}

min
{β}

{
ω( {t} , {β} )
λ( {t} , {β} )

}
= max

{t}
ϕ( {t} ) , ϕ( {t} ) = min

{β}

{
ω( {t} , {β} )
λ( {t} , {β} )

}
(9)

The convexity property is especially useful in optimization processes because it significantly reduces
the computational cost. Based on it, it is possible to assure that the function minimum will be asso-
ciated with the loads on the convex hull of the load space. In this work it is considered a hypothetical
load envelope that represents the convex hull of the load space. In the first part of the minimax
strategy the objective function is minimized with respect to load cases {β} that represent the load
envelope. This is done by a random search.

The first part of the minimax strategy just verifies whether the structure buckles or not. If buckling
occurs, the structure mass should be increased and first part repeated until a not buckled structure
is obtained.

In the second part of the minimax strategy the objective function is maximized with respect to
the design variables {t}. This is done by Powell’s method. The buckling value computed here is non
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dimensional; the fundamental frequency must be normalized by some prescribed minimum admissible
value (ω0). Therefore, the values of the design criteria may be directly compared. These frequency
normalization factors are defined based on design requirements.

At the end of the second part of the minimax strategy it is checked if the structure is under or over
dimensioned. If the structure satisfies the safety margins and design requirements, the optimization
process is completed. If not, the mass should be updated and part two is repeated.

The optimization of an aeronautical composite panel is used as an example in this work. The
constraints used for this problem were:

1. The structure must not buckle before the proof load; this condition is consistent with the def-
inition of the proof load [10]. The proof load is defined as the limit load multiplied by a proof
factor. In general, the proof factor is adopted to be 1.25; this value will be used in this work.

2. The structure must preserve a minimum fundamental frequency under the limit load to preserve
its performance under dynamic loads.

These hypotheses are consistent with actual aeronautical panel design and avoid problems with
objective function discontinuity and a predominance of the frequency criterion over the buckling
criterion, as discussed in what follows.

The mass optimization external loop tends to bring the normalized buckling values closer to one
if the frequency normalization value is low. However, occasionally during the optimization process,
the buckling load can be less than one. When this occurs, the frequency value tends to zero as the
structure loses its stability. This fact causes numerical problems in the eigenvalue computation and
represents a discontinuity in the objective function. Moreover, when buckling values are close to one
the optimization process is not multicriteria since frequency will always have the minimum value and
be the dominant criterion. These problems are avoided using the problem statement described above.
It must be emphasized that this assumption was not used just to avoid numerical problems. It was
used because the statement of the problem as proposed is consistent with actual aircraft structural
design.

4 Numerical results

The structure chosen for optimization is a rectangular composite plate with two reinforcers. The
present work original contributions are the multicriteria optimization and the use of composite mate-
rial; the proposed procedure provides robust preliminary optimum designs for aeronautical appli-
cations. The description of the main geometrical characteristics is repeated here because they are
essential for the comprehension of the results.

For simplicity, the plate was assumed to be rectangular with dimensions 0.4 m along the y direction
and 1.2 m along the x direction. It must be remarked that the procedure proposed here is quite general
and is applicable to any geometrical shape of the panel. The panel skin is a crossply laminate with
[(0/90)]s stacking sequence. The reinforcers are located at x = 0.4 m and x = 0.8 m. The reinforcer at x
= 0.4 m have the design variables width (w1) and height (h1); the reinforcer at x = 0.8 m has the same
design variables in order to yield a symmetric structure. These reinforcers divide the panel into three
sections, as depicted in Fig 3. The thicknesses of the layers in each section are defined by another four
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design variables. The thicknesses t1 and t2 correspond to layers 0◦ and 90◦, respectively, of sections
1 and 3 (due to the assumed panel symmetry); t3 and t4 correspond to the thicknesses of the same
layers in section 2. Therefore, there are a total of six design variables. Since the magnitudes of the
layer thicknesses and the width and height of the reinforcers can be significantly different, the design
variables must be normalized in the optimization process to avoid numerical problems.

Figure 3: Reinforced panel with the design variables [9].

The load envelope is composed of the five load cases described in Table 1. This work presents five
examples of the reinforced panel optimization where the influence of the pij variation on the loading
representation and the optimization strategy performance are investigated.

Table 1: Load cases.

Case 1 Compression: 3600 N at upper edge

Case 2 Compression: 500 N at right edge

Case 3 Shear: -1200 N at upper edge and 1200 N at lower edge

Case 4 Compression: 2800 N at lower edge

Case 5 Shear: -880 N (section 3) and 720 N (section 1) at lower edge

4.1 Reinforced panel considering pij = 0

When pij is zero the resulting load distribution is nearly uniform as shown in the plot of Force × Edge
distance, Fig. 4. Table 2 presents the optimization results of the reinforced panel under the load cases
described in Table 1.
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Figure 4: Self-equilibrated loading for load case 1, pij = 0 [9].

Table 2: Optimization results pij = 0.

Initial Structure1 Initial Structure 2 Initial Structure 3

Initial Optimum Initial Optimum Initial Optimum

(mm) (mm) (mm) (mm) (mm) (mm)

t1 0.6 0.05 0.7 0.08 0.5 0.06

t2 0.8 0.7 0.7 0.6 0.9 0.7

t3 0.6 0.4 0.7 0.2 0.9 0.09

t4 0.8 0.4 0.7 0.6 0.5 0.6

w1 4.00 4.00 3.00 1.00 2.00 1.52

h1 60.00 12.01 80.00 17.61 70.00 11.09

Mass (kg) 2.396 1.208 2.396 1.101 2.271 1.117

Load λ1 5.82 1.02 5.23 1.00 5.01 1.01

case 1 ω1/ω0 3.51 1.49 3.42 1.18 3.24 1.18

Load λ2 20.96 3.01 20.79 2.47 20.26 2.51

case 2 ω2/ω0 3.53 2.37 3.44 2.08 3.27 2.08

Load λ3 13.39 2.51 12.42 1.99 13.17 2.08

case 3 ω3/ω0 3.54 2.51 3.45 2.24 3.28 2.23

Load λ4 7.48 1.31 6.73 1.29 6.43 1.30

case 4 ω4/ω0 3.51 1.89 3.42 1.58 3.25 1.57

Load λ5 11.91 1.78 11.39 1.78 10.43 1.47

case 5 ω5/ω0 3.52 2.14 3.43 1.96 3.26 1.79
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The optimization process used three different groups of initial design variables in order to identify
possible local maxima despite the fact that the problem is convex. It means that the optimization
is done for three different initial structures. Initial structures 1, 2 and 3 are over dimensioned for
the considered load cases. They support loads approximately five times larger than the ones that are
applied in the example.

The buckling load is defined by the non dimensional variable λ and the normalized frequency is
defined by ω/ω0. The frequency normalization value adopted was ω0 = 20 Hz. The used stop criterion
for the optimization was 2%, that is, the optimization stops when the normalized objective function
is in the range [1.00 – 1.02.]. This value was adopted for all optimization examples in this work.

The results presented in Table 2 leads to the conclusion that the load case 1 was the critical one,
yielding lower buckling and fundamental frequency values before and after the optimization process.
In the beginning of the optimization procedure the dominant criterion was frequency and at the end of
the optimization the dominant criterion was buckling. Using the mass optimization external loop, the
three initial structures converged to design variables that satisfy the design requirements and safety
margins. Initial structure 2 converged to the lowest mass value and can be considered the global
optimum. In this structure the 0◦ layer almost disappear in sections 1 and 3 and is thinner than the
90◦ layer in section 2.

4.2 Reinforced panel considering pij = 1

When pij = 1 the resulting load distribution for load case j is very concentrated close to load control
point i. Since the critical load case in the previous subsection was case 1, this subsection represents
load case 1 considering pij = 1 at three different load control points placed at the panel upper edge.
In this way the optimization deals with seven load cases, the three already mentioned and cases 2 to
5 considering pij = 0.

The Force × Edge distance plot in Fig. 5 depicts the load distribution obtained when it was consid-
ered pij = 1 at load control point 3 that is placed at 0.4 m from the upper edge. It can be noted that
the loading is significantly concentrated close to load control point 3. This type of loading is certainly
unrealistic for actual wing design and, consequently, the design will be too conservative.

From the results presented in Table 3, it is possible to conclude that for initial structures 1, 2 and 3
the critical load case was case 1 (the minimum of λi or ωi/ω0 for the initial structures are always for
i = 1, 2, or 3 that correspond to load case1). After the optimization, the critical load continues to be
case 1. Buckling is the dominant criterion for the three structures, before and after the optimization
process. The optimal structures are very similar but global optimum may be assumed to be structure
number 3 as it presents a mass that is slightly lower than the other optima. In this structure the 0◦

layers are thinner than the 90◦ ones in the three sections.

4.3 Reinforced panel considering pij = 0.25

In this subsection the optimization considers 32 self-equilibrated load cases that are obtained setting
pij = 0.25 for load cases 1 to 5 at the respective load control points. Load case 1 is a compressive
load acting on the edge with eight load control points. Setting pij = 0.25 at each one, yields eight self
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Figure 5: Self-equilibrated loading for load case 1 and load control point 3, p31 = 1 [9].

equilibrated load cases. Load case 2 acts on the edge with two load control points yielding two more
self-equilibrated load cases. Load case 3 is defined on two edges that have a total of ten load control
points; this yields another ten self-equilibrated load cases. Load case 4 is applied on an edge with eight
load control points, yielding another eight self equilibrated load cases. Finally, load case 5 is defined
on edges segments that involve four load control points, yielding another four self equilibrated load
cases.

Figure 6: Self-equilibrated loading for load case 1 and load control point 3, p31 = 0.25 [9].
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Table 3: Optimization results pij = 1.

Initial Structure1 Initial Structure 2 Initial Structure 3

Initial Optimum Initial Optimum Initial Optimum

(mm) (mm) (mm) (mm) (mm) (mm)

t1 0.6 0.3 0.7 0.1 0.5 0.3

t2 0.8 0.7 0.7 0.9 0.9 0.6

t3 0.6 0.9 0.7 0.1 0.9 0.5

t4 0.8 0.4 0.7 0.9 0.5 0.6

w1 4.00 2.53 3.00 1.59 2.00 1.97

h1 60.00 13.10 80.00 14.56 70.00 17.04

Mass (kg) 2.396 1.680 2.396 1.532 2.271 1.490

Load λ1 3.10 1.00 2.80 1.04 3.25 1.01

case 1 ω1/ω0 3.51 1.52 3.42 1.64 3.24 1.75

Load λ2 2.72 1.10 2.47 1.02 2.07 1.02

case 1 ω2/ω0 3.51 1.75 3.42 1.71 3.24 1.97

Load λ3 3.24 1.22 2.91 1.19 3.48 1.16

case 1 ω3/ω0 3.51 2.00 3.42 1.92 3.24 2.07

Load λ4 20.96 8.02 20.79 6.34 20.26 7.25

case 2 ω4/ω0 3.53 2.79 3.44 3.05 3.27 3.17

Load λ5 13.39 5.05 12.42 5.13 13.17 4.70

case 3 ω5/ω0 3.54 2.80 3.45 3.15 3.28 3.26

Load λ6 7.48 2.95 6.73 3.08 6.43 2.85

case 4 ω6/ω0 3.51 2.43 3.42 2.82 3.25 2.95

Load λ7 11.91 6.03 11.39 3.74 10.43 4.65

case 5 ω7/ω0 3.52 2.76 3.43 2.97 3.26 3.14

Figure 6 shows the plot of Force × Edge distance when p31 is equal to 0.25 for load case 1. Load
concentration at section 1 upper edge is lower than the one that results when pij is equal to one. The
loading representation is closer to a non uniform loading and could represent actual design loads.

Analyzing Table 4 it is possible conclude that for initial structures 1 and 2 the critical load cases
were cases 1 and 4 (the minimum of λi or ωi/ω0 for these initial structures are always for i = 1 to 8
that correspond to load case1 or for i = 21 to 28 that correspond to load case 4). For initial structure
3 the critical load case was case 1. After the optimization, the critical load case is case 1 for the three
optimal structures. At the beginning of the optimization process, frequency was the dominant criterion
for the three structures and by the end of the process, buckling becomes the dominant criterion. As
expected, the three optimal structures are very close as the problem is convex. The global optimum
structure is structure 1 with the minimum mass. In this structure the 0◦ layers are thinner than the
90◦ layers for the three sections.

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



208 A.P.C.S. Ferreira and S.F.M. de Almeida

Table 4: Optimization results pij = 0.25.

Initial Structure1 Initial Structure 2 Initial Structure 3

Initial Optimum Initial Optimum Initial Optimum

(mm) (mm) (mm) (mm) (mm) (mm)

t1 0.6 0.1 0.7 0.2 0.5 0.3

t2 0.8 0.7 0.7 0.6 0.9 0.5

t3 0.6 0.2 0.7 0.01 0.9 0.6

t4 0.8 0.6 0.7 0.8 0.5 0.3

w1 4.00 2.25 3.00 2.04 2.00 4.00

h1 60.00 10.06 80.00 12.07 70.00 12.88

Mass (kg) 2.396 1.22 2.396 1.23 2.271 1.307

Load l1 5.38 1.11 4.86 1.20 5.44 1.06

case 1 ω1/ω0 3.51 1.44 3.42 1.63 3.24 1.65

Load λ2 5.16 1.02 4.66 1.09 5.05 1.01

case 1 ω2/ω0 3.51 1.27 3.42 1.50 3.24 1.54

Load λ3 6.30 1.17 5.66 1.42 5.36 1.33

case 1 ω3/ω0 3.51 1.46 3.42 1.90 3.24 2.06

Load λ4 2.82 1.01 4.35 1.00 3.79 1.02

case 1 ω4/ω0 3.51 1.24 3.42 1.40 3.24 1.74

Load λ5 4.82 1.01 4.35 1.00 3.79 1.02

case 1 ω5/ω0 3.51 1.24 3.42 1.40 3.24 1.74

Load λ6 6.30 1.17 5.66 1.42 5.36 1.33

case 1 ω6/ω0 3.51 1.46 3.42 1.90 3.24 2.06

Load λ7 5.16 1.02 4.66 1.09 5.05 1.01

case 1 ω7/ω0 3.51 1.27 3.42 1.50 3.24 1.54

Load λ8 5.38 1.11 4.86 1.20 5.44 1.06

case 1 ω8/ω0 3.51 1.46 3.42 1.63 3.24 1.65
...

...
...

...
...

...
...

...

Load λ21 6.91 1.43 6.25 1.54 6.99 1.36

case 4 ω21/ω0 3.51 1.78 3.42 1.94 3.25 2.04
...

...
...

...
...

...
...

...

Load λ28 6.91 1.43 6.25 1.54 6.99 1.36

case 4 ω28/ω0 3.51 1.78 3.42 1.94 3.25 2.04
...

...
...

...
...

...
...

...

Load λ32 11.80 2.35 11.28 1.37 10.33 2.74

case 5 ω32/ω0 3.52 2.27 3.43 2.15 3.26 2.54
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4.4 Reinforced panel [(0/90/45/-45)]s considering pij = 0.25

Since the load cases defined in Table 1 include two cases of shear loadings, the panel was also optimized
including layers oriented at ±45◦. This optimization was done just for pij = 0.25 because this is the
loading parameter that provides more realistic loading representation among the pij values tested in
this example. The results are presented in Table 5. The design variable t5 represents the thickness for
all layers oriented at ±45◦.

Analyzing Table 5 it is possible conclude that with the inclusion of the four layers oriented at ±45◦
the initial structure becomes significantly heavier. However, by the end of the optimization process the
optimal structures have mass quite close to the mass of the [(0/90)s] optimal structures. The inclusion
of ±45◦ layers certainly is beneficial for the shear load cases. However, for the particular example
presented, due to the existence of compressive load cases, the optimal structure with the laminate
including the ±45◦ layers is approximately the same as the one that does not include such layers.
The results indicate that the proposed optimization procedure is efficient in finding the minimal mass
necessary to support the applied loading.

For initial structures 1 and 3 the critical load cases were cases 1 and 4 (the minimum of λi or ωi/ω0

for these initial structures are always for i = 1 to 8 that correspond to load case 1 or for i = 21 to 28
that correspond to load case 4). For initial structure 2 the critical load cases were cases 1, 4, and 5 (the
minimum of λi or ωi/ω0 for these initial structures are always for i = 1 to 8 that correspond to load
case 1 or for i = 21 to 28 that correspond to load case 4 or i = 29 to 32 that correspond to load case
5). After the optimization, the critical load is case 1 for the three initial structures. At the beginning
of the optimization process, frequency was the dominant criterion for the three initial structures and
at the end of the process buckling becomes the dominant criterion. The global optimum structure is
structure 2 that presents minimum mass. Except for 0◦ layer in section 2, all layers have the same
thicknesses in the optimal structure.

4.5 Reinforced panel [(0/90)]s considering pij = 0.25, ω0 = 60 Hz

From Table 4 it is possible to conclude that the optimal result for initial structure 1 has a normalized
minimum frequency value of 1.24. Therefore, it is expected that if the minimum frequency requirement
and, as a consequence, the normalization value is changed to 60 Hz (instead of 20 Hz), the dominant
criterion would become frequency and the mass should increased. In order to confirm these facts it
was performed an optimization process using ω0 = 60 Hz, pij = 0 using initial structure 1. The results
are presented in Table 6.

More important than confirming what was expected, these results show the importance of the
multicriteria optimization. In this case, if the optimization were done without considering frequency,
the structure would not satisfy the frequency design requirements.

5 Conclusions

Load representation is an important part of a structural design. The proposed methodology allows
the designer to represent the loading within a prescribed degree of accuracy and obtain realistic self-
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Table 5: Optimization results [(0/90/45/-45)]s, pij = 0.25.

Initial Structure1 Initial Structure 2 Initial Structure 3

Initial Optimum Initial Optimum Initial Optimum

(mm) (mm) (mm) (mm) (mm) (mm)

t1 0.6 0.01 0.7 0.2 0.5 0.2

t2 0.8 0.01 0.7 0.2 0.9 0.01

t3 0.6 0.01 0.7 0.1 0.9 0.01

t4 0.8 0.01 0.7 0.2 0.5 0.2

t5 0.5 0.4 0.5 0.2 0.5 0.3

w1 4.00 4.00 3.00 4.00 2.00 4.00

h1 60.00 11.22 80.00 11.80 70.00 11.36

Mass (kg) 3.89 1.283 3.89 1.203 3.77 1.268

Load λ1 30.48 1.27 29.65 1.10 30.69 1.20

case 1 ω1/ω0 4.23 1.93 4.15 1.63 3.97 1.92

Load λ2 29.22 1.21 28.27 1.05 29.07 1.14

case 1 ω2/ω0 4.23 1.90 4.15 1.56 3.97 1.87

Load λ3 34.37 1.28 32.75 1.31 31.03 1.50

case 1 ω3/ω0 4.23 1.98 4.15 1.94 3.97 2.15

Load λ4 26.67 1.00 25.64 1.00 23.25 1.26

case 1 ω4/ω0 4.23 1.64 4.15 1.53 3.97 2.07

Load λ5 26.66 1.02 25.62 1.00 23.25 1.26

case 1 ω5/ω0 4.23 1.66 4.15 1.54 3.97 2.07

Load λ6 34.31 1.18 32.69 1.28 31.19 1.24

case 1 ω6/ω0 4.23 1.85 4.15 1.90 3.97 1.97

Load λ7 28.90 1.01 27.98 1.01 28.90 1.00

case 1 ω7/ω0 4.23 1.55 4.15 1.47 3.97 1.59

Load λ8 30.04 1.06 29.22 1.06 30.36 1.06

case 1 ω8/ω0 4.23 1.64 4.15 1.55 3.97 1.68
...

...
...

...
...

...
...

...

Load λ21 39.18 1.63 38.11 1.42 39.46 1.55

case 4 ω21/ω0 4.23 2.21 4.15 1.99 3.97 2.21
...

...
...

...
...

...
...

...

Load λ28 38.63 1.37 37.57 1.36 39.04 1.36

case 4 ω28/ω0 4.23 2.04 4.15 1.94 3.97 2.08
...

...
...

...
...

...
...

...

Load λ32 53.27 1.90 51.91 2.00 49.08 2.18

case 5 ω32/ω0 4.24 2.50 4.15 2.31 3.98 2.64
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Table 6: Optimization results [(0/90)]s, pij = 0.25, ω0 = 60 Hz.

Initial Structure1 Initial Structure1

Initial Optimum Initial Optimum

(mm) (mm) (mm) (mm)

t1 0.6 0.4 t1 0.6 0.4

t2 0.8 0.6 t2 0.8 0.6

t3 0.6 0.8 t3 0.6 0.8

t4 0.8 0.3 t4 0.8 0.3

w1 4.00 4.00 w1 4.00 4.00

h1 60.00 14.92 h1 60.00 14.92

Mass (kg) 2.396 1.622 Mass (kg) 2.396 1.622

Load λ1 5.38 2.28 Load case 1 λ8 5.38 2.28

case 1 ω1/ω0 1.17 1.02 ω8/ω0 1.17 1.02

Load λ2 5.16 2.13
...

...
...

...

case 1 ω2/ω0 1.17 1.01 Load case 4 λ21 6.91 2.94

Load λ3 6.30 2.54 ω21/ω0 1.17 1.06

case 1 ω3/ω0 1.17 1.06
...

...
...

...

Load λ4 4.82 1.79 Load case 4 λ28 6.91 2.94

case 1 ω4/ω0 1.17 1.01 ω28/ω0 1.17 1.06

Load λ5 4.82 1.79
...

...
...

...

case 1 ω5/ω0 1.17 1.01 Load case 5 λ32 11.80 5.14

Load λ6 6.30 2.54 ω32/ω0 1.17 1.07

case 1 ω6/ω0 1.17 1.06

Load λ7 5.16 2.13

case 1 ω7/ω0 1.17 1.01

equilibrating load cases from a given set of physical load cases. If the designer wants a good accuracy
on the load representation, it is necessary to use a larger number of load control points. The only
limitation for this methodology is the available computational resources.

The pij parameters are defined in the [0 1] range; the pij values for a certain non uniform loading
representation can be selected by a comparative analyses and a judicious choice based on a clear
understanding of the physical load associated with it. As a general trend, it can be said that when pij
is equal to 0 the loading representation is almost uniformly distributed and the structure tends to be
under dimensioned with low mass. When pij is equal to 1 the loading representation is significantly
concentrated at the considered load control point and the structure tends to be super dimensioned
with high mass. Therefore, the results presented in this work are consistent: the mass of the optimal
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structures always increase with parameters pij .
The minimax strategy, Powell’s method and the mass optimization external loop resulted in a

robust optimization process. The multicriteria optimization yields the best design for the worst loading
condition with adaptable structural mass. These features guarantee that the proposed design procedure
is quite general and flexible. The examples presented in this work demonstrate that the present design
procedure is able to minimize the structural mass while satisfying the design requirements for a typical
design problem.

The main contribution of this work actually is a design procedure that provides robust preliminary
optimum designs for aeronautical applications. The proposed procedure is quite flexible. The finite
element code used for the examples was Abaqus R⃝ but any commercial or in-house finite element code
could be used. This flexibility allows the application of the methodology to a wide variety of structures
in the aerospace industry. Also, the Powell’s method was used for the optimization procedure. The
reason for this choice was primarily the simplicity of the method and the fact that it does not require
computation of gradient. However, any other standard optimization procedure could be used, including
those that use gradient information. Finally, the procedure may be used for multicriteria optimization
of composite structures. Therefore, these features make the proposed procedure very attractive for
applications in actual design of aerospace structures.

As a future work, the composite structure multicriteria optimization may be performed using the
lamina angular orientation as design variable.
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Finite element analysis of reinforced concrete slabs
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Abstract

Conceived as generalization of the homogenization method, a multiphase modeling is developed to assess the
macroscopic behavior of reinforced concrete slabs within the framework of classical plasticity with account
of concrete cracking. Particular emphasis is put on the effects on structure response of the thickness of the
reinforced zone adopted in the modeling for the multiphase zone.

Basically, the multiphase model is quite similar to description at the macroscopic level of ordinary porous
media. The macroscopic particle is regarded as the geometrical superposition of continuous media in mutual
interaction, called matrix and reinforcement phases. These geometrically coincident particles are attributed
different kinematics. The equations of motion are derived by means of the virtual work method. The state
equations for each phase and the interaction law are formulated within the framework of generalized plasticity.

The multiphase approach is applied to analyze reinforced concrete slab structures under prescribed loading.
In addition to validate the approach through confrontation of obtained resulted with experimental test data,
the main focus of the study was the assessment of the effects of multiphase zone extent in the modeling.
The analysis showed that the results converge rapidly toward the experimental ones as the multiphase zone
thickness decreases, thus emphasizing the slight sensitivity of the modeling with respect to the latter.

Keywords: multiphase model, elastoplasticity, finite element method, reinforced concrete.

1 Introduction

The capacity of predicting the essential characteristics that govern the behavior of materials reinforced
by stiff linear inclusions from the properties of the individual components still remains a major concern
in structural engineering of composite materials, and a significant number of works has been dedicated
to this subject in the last decades.

As far as the finite element modeling of reinforced concrete structures is concerned, steel bars are
traditionally accounted for through three ways according to CEB [1]: 1) by means of a continuous
equivalent model as often used in the case of plates and shells, substituting the dense reinforcement

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



216 M.P. Figueiredo, S. Maghous and A. Campos Filho

by equivalent layers, 2) through a discrete modeling in which the steel bars are represented by one-
dimensional elements frequently associated with appropriate adherence elements, and 3) through the
so-called “embedded model” where each bar is considered as a stiffer linear inclusion embedded within
the element of concrete matrix, thus resulting in an element stiffness equal to the sum of concrete
matrix and steel bar contribution. However such approaches can come up against serious numerical
difficulties when the number of bars involved in the structure becomes higher. Indeed, the computa-
tional cost may eventually be prohibitively large since three-dimensional analysis is generally needed
to take into account interactions between concrete matrix and inclusions properly and since non-linear
constitutive models, such as plasticity, have to be utilized in order to obtain relevant results.

Some features about the reinforced concrete may be pointed out now: the reinforcing inclusions take
the form of linear inclusion elements (steel bars) which are incorporated into the concrete matrix,
following some pattern and preferential orientations, and the stiffness of the reinforcing material are
considerably higher that those of the concrete. So, taking advantage of the fact that the reinforcing
inclusions are periodically distributed, the homogenization theory for heterogeneous periodic media
can be legitimately applied.

An alternative approach called multiphase model, which may be conceived as a generalization of
the homogenization method, was recently developed, providing a mechanically consistent framework
to analyze the behavior of structures made up of materials reinforced by linear continuous inclusions.
Such approach will allow to capture the macroscopic behavior of the concrete structures.

The general formulation of the model is presented in Sudret [2] together with applications in the
field of geotechnical engineering. Extensions of the multiphase model have been introduced by Bennis
[3] and later by Hassen [4]. The method has been applied to a large variety of problems involving
reinforced soils such as reinforced earth, micropile networks and rock-bolted tunnels may be found in
de Buhan and Sudret [5] or Hassen and de Buhan [6]. The main advantage of such modeling lies in a
significantly reduced computational effort, compared to that required in direct numerical simulations.

2 The multiphase model for reinforced concrete

2.1 Description of the model

Consider a medium defined by a concrete matrix reinforced by steel bars, which are arranged period-
ically (Figure 1). The typical size of the structure being significantly greater than the diameter of the
inclusions and their mutual spacing, it is suited to adopt a macroscopic scale of description in which
the reinforced concrete is regarded as a homogenous medium.

Sudret [2] explains that to any point of a volume Ω of reinforced material are associated geometrically
coincident particles: one particle of the matrix phase and N particles of the reinforcement phase. These
N + 1 superposed particles form the multiphase medium.

dΩ(x) = dΩm (x)
∪

r=1,...N

dΩr (x) (1)

In this way, the steel bars are grouped in a finite number of N different families, each one of
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these families characterized by a direction given by a unit vector er (r = 1, . . . , N). The number of
reinforcement families will be the same to the number of directions in which the bars are disposed.

Figure 1: Description of the reinforced material [4].

Figure 2: Description of the material with the matrix phase and two reinforcement phases.

2.2 Efforts behaviour

The matrix phase is modelled as Cauchy continuum. It can be shown that the internal forces are
described by a second-order symmetrical tensor denoted by σm. This quantity will be referred to as
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the matrix phase stress tensor.
It is admitted that the inclusions are assumed to take only tensile-compressive forces, that is, shear

forces and bending moments are disregarded. Hassen [4] applies the multiphase model taking into
account that the inclusions takes these efforts. So, the variable that describes the internal forces in
the reinforcement phase turns out to be a scalar stress, noted σr.

Finally, due to the superposition of N + 1 particles in each point, body forces, Ij , are introduced
to account for the interaction between phases.

The external forces applied onto a geometrical volume Ω are prescribed in each phase j separately,
and consists in:

(a) Body forces denoted by ρjF j (gravity) exerted by the outside of Ω.
(b) Tractions T j applied at the boundary ∂Ω.
The inertial forces are computed by means of the phase acceleration fields denoted by γj .

2.3 Equations of motion

The equations of motion of the multiphase model can be derived within the framework of virtual work
method and related principles. They may be written as follows for each phase separately [2]:
• Matrix phase Ωm:

divσm(x) + ρm(x)(Fm(x)− γm(x)) +
N∑
r=1

Ir(x) = 0 (2)

• Reinforcement phase Ωr:

div (σr(x)er ⊗ er) + ρr(x)(F r(x)− γr(x))− Ir(x) = 0, r = 1, ...N (3)

The corresponding boundary conditions read

Tm(x) = σm(x) · n(x) on ∂Ωm (4)

T r(x) = σr(x) (n(x) · er) er on ∂Ωr, r = 1, ...N (5)

Equations (2) and (4) are the equations of motion of a Cauchy continuum, where the interaction
forces Ir appear as body forces. These interaction forces express, at the macroscopic scale, the interface
forces between each inclusion and the surrounding matrix at the microscopic scale, and can thus be
interpreted as the average of the latter on a unit volume. More precisely, Ir represents the volume
density of interaction forces exerted by the reinforcement phase r onto the matrix phase.

2.4 Perfect bonding model

All the developments presented in the sequel are restricted to the particular case of perfect bonding
hypothesis: all phases have the same displacement field. This model is thus dedicated to problems
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of reinforced concrete structures where slippage between the steel bars and the concrete matrix is
disregarded. Accordingly,

ξm = ξr ≡ ξ (6)

Taking into account the perfect bonding hypothesis, is introduced, with no ambiguity, the total
strain tensor:

∈ =
1

2

(
gradξ + tgradξ

)
(7)

The compatibility equations between the phase strain variables are:

εm = ∈; εr = ∈ : (er ⊗ er) ≡∈rr (8)

In this model, the system kinematics is described by a single displacement field ξ. It is thus relevant
do derive global equations of motion for the whole system. These equations are obtained by summing
up Eq. (2), (3) and the Eq. (4), (5) respectively. Introducing the following notation:

ρF =
∑
j

ρjF j ; T =
∑
j

T j ; ργ =
∑
j

ρjγj (9)

Σ = σm +
N∑
r=1

σrer ⊗ er (10)

with j ∈ {m, r = 1, . . . N}, one gets:

div Σ+ ρ
(
F − γ

)
= 0 (11)

T = Σ · n (12)

The tensor of total stress Σ appears to be the sum of the partial tensor in the matrix phase and
the uniaxial partial stress tensor in the reinforcement phase. With this notation, the constitutive Eq.
(11) and (12) reduce to those of the classical Cauchy continuum.

To complete the description of the perfect bonding model, global constitutive equation relating Σ

and ∈ are derived. One can easily prove that the global tensor of elastic moduli A satisfying Σ = A : ∈
in the elastic domain write:

A = am +
N∑
r=1

arer ⊗ er ⊗ er ⊗ er (13)

where the global tensor of elastic moduli is decomposed additively in a contribution of the matrix
phase and a contribution of each reinforcement phase. It appears clearly that the directions er are
privileged, what is seen in the anisotropic characteristic of the behavior.
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Equilibrium equations and constitutive laws have been derived, making it possible to solve boundary
value problems. In order to model real reinforced structures, it is now necessary to connect the phase
constitutive laws with the material characteristics of the concrete and inclusions.

Assuming that the volume fraction ηr of the inclusions is small when compared to unit (i.e., ηr ≪ 1),
a heuristic identification can be used:
• The matrix phase constitutive law is identified with that of the concrete.
• Since the inclusions are supposed to take purely uniaxial stresses, it is possible to evaluate the

contribution ar of the reinforcement phase stiffness in Equation (13) as:

ar = ηr · Einc (14)

where Einc is the Young’s modulus of the steel bars.

Remark A first attempt to extend the multiphase modeling to geotechnical structures taking into
account the interaction matrix/reinforcement can be found in [3].

3 Numerical implementation of the model

The implementation formulated herein follows the steps presented by Sudret [2] and Hassen [4].

3.1 Description of the model

Considering a kinematically admissible virtual displacement field ξ̂ and its associated linear strain
field ε̂, the principle of virtual work, derived from (11) and (12), writes∫

Ω

Σ : ε̂ dΩ−
∫
Ω

ρF · ξ̂ dΩ−
∫
∂Ω

T d · ξ̂ dS = 0 (15)

Relating the elastic strain to the phase stress by σm = am :
(
εm − εm

p

)
and σr = ar

(
εr − εrp

)
and

substituting in Eq. (11) and using the Eq. (8), the first term in Eq. (15) may be rewritten as follows:∫
Ω

Σ : ε̂ dΩ =

∫
Ω

[
A : ε− am : εm

p
− arεrper ⊗ er

]
: ε̂ dΩ (16)

The geometric volume is discretized into Ne elements. The displacement field ξ in each element νe

is approximated as follows

∀x ∈ νe, ξ (x)|νe = Ne (x) · ue (17)

where ue is the vector of element nodal displacements and N e(x) are the shape functions. The strain
vector is classically given by:
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ε = Be (x) · ue (18)

where the matrixBe contains partial derivatives of the shape functions with respect to the coordinates.
Consequently, the matrix phase stress vector is:

σm = dm ·
(
ε− εmp

)
(19)

It is introduced now an additional notation for dealing with the reinforcement phase. Let us denote
by er the vector of the six components of er ⊗ er. The compatibility Eq. (7) can be rewritten as:

εr = ter · ε = tε · er (20)

Substituting the above equations in the principle of virtual work (15) and using (16), one gets the
discretized formulation, which leads to the usual linear system yielding the global vector of nodal
displacement U.

K · U = F ext + Fmp + F rp (21)

The global stiffness matrix K turns out to be:

K =
∑∫

νe

tBe

(
dm +

N∑
r=1

arer · ter

)
Bedν

e (22)

the terms in the right-hand side of Eq. (33) are the external load vector:

F ext =
∑(∫

νe

tN e · ρFdνe +
∫
∂Ω

∩
νe

tN e · T ddνe
)

(23)

and the vector of plastic forces associated to each phase:

Fmp =
∑∫

νe

tBe · dm · εmp dνe (24)

F rp =
∑∫

νe

N∑
r=1

arεrp
tBe · erdνe (25)

3.2 Plastic integration algorithm

Due to the non-linearity of the phases’ constitutive laws, the loading path is divided into load incre-
ments noted by ∆F extj . For each load step, the problem is solved by an iterative algorithm.

Denoting by
{
Un, σ

m
n
, σrn, εn, ε

m
p,n
, εrp,n

}
the set of state variables describing the system after load

step n. For each variable χ in this set, let us write:
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∆χn = χn+1 − χn (26)

Let us apply the load increment ∆F extj . The corresponding displacements increment ∆Un is obtained
from the global equilibrium.

K ·∆Un = ∆F extn +∆F p,n (27)

where ∆F p,n = ∆Fmp,n +∆F rp,n is the vector of plastic nodal forces. These forces are unknown, since

the plastic strain increments
{
εm
p,n
, εrp,n

}
resulting from the load increment ∆F extn are still unknown.

The latter have to be determined in such a way that the elastoplastic constitutive laws are satisfied
in each Gauss point of the mesh.

The goal is achieved by using an iterative procedure. Starting from: ∆εm
p,n

(0) = ∆εrp,n (0) = 0 at

every Gauss point, sucessive evalutions
{
εm
p,n

(i) , εrp,n (i)
}

of the plastic strains are calculated until
convergence.

Suppose that
{
εm
p,n

(i− 1) , εrp,n (i− 1)
}

is known at each Gauss point, the vector of plastic forces
calculated by (34) and (35) being ∆Fmp,n (i− 1) and ∆F rp,n (i− 1). The iteration i consists first in
computing the increment of nodal displacement ∆Un (i) satisfying:

K ·∆Un (i) = ∆F extn +∆F p,n (i− 1) (28)

Following the global calculation yielding the displacement vector ∆Un(i), the constitutive laws
have been checked locally in each Gauss point. The original point of the present implementation is
the separate treatment of each individual phase. The power of the multiphase approach is thus totally
exploited. The classical return mapping algorithm, Simo and Hughes [7], is applied in each Gauss
point as follows:

At first, trial stress states are calculated for each phase by freezing the plastic strains resulting from
the load increment. Then the phase yield criteria are evaluated separately. If they are negative, no
additional plastic strain has developed due to ∆F extn . If not, a closest-point projection of the trial
states onto their respective yield surfaces is performed.

For the matrix phase, this leads to solving the following set of equations:

fm
(
σn+1(i)

)
= 0 (29)

σn+1(i) = σtrial,m
n+1

(i)− am : ∆εm
p,n

(i) (30)

∆εm
p,n

(i) = ∆wi

(
∂gm

∂σm

)
(31)

Considering now the reinforcement phase, the yield criterion can be written as fr(σr) = |σr| − σro
due to the one-dimensional formulation. The solution for the projection problem and the related plastic
strain increment is:

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



Finite element analysis of reinforced concrete slabs regarded as elastoplastic multiphase media 223

σrn+1(i) =

{
σro if σtrial,r

n+1
(i) ≥ σro

−σro if σtrial,r
n+1

(i) ≤ −σro
(32)

∆εrp,n(i) =
σtrial,rn+1 (i)− σrn+1(i)

ar
(33)

3.3 Failure criterion

The strength of concrete under multiaxial states of stress may be estimated from the so-called Ottosen
failure criterion given by Eq. 34, CEB [1]. It is considered that the plasticity convex is homothetic to
the failure convex.

α
J2
f2cm

+ λ

√
J2

fcm
+ β

I1
fcm
− 1 = 0 (34)

where

λ = c1 cos [1/3 arccos (c2 cos 3θ)] , cos 3θ ≥ 0;

λ = c1 cos [π/3− 1/3 arccos (−c2 cos 3θ)] , cos 3θ < 0;

cos 3θ =
3
√
3

2

J3

J
3/2
2

.

The parameters J2, J3 and I1 represent the invariants of the stress deviator and stress tensor, respec-
tively, characterizing the state of stress considered. The coefficients are material parameters which
depend on the strength ratio fctm/fcm (tensile and compression concrete strength).

3.4 Stress-strain relation for concrete under compression

The hardening rule sets the yield surfaces during the plastic deformation and is determined by the
effective plastic stress-strain relationship. In the present work a uniaxial stress-strain relationship for
compressed concrete is assumed as hardening rule. This stress-strain diagram is calculated by the
following function (CEB [1]):

σc = −
Eci

Ec1

εc
εc1
−
(
εc
εc1

)2
1 +

(
Eci

Ec1
− 2
)
εc
εc1

fcm (35)

where Eci is the concrete tangent modulus, Eci = −fcm/0.0022, σc is the strength compressive stress,
εc is the compression strain and εc1 = -0.0022.
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3.5 Modeling of cracked concrete – Hinton [8]

The main feature of plain concrete material behavior is probably its low tensile strength, which
results in tensile cracking at very low stress compared with the failure stress in compression. In the
finite element context two main approaches have been used for crack representation, the discrete crack
model that represents the individual cracks as actual discontinuities in the finite element mesh; the
smeared crack model in which the cracked concrete is assumed to remain a continuum and the material
properties are modified to account for damage. The second alternative will be adopted in this work.

3.6 The smeared crack model

The concrete is initially isotropic, but cracking induces anisotropy. After cracking, the concrete is
assumed to become orthotropic, with the principal material axes oriented along the directions of
cracking. The material properties depend on the state of strain and stress. The Young’s modulus is
reduced in the direction perpendicular to the crack plane and Poisson’s effect is usually neglected.
This approach is computationally attractive, since the topology of the mesh is unchanged throughout
the analysis, and only the stress-strain relationship need to be updated when cracking occurs. In order
to implement the smeared crack model, the following items have to be applied: a cracking criterion, a
strain-softening rule and a model for shear transfer.

In the present work concrete in tension is modeled as a linear elastic-strain softening material. For
a previously uncracked sampling point, the principal stresses and their directions are evaluated. If the
maximum principal stress exceeds a limiting value, a crack is formed in a plane orthogonal to this
stress. So, the behavior of the concrete is no longer isotropic.

Due to bond forces, cracked concrete carries between the cracks a certain amount of tensile stress
normal to the cracked plane. The concrete adheres to reinforcing bars and contributes actively to the
overall stiffness of the structure. This can be incorporated into the computational model assuming
that the loss of tensile strength in concrete occurs gradually and such procedure has been extensively
used in computational analysis of reinforced concrete structures. According to Hinton [8] it is easy
to choose a tension-stiffening curve that will adequately fit experimental results, but very difficult to
make a priori predictions.

For the tensile concrete it will be used the constitutive equation (Eq. 36) adopted by Prates Junior
[9], Martinelli [10] and other authors.

σi = αtfci

(
1− εui

0, 01

)
(36)

where αt is the reduction coefficient related to cracking strength and εui is the strain on direction i.

3.7 Shear transfer across the crack

Experiments show that a considerable amount of shear stress can be transferred across the rough sur-
faces of cracked concrete. In plain concrete the main shear transfer mechanism is aggregate interlock. In
reinforced concrete dowel action will play a significant role, the main variable being the reinforcement
ratio.
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The above-mentioned mechanisms cannot be directly included in the smeared crack model. A sim-
plified approach is generally employed to take into account the shear transfer capacity of cracked
concrete. The process consists of assigning to the shear modulus corresponding to the crack plane a
reduced value, Gc, defined as Gc = βGo, where Go is the shear modulus of uncracked concrete and β
is a reducing factor in the range of zero to one. Hinton [8] relates the value of β to the tensile strain
normal to the crack plane. In this work, the following value is used.

β = 1− (εt/0.005)
k1 (37)

where εt is the tensile strain normal to the crack plane and k1 is a parameter in the range of 0.3 to
1.0.

4 Applications

The following numerical examples were performed in order to verify the relevancy of the proposed
multiphase modeling.

4.1 McNeice’s and Duddeck’s corner-supported reinforced concrete slab with a point load

The results of a corner-supported two-way square reinforced concrete slab, tested experimentally under
a central point load by Jofriet and McNeice [11] and Duddeck et al. [12], have been used as a benchmark
for verification of numerical schemes by several researchers (Zhang et al. [13], Hinton et al. [14]) and
these slabs were analyzed using the multiphase model to assess the accuracy and performance of the
proposed schemes for RC slabs. The geometry and reinforcement of the slabs are shown in Figure 3
and the material properties are those of Table 1.

Table 1: Material properties.

Phase Properties McNeice Duddeck

Matrix
(concrete)

Young’s modulus 28600 MPa 16.400 MPa

Poisson’s ratio 0,15 0,15

Compression strength 38 MPa 43 MPa

Tensile strength 3,8 MPa 2,0 MPa

αt reduction coefficient 0,4 0,4

Reinforcement
(steel)

Young’s modulus 200.000 MPa 201.000 MPa

Yield stress 350 MPa 670 MPa
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The finite element mesh used to perform both simulations consists in two hundred twenty-noded
hexahedral elements. The cross-section of the slab was divided into eight concrete layers and one or
more equivalent steel layers with reinforcement in two directions, with one quarter of the slab being
analyzed owing to symmetry with a 5 x 5 meshing of the quadrant (Figure 3). The slab tested by
McNeice has the steel bars laid only at the botton of the structure while Duddeck’s slab has the
reinforcement placed both on top and botton, as it can be seen on Figures 4 and 5.

(a) (b)

Figure 3: Geometry of the concrete slabs: (a) McNeice, (b) Duddeck

The slabs are two-way reinforced by a distribution of parallel steel bars introduced following direc-
tions ex and ey. The loading mode corresponds to a bending-like test with just one point loaded.

For Duddeck’s plate the reinforcement ratio of steel area to the total area of the slab in both
direction is r = 0.0296 at the top and r = 0.061 at the bottom. For McNeice the reinforcement, just
at the botton, is 282 mm2/m.

Numerical simulations are performed corresponding to five different reinforcement distributions
along the transversal section. Example 0 has no reinforcement while Example 1 has the reinforcements
distributed all along the cross-section. Examples 2, 3 and 4 have the steel distributed at the inferior
region of the structural element as it can be seen in Figure 6. It is very important to point out that
variable called volumetric fraction η, varies in each model aiming to maintain the same amount of
steel reinforcement.
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Figure 4: McNeice’s reinforcement distribution: the hatched regions indicating reinforced layers.

Figure 5: Duddeck’s reinforcement distribution: different steel ratios on top and botton of the plate.

For Duddeck’s slab also was performed five simulations. Example 0 has no reinforcement too. In
Example 1 an average reinforcement is applied along the cross-section. For Examples 2, 3 and 4, the
difference of the steel rate is taken into account with the multiphase zone extent becoming smaller for
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each example. The reinforcement distribution can be seen on Figure 5.
Figure 6 presents the numerical and experimental results. It has been found from the compar-

isons that the numerical results agree with the experimental tests. Obviously Example 1, for both
comparisons, gave the worst result since the center of mass of the steel bars wasn’t observed.

(a) (b)

Figure 6: Load-deflection curves at node for slabs under a central point load: (a) McNeice, (b) Duddeck.

(a) (b)

Figure 7: Load for a deflection of 5mm (McNeice (a)) and 8mm (Duddeck (b))

An important issue of the computational modeling is to determine the extent of the multiphase
zone (i.e., reinforced zone). Actually, this aspect is related to the validity of the approach, since the

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



Finite element analysis of reinforced concrete slabs regarded as elastoplastic multiphase media 229

latter theoretically requires that the density of reinforcement is much higher for the material to be
regarded at the macroscopic scale as an ‘homogeneous’ two phase material.

The analysis indicates that the configurations considered for McNeice’s slab converge rapidly toward
the experimental result. This means that reinforced zones with extension of 40,9% (Example3: 1,82cm/4,44cm)
or 15,9% (Example4: 0,71cm/4,44cm) prove to be enough for an appropriate representation of the
reinforced zone. A similar behavior is observed for the analysis of Duddeck’s slab: the model using a
multiphase zone with extension of 50% (3,25cm/6,5cm), which is rather rough, lead to satisfactory
predictions.

This preliminary study constitutes an important and encouraging result. Indeed, it suggests that
the modeling is slightly sensitive to the extent of the multiphase zone adopted for the calculations.

5 Concluding remarks

A multiphase model for structures of reinforced concrete with perfect bounding between the steel bars
and the matrix of concrete and considering the concrete cracking was introduced. The implementation
and validation of this model is the object of the doctorate thesis of the first author. The comparative
studies performed produced results in good agreement with the experimental results. In terms of future
development, the model will be extended to include more realistic conditions than perfect bonding,
allowing some kind of sliding between the matrix phase and the reinforcement phase. These results
are still to be confirmed by further investigations.
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Dynamics and energy absorption of structural elements
under blast and impact
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Abstract

The present article summarises the major factors, which cause an increased energy absorption capacity in
materials and structural elements under intensive dynamic loading. Particular attention is paid to the inertia
effects, including the propagation of stress-wave in structural elements causing an alternation of the buckling
modes. The dynamic stress enhancement in cellular materials is discussed when analysing the propagation of
a compaction wave in a foam material exhibiting strain hardening.

Keywords: impact, stress waves, foam, shells, buckling, energy absorption.

1 Introduction

Structural elements, which deform inelastically, are often used in energy-absorbing devices due to
their simple design and the high efficiency achieved by several buckling deformation mechanisms. The
progressive folding of axially loaded tubular elements, which is characterized by a constant mean load
over a large stroke, is the most efficient deformation mechanism which occurs under their quasi-static
compression. This is the desired behavior of an ‘ideal’ energy absorber. A literature review related to
the energy absorption estimates of shell structures can be found in, e.g., [1]. In the present article, the
factors which lead to the alternation of this buckling mode are highlighted when a particular attention
is paid to the inertia effects. The effects of the axial inertia in ductile tubes are discussed in view of
the stress-wave propagation. The effects of the lateral inertia are demonstrated on the examples of
buckling of long tubes under a mass impact. A comprehensive review on the influence of the geometric
and material characteristics on the dynamic elastic-plastic buckling of structural elements can be found
in [2].

Similarly to the traditional structural energy absorbers, the cellular materials with different topol-
ogy, honeycombs, open and closed foams, metal hollow spheres, have excellent potential characteristics
as blast and impact energy absorbers due to the same reason – their ability to deform over a long
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stroke at an almost constant load. While the out-of plane loaded honeycomb respond to impact lad-
ings similarly to the response of tubular elements, other cellular materials exhibit a large strength
and energy absorption enhancement under intensive dynamic loading. This phenomenon is due to the
compaction waves travelling through the cellular material producing an energy dissipation which is
larger than the amount that corresponds to the area under the nominal stress–strain curve [3–6]. From
this view point, the understanding of the mechanism of compaction of cellular materials is important
in order to obtain accurate estimates of their energy absorption capacity. A new model of compaction
of foam materials exhibiting strain hardening is discussed.

2 Sandwich structures under blast loading

The deformation and velocity attenuation in a sacrificial cladding of a finite thickness comprising
a Cymat foam core, steel back and cover plates with thickness H and subjected to a uniform blast
loading are analysed in this section in order to reveal the phenomena which are observed during the
foam deformation. The pressure pulse resulting from an air blast is applied to the cover plate as shown
in Fig. 1a. Two major problems should be examined in this structural configuration – the mechanism
of foam compaction and foam integrity under dynamic loading.

2.1 Foam core compaction

Different methods have been proposed in the literature to model the foam compaction. The shock
wave propagation model of deformation of cellular materials was proposed by Reid and Peng [7] to
explain the crush enhancement of wood specimens assuming a rigid perfectly plastic locking (RPPL)
mechanism. Retaining the basic characteristics of the one dimensional shock wave models [8, 9], more
detailed material models were used taking into account the elastic material properties. Elastic–plastic
model with hardening was used by Harrigan et al. [10] while elastic perfectly plastic with rigid locking
model was used by Lopatnikov et al. [11, 12]. Although different material models were assumed, the
shock wave propagation models use either zero strain or the strain value associated with the strain
of the fully locked material. Different definitions of the locking strain, εD, were used in [9] and [12].
More recently a phenomenological model using a power law approximation of the stress-strain curve
and assuming a non-constant strain jump was proposed by Pattofatto et al. [13] which gives a more
accurate prediction for the dynamic stress enhancement in some cellular materials.

Although the RPPL model gives a quick estimate of the dynamic stress enhancement, ∆σdyn =

ρ0[V ]2
/
[εD] [7], the application of this model for a description of the compaction of a cellular material

with strain hardening (Fig. 2a) does not always lead to accurate results as a full compaction (ε = εD)
within the primary stress wave cannot be achieved in these materials. As a result, an additional
compaction can occur within the reflected stress wave when a block with a finite thickness is analysed.

The compaction velocity of proximal end of the cladding is characterised by a rapid increase followed
by a gradual attenuation (Fig. 1b). Shock waves can develop during the first phase for sufficiently high
velocities while a plastic wave of strong discontinuity characterised by decreasing strains behind the
wave front propagates in the foam during the second phase.
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(a) (b)

Figure 1: (a) Cladding structure cross-section; (b) Velocity of the proximal end for blast loading with
I = 13.3Ns, H = 2mm, ρ0= 253 kg/m3 [14].

(a) (b)

Figure 2: (a) Stress-strain relationship for Cymat foam with ρ0 = 253 kg/m3 (taken positive in
compression) and a simplifying RPPL model; (b) Model of an impact of a rigid mass against a
stationary foam rod.

The following mathematical description can be employed to describe the observed behaviour. The
process of loading is described by

∂V

∂t
− c2 (ε) ∂ε

∂ξ
= 0, c2 (ε) = g′ (ε) /ρ0, g′ (ε) > 0,

∂ε

∂t
≥ 0. (1)

while the conditions
∂u

∂ξ |t=f(ξ)
= ε2 (ξ) , (2a)
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∂u

∂t |t=f(ξ)
= V2 (ξ) (2b)

should be satisfied on the wave front t = f(ξ), where ε2(ξ) and V2(ξ) are calculated on the wave front
and u is the longitudinal displacement (ξis a Lagrangian coordinate).

In order to facilitate an analytical analysis, a model for the phase of the velocity attenuation was
developed [14] assuming a mass impact, Fig. 2b. The conservation of the linear momentum leads to
the relationship

[σ] = ρ2 (V2 −G) [V ] (3a)

on the wave front, where [ ] denotes a jump in the corresponding variable. The displacement continuity
across the wave front is expressed as

[V ] = −G [ ε] . (3b)

The relationships (3a,3b) should hold on the wave front together with the displacement continuity
condition [15]

ρ1 (V1 −G) = ρ2 (V2 −G) . (3c)

In Eqs (3), ρ1, V1 and ρ2, V2 are the characteristic parameters ahead of and behind the wave front
and G = 1/f ′(ξ) is the speed of the wave front.

The elastic strains in the deformed foam material behind the front of the unloading wave can be
neglected and a rigid unloading can be assumed thus defining a rigid body motion of the region behind
the wave front. The particle velocity, V , is independent of ξ and equal to the particle velocity of the
wave front

V (ξ, t) = V2 (t) . (4)

In the case of a suddenly applied mass impact to the proximal end of the foam, the initial points
of the positive characteristics at t = 0 must all coalesce at the origin, which becomes a singular point
and corresponds to an initial discontinuity of all dependent variables [15].

The elastic wave front travels at speed c0 and the particle velocity is

VY = −c0εY = V1, (5a)

εY = σY /E. (5b)

Using Eqs (3a-c), the velocity jump [V ] is obtained as

[V ] = − ([σ] [ε] /ρ1)
1/2

, [V ] = V1 − V2 (6a)

where ρ1 = ρ0/(1− |εY |); [V ([ε])] is uniquely defined for any stress-strain relationship of the foam
material.

[V ] ≈ − ([σ] [ε] /ρ0)
1/2 (6b)

when taking into account that ρ1 ≈ ρ0, |εY | << 1. Thus, the velocity jump can be expresses as
a function of the strain jump [ε] = εY − ε as [V ] = FV (ε) and for any given value of V2 = const
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there will correspond a certain maximum value of the plastic strain, ε2. [V ] = FV (ε) is a continuous
function, which increases when [ε] increases.

The speed of the front of the unloading wave is expressed as

G (ε) = −[V ] / [ε] (7)

according to Eq. (3b). The relationship [V ] = FV (ε) can be inverted to give ε2 = ε2 (V2) [16], or
[ε] = Fe ([V ]). Therefore, for a given stress-strain relationship the speed of the unloading wave front
can be expresses as G (ε) = FG ([V ]).

The velocity of the proximal end, V (t), of the foam block and the development of the compacted
region, h (t), are defined by the following equations

dV

dt
+ ρ0G (V )

V 2

mV0
= 0, (8a)

dh

dt
= G ([ε(V )])− V (t) (8b)

when using the initial conditions

V (0) = V0, (9a)

h(0) = 0. (9b)

The material characteristics [ε] = Fe ([V ]) and G (ε) = FG ([V ]) are monotonic functions of V for
the analysed Cymat foams when considering that [V ] = V at the wave front, which propagates in an
undisturbed region.

According to this model, the dynamic stress enhancement is not only a function of [V ] but depends
also on the strain jump at the wave front, [ε] ̸= const, during the process of compaction. Examples of
the strain distributions along the compacted region of the foam within the primary compaction wave
are shown in Fig. 3a. The strain non-uniformity behind the compaction wave is well predicted by the
model when comparing with the numerical simulations. The velocity attenuation histories as functions
of the foam stroke obtained by Eqs (8,9) and predicted by the RPPL model are compared in Fig. 3b.
One can see that the approximation of the actual foam stress-strain relationship by the RPPL model
leads to an underestimation of the stroke, u, thus underestimating the minimum thickness of the foam
block necessary to absorb the impact energy.

Another difference between the two models will become apparent when considering a foam block of
a finite thickness. An increase of the reflected stress due to the new compaction within the reflected
stress wave can be predicted by the current model [14] while no further compaction is possible upon
stress reflection in the RPPL model. It should be noted that the approximation of a cellular material
with significant strain hardening by the RPPL model can lead to a false conclusion of shock wave
propagation since the critical velocities in the actual materials could be higher than those defined for
the RPPL model.

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



236 D. Karagiozova

(a) (b)

Figure 3: (a) Strain distributions through the foam thickness within the primary compaction wave, V0
= 145 m/s, L = 0.2 m; (b) Impact velocity attenuation in an infinite foam block – the present model
and RPPL model [7] M = 0.628 kg, V0 = 95 m/s.

2.2 Foam integrity

The effect of bonding the cover plate to the foam core on the integrity of the foam core was examined
in [17]. Blast tests and numerical simulations using ABAQUS/Explicit were performed to give insight
into the response mechanism leading to the development of cracks and subsequent disintegration
of the foam. It was shown through the finite element simulations that tensile fracture of the foam
occurred during the unloading phase of response and the adhesion of the cover plate to the foam
caused extensive cracking which was consistent with the experimental observations, Fig. 4a.

The crushable foam model with volumetric hardening available in ABAQUS/Explicit was used for
the Cymat foams. In the FE models, foam fracture is usually taken into account when the critical
stress, strain or critical fracture energy is considered as a criterion for element removal [18]. However, it
is straightforward to apply this procedure to a material fracture when it has not been pre-strained. In
the present case, the material has being compacted to different compressive strain levels (and different
resulting densities) before reverse plasticity, resulting in tensile strains, occurred. Therefore, element
removal based on the virgin foam material would lead to extremely brittle fracture prediction for the
compacted material. The possibility of using cohesive elements to model crack development [19] was
also considered inappropriate for the particular loading configuration since the crack locations were
not known in advance.

As an alternative, it was anticipated that plastic unloading with local tensile strains larger than the
critical ones, εcrtension = εpvol, tension = pt/E, can develop with a constant stress equal to pt, which is an
inherent feature of the foam model with volumetric hardening. Since the critical tensile stress of Cymat
foam is small, the model described a rapid local weakening of the foam material once the critical strain,
εpvol, tension was reached. The reverse plastic strains (in tension) start to grow rapidly in the weak zones
leading to velocity discontinuity and the process was considered to be a crack development feature.
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This approach of modelling the formation of ‘weak’ zones in the foam material, although simplified,
appeared to be appropriate since the stress state in the analysed cladding specimens is essentially
uniaxial.

The velocity field also corresponded to the crack development. Regions with constant velocities
formed very rapidly and velocity discontinuities occurred at some locations Fig. 4b (a quarter of
the actual specimen was modelled), confirming the presence of cracks in these locations. The velocity
behaviour of the two sides of the crack can be considered as evidence for a further complete separation
of the parts of the core. It should be noted that, although the foam model used in the numerical
simulations overestimated the material fracture toughness, it predicted the cracking and fragmentation
of the foam reasonably well [17].

(a) Photograph of cladding specimen (b) Transverse velocity field, t = 0.93ms (ABAQUS)

Figure 4: Deformation of a bonded foam cladding, L = 50 mm, H = 4 mm, ρ0 = 253 kg/m3, I = 15.4
Ns [17].

3 Axial impact on ductile tubes

The buckling process of elastic-plastic shells with circular and square sections within a wide range of
impact velocity and made of different ductile materials has been extensively studied for decades due to
the numerous applications of these elements. This section only aims to summarize some basic results
on dynamic buckling from a phenomenological viewpoint. It is well known that the various axially
loaded structural members are highly inertia sensitive including the axial and lateral inertia, which
can potentially lead to the increase of the critical axial load. Being a bifurcation problem by nature,
buckling is sensitive to the loading path, and therefore the force-time history, which in turn is affected
by the material properties. Moreover, the material properties play an essential role in the response
of structures that buckle in the plastic range. Having this perception, ‘dynamic plastic’ buckling and
‘progressive’ buckling phenomena are discussed, when in the first case, coupling between the axial
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compression stress wave and buckling is involved while no coupling between the axial and transverse
(radial) inertia occurs in the latter case.

3.1 Moderate length tubes with circular cross-section

Two major buckling mode types are observed in circular tubes, progressive buckling (folding) and
buckling within a sustained axial plastic flow. Examples are shown in Fig. 5. The results reported in
the literature reveal that the stress waves within a sustained plastic flow can govern the initiation of
buckling in relatively thick shells subjected to dynamic loading, while the lateral inertia properties of
shells with different cross-sections play an important role in the post buckling behaviour and in the
development of the final deformed shape. For example, large almost uniform stresses and strains arise
from an impact of a shell on a rigid wall [20] and in this case, the lateral inertia forces in a thicker
shell suppress the local growth of the radial displacements, thus allowing a further propagation of the
primary wave and for buckling to develop within a sustained axial compressive plastic flow, Fig. 5e. A
thinner shell subjected to the same loading conditions, however, cannot support the unbuckled shape,
so the local bending deformations grow rapidly near the struck end, thus impeding the propagation
of the initial plastic stress wave by partial unloading of some cross sections of a shell.

(a) (b) (c) (d) (e) (f)

Figure 5: Types of buckling (a-d) Quasi-static loading; (a) progressive buckling with axisymmetric
folds; (b) Mixed modes; (c) Asymmetric folds [21]; (d) Axisymmetric wrinkling [22]; (e) Dynamic
plastic buckling, V0 = 108 m/s [20]; (f) Dynamic progressive buckling, V0= 78.15 m/s [23].

The speeds of the plastic stress waves play an essential role in the development of the particular
buckling mode. These wave speeds in a circular shell have been obtained [24, 26, 27] when assuming
a biaxial stress state, (σx ̸=0, σθ ̸=0), σx and σθ being the axial and circumferential stresses. Figures
6a and 6b show how the plastic stress wave speeds vary with the stress state for an elastic linear
strain hardening material obeying the von Mises and the Tresca yield criteria. The wave speeds are
presented as vectors perpendicular to the yield surface with magnitudes c/ce. It is evident from the
figures that the plastic waves can propagate at different speeds, which are bound from above by the
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(a) (b)

(c) (d)

Figure 6: Speeds of the stress waves (a,b) in a circular shell – SRS: strain rate sensitive; SRI: strain
rate insensitive [24]. (a) Von Mises yield criterion (b) Tresca yield criterion; (c,d) Stress wave speeds
in a shell plane (nx = 1, ny = 0); A: σxx < 0, σyy = σxx/2, B: σxx < 0, σyy = 0 [25]: (c) Stress wave
speeds as a function of λ = Eh/E for σxy/σ0 = 0.15; (d) Stress wave speeds as a function of σxy for
λ = 0.003.

elastic wave speed in a shell, ce, and from below, by a speed which is larger than the plastic wave speed
propagating in a uniaxial medium. Thus, the transient process, which develops in an elastic-plastic
shell as a result of an axial impact, depends not only on the yield stress and the hardening properties
of a material but also on the particular yield condition that controls its plastic flow. The minimum
values of the plastic wave speeds are obtained as

cpmin =
{
4λ
/
[4λ
(
1− ν2

)
+ 3 (1− λ)

}1/2
(E/ρ)

1/2 (10a)

for the von Mises yield criterion and

cpmin =
{
2λ
/
[2λ
(
1− ν2

)
+ (1− λ)

√
3
}1/2

(E/ρ)
1/2 (10b)
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for the Tresca yield criterion, where λ= Eh/E is the ratio between the hardening modulus, Eh and
the Young modulus, E.

The calculated stress wave speeds can be used for the interpretation of some numerical results
related to transient deformation processes in circular shells. According to Eqs.(10a) and (10b), the
plastic wave speed is determined by the hardening modulus, and its variation can lead either to
dynamic plastic buckling or to dynamic progressive buckling [26, 28] for a high velocity impact. Due
to this reason, the material approximation can change the predicted pattern for the initial instability
and the final buckling shape of a shell. A regular buckling shape can develop in a shell made of
strain-rate insensitive material with relatively large strain hardening, when buckling develops within
a sustained axial plastic flow (Fig. 7b) later transforming into a progressive mode (Fig. 7c). On the
other hand, the localization of strains leads to progressive buckling in shells made of materials having
a low strain hardening behaviour as shown in Figs 7d and 7e.

Dynamic buckling within a sustained axial plastic flow can be observed only for particular com-
binations between the shell geometric characteristics and material properties. However, this type of
buckling can develop for relatively low impact velocity too, provided a shell has certain inertia char-
acteristics.

(a) (b) (c) (d) (e) (f)

Figure 7: Influence of the material model on the buckling shape of cylindrical shells, A6063-T5, T0 =
2.2 kJ, V0 = 75 m/s [28]. (a) Undeformed shell wall; (b) buckling initiation, t0 = 0.217 ms; (c) final
shape for material approximation A2; (d) and (e) same as in (b)and (c) but for material approximation
A3; (f) Material approximations

It appears that buckling within a sustained axial plastic flow is an inherent response of thicker
shells. It has been registered that in shells that buckle in the plastic range under a quasi-static
compression, the first instability is uniform axisymmetric wrinkling [22] that is typically treated as
a plastic bifurcation. The wrinkle amplitude gradually grows and, in the process, reduces the axial
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rigidity of the shell. This eventually leads to a limit load instability, beyond which the cylindrical shell
fails by localized collapse. For some combinations of geometric and material characteristics, this limit
load can be preceded by a second bifurcation that involves a non axisymmetric mode of deformation
[29].

For certain combinations of the characteristic parameters, buckling within a sustained plastic flow
could never occur regardless of the impact velocity, which explains why localized buckling is more
commonly observed in experimental tests on axial impact loadings of shells. Furthermore, strain rate
effects, which are characteristic of many types of steel and other ductile materials, cause more rapid
strain localization [23, 26, 30].

3.2 Moderate length tubes with square cross-section

The experimental results on the response of elastic-plastic shells with square cross-sections subjected
to axial impact loadings divulge features which are also characteristic for the deformation of circular
shells. A numerical study of the transient deformation process reveals that similarly to the response of
circular tubes, the initiation of buckling is influenced significantly by elastic and plastic stress waves
[25, 31] propagating along the tube. However, large plastic strains can develop along the entire shell
with a square cross section and relatively small wall thickness even for moderate impact velocities.

The propagation of in-plane stress waves in an elastic-plastic medium with σxx ̸= 0, σyy ̸= 0,
σxy ̸= 0 and having a linear strain hardening when obeying the von Mises yield criterion was discussed
in Ref. [25]. Two in-plane plastic waves, named ‘slow’ and ‘fast’ plastic waves, are shown to exist, with
their speeds depending on the stress state, material hardening characteristics and the direction of
propagation along the shell wall (nx, ny). It turns out that the fast plastic wave speed can reach
the elastic wave speed for certain stress states and directions of propagation Fig. 6c. For small shear
stresses, the slow plastic wave that carries the largest plastic strains travels at a significantly higher
speed in comparison to the uniaxial plastic wave speed (Fig. 6d, σ0 is the yield stress).

Despite the similarities between the development of the buckling patterns in circular and square
shells, attention should be called to the difference between the rates of loading, causing dynamic
plastic and dynamic progressive buckling in the these structural elements (Fig. 8). A circular and
square shell with equal lengths, wall thicknesses, and cross-section perimeters and made of the same
material could respond by different type of buckling when subjected to identical impact loadings.

An impact loading, which causes dynamic plastic buckling of a square shell, may cause progressive
buckling of the corresponding circular shell [31]. Two factors contribute to this behaviour, which is
related to the strain localization. It is shown in Ref. [25] that the axial plastic stress waves can travel
at higher speeds in a square shell compared to the plastic stress wave speeds in a circular shell. This
facilitates the compression plastic strains to propagate at a larger distance in a square shell before
the significant growth of the lateral displacements due to buckling, thus supporting the development
of dynamic plastic buckling. Differently, the slower axial plastic wave in a circular shell can travel a
shorter distance (often comparable with a single fold length) before the development of significant
radial displacement. After that, large bending deformations develop, leading to a strain localization
and initiation of progressive buckling. Therefore, higher impact velocities, which increase the radial
inertia, are required for the circular shell to respond by a dynamic plastic buckling mode. In addition
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 8: Final buckling shapes of geometrically equivalent square and circular tubes; (a) Initial; (b,f)
V0 = 15.91 m/s, G = 0.95 kg; (c,g) V0= 35.35 m/s, G = 0.44 kg; (d,h) V0 = 64.62 m/s, G = 0.103 kg;
(e,i) V0= 91.53 m/s, G = 0.103 kg [31].

to the different plastic stress wave speeds, the different behaviour of the post bifurcation paths that
characterize the two shell geometries affects the rates of strain localization. An initial structural
hardening characterizes the post-buckling of a square shell while the post-buckling path of a circular
shell can be characterized as an abrupt structural softening, which leads to a rapid strain localization
and progressive buckling of the circular shell.

An increase in the axial impact velocity certainly invokes lateral inertia effects on the buckling of
a square tube. Some experimentally obtained final buckling shapes of aluminum alloy 6063-T5 tubes
subjected to similar impact energies of about 600 J, but applied with different initial velocities, are
shown in Fig. 9 together with their FE models. Thus, it could be anticipated that larger impact energy
would be required to cause bottoming out of a tube when subjected to a higher impact velocity. In
other words, a shell can absorb larger impact energy when this energy is applied at a higher speed,
even when disregarding material strain-rate-sensitive effects.

3.3 Long circular tubes

The increase of the tube length involves a type of instability that activates an additional buckling
mode. Relatively long inelastic tubes can respond by global bending, or a mixed mode, when a few
folds are formed along the tube, thus presenting an inefficient buckling mode from the view-point
of the energy absorption. A classification of the buckling modes, which occur in statically loaded
circular tubes made from aluminum, was presented by Andrews et al [32] as a function of the radius-
to-thickness ratio based on an experimental study. In particular, it was shown that the critical length
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Figure 9: Lateral inertia effects in a square tube subjected to a 600 J axial impact; (a,f) Initial; (b,g)
V0 = 14.84m/s; (c,h) V0 = 25.34 m/s; (i) V0 = 40.0 m/s; (d,j) V0 = 64.32 m/s; (e,k) V0 = 98.27 m/s
[31].

for the buckling transition from a progressive buckling mode to an overall bending increases when
increasing this characteristic parameter.

The axial dynamic loading brings into play the influence of inertia and material strain-rate sensitivity
and certainly these parameters could also influence the buckling transition between the two buckling
modes. The progressive buckling mode can be referred to as a ‘shell’ mode as it characterizes the post-
buckling behaviour of a shell, while the overall (global) bending can be referred to as a ‘column’ mode
as it characterizes the post-buckling behaviour of along column. Abramowicz and Jones [33] were the
first to present experimental data on the buckling transition for circular and square mild steel tubes of
various lengths when impacted by a mass with initial velocities between 4m/s and 13m/s. They found
that the tube length, which marks the transition between progressive buckling and global bending, is
larger for impact loadings than for the corresponding static response.

Karagiozova and Alves [34] also conducted experiments on the transition from progressive buckling
to a global bending collapse mode of aluminium alloy circular tubes having a single diameter-to
thickness value (2R/h, 2R = 50.8mm, h = 2mm) and a range of lengths, with axial impact velocities
up to 12 m/s. It was observed that the transition between progressive and global bending is velocity
sensitive (Fig. 10a) and can occur at critical lengths, Lcr, as large as twice the corresponding static
value when tubes were impacted with a mass of 120 kg, provided the velocity was high enough, Fig.10b.
Impact experiments on long circular tubes made of AA6063-T6 were reported by Hsu and Jones [35]. A
comprehensive experimental programme on square tubes was carried out by Jensen et al. [36] to study
the transition between progressive and global bending of axially loaded square aluminium extrusions
of alloys AA6060-T4 and AA6060-T6 under quasi-static and dynamic axial loadings.

The aforementioned test results on axial impact loadings reveal that a variation of the problem
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(a) Buckling transition for
tubes with L = 500 mm

(b) Variation of the critical length

Figure 10: Influence of the impact velocity on the dynamic buckling transition of aluminum alloy
circular tubes [34].

parameters over a wide range is required in order to understand the transition conditions under an
axial impact. In this case, the numerical simulations can serve as a helpful tool to bring an insight
into the influence of material and loading conditions on the buckling transition and on the estimation
of the critical tube length.

The transition conditions between a progressive buckling mode and global bending collapse of axially
impacted long circular tubes were studied by Karagiozova and Jones [37] using simplified structural
models when taking into account the characteristic features of the two deformation phases: axial
compression and buckling/bending. These models are used to estimate the formation time of the two
principal buckling modes, which provides an insight into the buckling transition phenomenon. The
dominant buckling mode is characterized by a larger vertical velocity, V1(t∗), of the proximal end of the
shell at the end of the initial compression phase, t = t∗, leading to a rapid development of this mode
during the post-buckling response. There is, however, an impact velocity associated with a particular
set of geometrical and material parameters, which causes a simultaneous increase in the progressive
buckling and global bending mode, i.e., V1,glob(t∗) = V1,progr(t

∗), so that no ‘leading’ mode can be
selected for buckling. In this case, both buckling modes can develop rapidly during the post-buckling
deformation phase, making it difficult to predict the development of a particular collapse mode, as
shown in Fig. 11.

An empirical criterion for the dynamic buckling transition of circular tubes, which is based on the
energy absorption by the formation of a single axisymmetric fold, Tp,f , was proposed in [37]. The
lower and upper, bounds to the critical impact velocity for a buckling transition were obtained when
assuming that an axisymmetric fold starts to develop near the proximal end of the tube in the case
of progressive buckling. The criterion for a dynamic buckling transition can be expressed with respect
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Figure 11: Counterintuitive response for circular tubes with 2R = 50.2 mm, h = 2.19 mm, σ0= 240
MPa, Eh = 460 MPa, V0 = 10.4 m/s, and G = 209 kg [37].

to the vertical velocity associated with a global bending mode as

V1,glob(t
∗) = 3γφ2

0L sinh(2γt∗) ≤ (2Tp,f/G)
1/2 (11a)

where the duration of the compression phase t∗ = t∗progr < t∗glob is determined by the progressive mode
which is calculated using the structural models proposed in Ref. [37]. In Eq.(11a),

γ = 3L−1 (6σ0/ρ)
1/2

{
1−

(
30EhR

2
(
σ0L

2(1 +
√
λ)2
)−1

)}1/2

(11b)

and φ0 is the magnitude of the initial imperfection associated with the global bending mode.
The analysis of the buckling process of relatively long circular tubes advises that the control on

the initiation of buckling cannot guarantee a classical progressive buckling throughout the response.
Thus, the introduction of an appropriate trigger – either mechanical dent or altering locally the
material properties – can improve the energy absorbing characteristics of a long tube by promoting
the initiation of a progressive buckling mode. However, in the case of a large impact energy, which
requires a large number of folds to absorb the initial kinetic energy, the buckling initiation into the
desirable buckling mode might change later from progressive buckling into a mixed buckling mode,
which includes global bending. Therefore, the upper bound to the impact velocity is referred to as a

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



246 D. Karagiozova

‘critical impact velocity’, which causes a classical progressive collapse of a circular tube with a given
geometry when subjected to an impact with a known initial kinetic energy.

Finally, it should be mentioned that the increase of the impact velocity can bring into play the
axial inertia effect in long tubes, i.e., the effect of the stress wave propagation, which is particularly
important for tubes with square cross-sections. In this case, not only the length-to- thickness ratio
and width-to-thickness ratio but also the actual tube length should be considered. The nonuniform
distribution of the compressive plastic strains along the tube can serve as initial imperfections, which
can initiate the initial fold at different locations and contribute to the ‘inconsistent’ behaviour of a
tube when the impact velocity increases.

4 Conclusions

While the numerical models can capture many details of the deformation process, very often, some
basic characteristic features of this process remain “concealed” due to the influence of the combined
effects of the participating parameters. In view of the increased accessibility to powerful numerical
packages, it is essential to develop models and methods, which would assist in understanding the
influence of the various parameters on the structural behaviour. The aim of this article is to point
out some dynamic effects in ductile structural elements and lightweight materials in order to aid the
accurate modelling of the dynamic response of structures with more complex geometry and properties.
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Abstract

In the truss-like Discrete Element Method (DEM) masses are considered lumped at nodal points and linked
by means of uni-dimensional elements with arbitrary constitutive relations. In previous studies of the tensile
fracture behavior of rock samples, it was verified that numerical predictions of fracture of non-homogeneous
materials using DEM models are feasible and yield results that are consistent with the experimental evidence
so far available. In the present paper a discussion of the results obtained with the DEM presented a satisfactory
correlation with the theoretical model known as Carpinteri’s Multifractal Law (CML). A set of rock plates of
different size subjected to monotonically increasing simple tension are simulated with DEM and the results
compared with CML predictions. The satisfactory correlation between the theoretical model and DEM confirms
the robustness of this method as a numerical tool to model fracture processes in quasi brittle solids.

Keywords: discrete elements, fracture, size effects, multifractal law.

1 Introduction

In the truss-like Discrete Element Method (DEM) masses are considered lumped at nodal points and
linked by means of uni-dimensional elements with arbitrary constitutive relations. In previous studies
of the tensile fracture behavior of rock cubic samples, it was verified that numerical predictions of
fracture of non-homogeneous materials using DEM models are feasible and yield results that are
consistent with the experimental evidence so far available.
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Results of the numerical fracture analysis of 2D systems employing the DEM are reported in this
contribution and compared with predictions based on the multi-fractal theory proposed by Carpinteri
et al [1–3]. It is shown how three fundamental coefficients related with a fractal dimension: the fracture
energy, the rupture stress and the final strain, as well as their interrelation, may be calculated. A set
of rock plates of different size subjected to monotonically increasing simple tension are simulated with
the DEM, and the results are compared with Carpinteri’s Multifractal Law (CML). The satisfactory
correlation between the theoretical model and the DEM predictions confirms the robustness of this
method as a numerical tool to model fracture processes in quasi brittle solids.

2 The truss-like Discrete Element Method

In the truss-like discrete element method (DEM) a continuum is represented by a set of lumped masses
interconnected by a set of uni-axial elements or bars. In particular, Figure 1(a) and 1(b) show the
discretization for a cubic system, for which the stiffness of the DEM elements corresponding to an
equivalent orthotropic linear elastic material were obtained by Nayfeh and Hefzy [4]. The basic cubic
module has 20 elements and 9 nodes. Every node has three degrees of freedom, namely the three
components of the displacement vector in a global reference system. In case of an isotropic elastic
material, the cross-sectional area Ai of the longitudinal elements (those defining the edges of the
module and those parallel to the edges connected to the node located at the centre of the module) in
the equivalent discrete model is:

Ai = ϕL2 (1)

where L is the length of the side of the cubic module under consideration. Similarly, the area Ad of
the diagonal elements is:

Ad =
2√
3
δϕL2 (2)

Note that there is a difference in length between longitudinal and diagonal elements, since:

L =
(
2
/√

3
)
Ld (3)

For approximately isotropic solids:

ϕ = (9 + 8δ) / (18 + 24δ) (4)

δ = 9ν (4− 8ν) (5)

in which ν is Poisson’s ratio. It is important to point out that for ν = 0.25, the correspondence
between the equivalent discrete solid and the isotropic continuum is complete. On the other hand,
for values of ν ̸= 0.25 small discrepancies appear in the shear terms, which may nevertheless be
neglected. It is interesting to note that while no lattice or truss-like model can exactly represent a
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locally isotropic continuum, it can also be argued that no perfect locally isotropic continuum exists in
the physical world. In fact, the continuum itself does not exist. Isotropy in solids is a bulk property
that reflects properties of the random distribution of the orientation of the elements. The derivation
of the areas of longitudinal and diagonal elements given for a cubic array by equations (1) and (2)
may be found in Nayfeh and Hefzy [4] and Dalguer et al. [5].

The equations of motion are obtained from equilibrium conditions of all forces acting on the nodal
masses, resulting a system of equations of the form:

Mẍ + Cẋ + F (t) − P (t) = 0 (6)

in which x, ẋ and ẍ denote vectors containing the nodal displacements, velocities and accelerations,
respectively, while M and C are the mass and damping matrices. The vectors F (t) and P (t) contain
the internal and external nodal loads.

(a) (b)

Figure 1: DEM discretization strategy: (a) basic cubic module, (b) generation of prismatic body.

Since matrices M and C are diagonal, equations (6) are not coupled, and they can be easily integrated
in the time domain using an explicit finite difference scheme. It is worth noting that since nodal
coordinates are updated at every time step, large displacements are accounted for naturally. Stability
of the integration scheme is insured by adopting a time interval ∆t in the integration process such
that:

∆t ≤ 0.6L

Cρ
(7)

in which Cρ is the propagation velocity of longitudinal waves,

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



252 L.E. Kosteski, I. Iturrioz and J.D. Riera

Cρ =
√
E/ρ (8)

The convergence of DEM solutions in linear elasticity and elastic instability problems was verified
by Hayashi [6] and Dalguer et al. [5], among others.

2.1 Non-linear constitutive model for damaged material

Rocha et al [7] adopted the softening law for quasi fragile materials proposed by Hilleborg [8], extend-
ing the Discrete Element Method to handle fragile fracture by means of the bilinear constitutive
relationship (ECR) shown in Figure 2, which allows accounting for the irreversible effects of crack
nucleation and propagation. Therefore, the reduction in the element load carrying capacity with dam-
age is predicted by the present formulation of the DEM. The area under the force vs. strain curve
(the area of the triangle OAB in Figure 2) represents the energy density necessary to fracture the
area of influence of the element. Thus, for a given point P on the force vs. strain curve, the area of
the triangle OPC represents the reversible elastic energy density stored in the element, while the area
of the triangle OAP is the energy density dissipated by damage. Once the damage energy density
equals the fracture energy, the element fails and loses its load carrying capacity. On the other hand,
in the case of compressive loads the material behavior is assumed linearly elastic. Thus, failure in
compression is induced by indirect traction.

Figure 2: Bilinear constitutive law adopted for DEM uni-axial elements.

Constitutive parameters and symbols are shown in Figure 2 (see Rocha [9], and Rocha et al, [7]).
The element axial force F depends on the axial strain ϵ. The area associated to each element is given
by equations (1) or (2) for longitudinal and diagonal elements, respectively. An equivalent fracture area
A∗
i of each element is defined in order to satisfy the condition that the energies dissipated by fracture

of the continuum and by its discrete representation are equivalent. With this purpose, fracture of a

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



Consideration of size effect multifractal theory in fracture analysis by means of DEM 253

cubic sample of dimensions L×L×L is considered. The energy dissipated by fracture of a continuum
cube due to a crack parallel to one of its faces is:

Γ = GfΛ = GfL
2 (9)

in which Λ is the actual fractured area, i.e. L2. On the other hand, the energy dissipated when a DEM
module of dimensions L×L×L fractures in two parts consists of the contributions of five longitudinal
elements (four coincident with the module edges and an internal one) and four diagonal elements, as
shown in Figure 1(a). Then, the energy dissipated by the DEM module can be written as follows:

ΓDEM = Gf

(
4 · 0.25 · cA + cA + 4 · cA ·

(
2√
3

)2
)
L2 (10)

The first term between brackets accounts for the four edge elements, the second term for the internal
longitudinal element, while the third term represents the contribution of the four diagonal elements.
The coefficient cA is a scaling parameter used to establish the equivalence between Γ and ΓDEM .
Thus:

GfL
2 = Gf

(
22

3
cA

)
L2 (11)

from which it follows that cA = 3/22. Finally, the equivalent transverse fracture area of longitudinal
elements is

A∗
l = (3/22)L2 (12)

while for diagonal elements it results:
A∗
d = (4/22)L2 (13)

The critical failure strain (ϵp) is defined as the largest strain attained by the element before the
damage initiation (point A in Figure 2). The relationship between ϵp and the specific fracture energy
Gf is given in Linear Elastic Fracture Mechanics as:

εp = Rf

√
Gf

E (1− ν2)
(14)

in which Rf is the so-called failure factor, which accounts for the presence of an intrinsic defect of size
a. Rf may be expressed in terms of a as:

Rf =
1

Y
√
a

(15)

in which Y is a dimensionless parameter that depends on both the specimen and crack geometry. The
element loses its load carrying capacity when the limit strain ϵr is reached (Point B in Figure 2). This
value must satisfy the condition that, upon failure of the element, the dissipated energy density equals
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the product of the element fracture area A∗
i times the specific fracture energy Gf , divided by the

element length. Hence: ∫ εr

0

F (ε) dε =
Gf ·A∗

i

Li
=
Kr · ε2p · E ·Ai

2
(16)

in which the sub index i is replaced by l or d depending on whether the element under consideration
is a longitudinal or diagonal element. The coefficient Kr is a function of the material properties and
the element length Li:

Kr =

(
Gf
Eε2p

)(
A∗
i

Ai

)(
2

Li

)
(17)

In order to guarantee the stability of the algorithm, the condition Kr = 1 must be satisfied (Riera
and Rocha, [10]). In this sense it is interesting to define the critical element length:

Lcr = 2

(
Gf
Eε2p

)(
A∗
i

Ai

)
(18)

Moreover:

(A∗
l /Al) = (3/22)/ϕ (19)

(A∗
d/Ad) = (

√
3
/
11)/(δϕ) (20)

In the special case of an isotropic continuum with ν = 0.25, the value of the coefficients above are
d = 1.125 and f = 0.4, which leads to (A∗

l /Al) ≈ (A∗
d/Ad) ≈ 0.34. Thus, for practical purposes, a

single value of the critical length can be used for longitudinal and diagonal elements. Therefore, the
stability condition may be expressed as:

Kr =
Lcr
Li
≥ 1 ⇒ Li ≤ Lcr (21)

Finally, the expression for the limit strain is:

εr = Krεp. (22)

Besides, it is worth noting that although the DEM uses a scalar damage law to describe the uniaxial
behavior of the elements, the global model accounts for anisotropic damage since it contains elements
aligned in different spatial directions.

2.2 The random distribution of material parameters in the DEM environment

The first application of the DEM to fracture of concrete systems is due to Rocha [9], who assumed
that the toughness Gf may be modelled by a random field with a Type III extreme value probability
distribution (Weibull) with two parameters:
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F (Gf ) = 1− exp [− (Gf/β)
γ
] (23)

In equation (23), β and γ are the so-called scale and shape parameters, respectively. The mean
value (µ) and the standard deviation (s) of Gf can be obtained in terms of β and γ by:

µ = β [Γ (1 + 1/γ)] (24)

s = β
[
Γ (1 + 2/γ)− Γ2 (1 + 1/γ)

]1/2 (25)

in which Γ (x) =
∫∞
0
tx−1e−tdt is the Gamma function. In order to to simulate pseudo random values

of Gf the following expression was used:

Gf = β [− ln (1− u)]1/γ (26)

in which u is a random number with uniform probability distribution in the interval (0,1). Routines to
generate samples of u are widely available. In earlier DEM applications, the length of the elements was
set equal to the correlation length of the isotropic random field that describes the material property
of interest. This is a serious limitation, because the discretization level is conditioned by a material
property. In more recent studies, as well as in the present paper, the 3D random field that describes
the material property is simulated using the scheme discussed by Puglia et al [11].

3 Scale-independent cohesive law: The Fractal criterion

Carpinteri et al [3], using the concept of fractal dimensions introduced by Manderblot [12], proposes
a scale-independent cohesive law for quasi brittle materials. To achieve such purpose three material
parameters, the tensile strength σu, the toughness Gf and the critical strain εc, must be defined in
a non conventional form, known as fractal tensile strength σ∗

u, fractal toughness G∗
f and critical fractal

strain ε∗c .
To define these fractal parameters, a specimen with cross sectional area b2 will be considered. The

maximum tensile load Fu, i.e. the strength of this specimen is equal to the product of the strength σu
times the nominal area A0 = b2. On the other hand, Carpinteri et al [2, 3] have shown that the area of
the failure surface does not have a unique value, since it is scale dependent. In fact, the failure surface
can be modelled as a lacunar fractal surface and according to the Housdorff measure of the fractal
it can be written that A∗

res = b2−dσ . It is then possible to express the maximum tensile load Fu as
the product of conventional tensile strength σu, and nominal area A0, or as the product of the fractal
tensile strength σ∗

u and the fractal area A∗
res:

Fu = σuA0 = σ∗
uA

∗
res (27)

The fractal tensile strength σ∗
u given by equation (28) is a true material constant, i.e. it is scale-

invariant and possesses the anomalous physical dimensions [F][L]−(2−dσ).

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



256 L.E. Kosteski, I. Iturrioz and J.D. Riera

σ∗
u = σub

dσ (28)

A similar reasoning may be applied to the fractal fracture energy. The work W necessary to split
the same specimen of cross-sectional area b2 equals the product of the fracture energy Gf and the
nominal fracture area A0 = b2. The real fracture surface is not flat and its net area tends to infinity
as resolution increases. Assuming that the surface can be represented as an invasive fractal surface,
the work W is given by the product of the Housdorff measure A∗

dis = b∆G = b2+dGtimes the fractal
fracture energy G∗

f . Thus:

W = GfA0 = G∗
fA

∗
dis (29)

Where G∗
f is the true scale invariant material parameter, that possesses the anomalous physical

dimensions [FL][L]−(2+dG). This material parameter can be obtained from equation (29) as:

G∗
f = Gf b

dG (30)

The deformation inside the damage zone must still be examined. It may be assumed that the strain
field presents a fractal pattern. Carpinteri et al [3] proposed adoting (1−dε) with (dε ≥ 0) as a lacunar
fractal dimension of the damage line projection. According to the fractal measure of this projection,
the critical elongation wc of the band at rupture must be given by the product of the Hausdorff
measure of the damage line projection b∗ = b(1−dε) times the critical fractal strain ε∗c . In addition, the
critical elongation may be computed as the product of the nominal strain εc and the nominal length
of the damage line projection b. Thus:

wc = εcb = ε∗cb
1−dε (31)

in which ε∗c is also a true scale invariant material parameter that has an anomalous physical dimension
[L](dε). When the test specimen has exhausted all its strength then w = wc. There is also a relation
between fractal exponents. The integral Gf =

∫ wc

0
σdw is obviously valid in a conventional scale.

Substituting in this expression equations (28) and (31) it follows that:

Gf =

∫ wc

0

σdw = b1−dε−dσ
∫ ε∗c

0

σ∗dε∗ = G∗
fb

1−dε−dσ (32)

Since the exponents of b in Eqs. (30) and (32) must be the same, dG can be obtained as a function
of dσ and dε. The following fundamental relation between the scale exponents results:

dσ + dε + dG = 1 (33)

Carpinteri [3] proves that all the exponents are positive and smaller than 1. Whereas dε can attain
all values in the (0,1) interval, dσ and dG vary only between 0, corresponding to an Euclidian space,
and 1/2, when there is Brownian disorder. Equation (33) confirms that the sum of dσ and dG is always
smaller than 1, as shown by Carpinteri [1] by means of dimensional arguments. It is important to
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point out that Equation (32) cannot be applied directly to the elementary constitutive law of the
DEM plotted in Figure 2, but is valid in stress-strain curves obtained by mean of DEM simulations
of tensile tests.

4 Examples: rock plate with diferent size submited to uniaxial tensile stress

4.1 Model description

In order to introduce Carpinteri’s Multifractal Law (CML) to the DEM environment, a group of rock
square plates, fixed at their lower face and subjected to monotonically increasing displacements at
nodes on their upper faces were simulated. The plates were analyzed up to complete failure. The
side b of the plates ranges from 0.05 to 3.50m. The smallest DEM array that leads to satisfactory
results consists of 10×10×1 cubic modules, with 1026 DOF, used for the smallest (0.05m) plate, while
the 3.50m plate model consists of 700×700×1 cubic modules, with 1472802 DOF, constituting the
largest array used in this study. In all cases nodal displacements in the direction normal to the plate’s
middle surface were restrained, in order to simulate Plane Strain conditions. Table 1 shows the basic
dimension of the samples while Table 2 indicates the relevant material properties.

Table 1: Length b of the side of the plates and number of cubic DEM cells in length.

Plate 1 2 3 4 5 6 7 8 9 10 11

b (m) 0.05 0.075 0.10 0.15 0.20 0.25 0.50 0.75 1.00 1.50 3.50

Cells 10 15 30 30 40 50 100 150 200 300 700

Table 2: Relevant material properties of rock (granite).

Material Properties Value
E (Young’s modulus) 7.5E10N/m2

ρ (specific mass) 2700kg/m3

ν (Poisson coefficient) 0.25

E(Gf ) (Expected value of specific fracture energy) 1300N/m

CV(Gf ) (coefficient of variation of Gf ) 40%

Rf (Failure factor) 0.8
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The layout of the plates showing their relative size and boundary conditions is presented in Figure
3(a). Four simulations were carried out for each size. It is important to notice that the specific fracture
energy Gf is modeled as a random field with the properties indicated in Table 2, so each simulation
leads to a different strength and a different stress-strain curve. The probability distribution of Gf was
assumed Weibull.

(a)

(b)

Figure 3: (a) Relative size of the plates and boundary conditions, (b) Damage distribution and rupture
configuration of plates of various sizes subjected to applied displacements inducing tension.
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4.2 DEM simulated response of rock plates

One sample of the final damage distribution in simulated plates of each size considered in the study
is shown in Figure 3(b), in which colors cyan, orange and red represent undamaged, damaged and
totally broken (failed) elements, respectively. The resulting stress-strain curves for all simulations of
the 0.15 m plate, as well as the average curve, are presented in Figure 4(a). Figure 4(b) shows the
mean curves for all plate sizes. It may be seen than the shape of the mean stress-strain curves varies
with the specimen size. This feature has been repeatedly observed in experimental studies, such as
van Vliet and van Mier [13].

(a) (b)

Figure 4: (a) Curves for the mean vertical stress at lower support vs mean strain for the 0.15m rock
plate obtained in four simulations aand average curve (in blue) and, (b) Mean vertical stress at lower
support vs mean strain for all plate sizes.

Table 3 presents the main parameters that characterize the stress-strain curves shown in Figure
4(b), in which σu denotes the ultimate stress, εu the the critical strain, εc the strain at the point
where the strength is totally exhausted, defined for practical purposes as the strain when the stress
decreases below 5% of the maximum stress (σu) (see figure 4a). This notation is applicable without
any restriction, to plates with sides smaller than 0.5m. For plates of lengths equal to 0.5m or larger,
failure occurs in a brittle manner and the ultimate strain εu cannot be distinguished from the critical
strain εc.

The displacement, assuming a uniform strain distribution, is w = εb, in which b is the length of
the plate or specimen. The unloading branch of the stress vs. displacement curve (σu vs. w curve)
associated to damage is determined by subtracting from the total σu vs w curve the displacements
corresponding to the loading branch. Note that the loading branch may be due to elastic strains only,
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or to elastoplastic strains and that the maximum displacement of the total σu vs w curve equals the
critical displacement wc, defined in expression (31).

Table 3: Mean values of the peak stress and critical strain, rupture strain and displacement for different
plate lengths.

b σu εu εc wu wc

[mm] [N/mm2] [mm] [mm]

50 1.35E+07 4.29E-04 3.24E-03 0.0214 0.1619

75 1.35E+07 4.30E-04 2.30E-03 0.0323 0.1725

100 1.34E+07 3.93E-04 1.64E-03 0.0393 0.1640

150 1.35E+07 4.15E-04 1.16E-03 0.0623 0.1743

200 1.35E+07 4.06E-04 8.51E-04 0.0813 0.1703

250 1.34E+07 3.98E-04 6.94E-04 0.0996 0.1734

500 1.35E+07 4.04E-04 4.51E-04 0.2021 0.2254

750 1.35E+07 3.99E-04 4.26E-04 0.2992 0.3197

1000 1.34E+07 3.95E-04 4.18E-04 0.3954 0.4179

1500 1.34E+07 4.02E-04 4.29E-04 0.6036 0.6437

3500 1.33E+07 3.78E-04 4.12E-04 1.3243 1.4425

5 The fractal dimension calculus

5.1 Fractal tensile strength

With the aim of examining the influence of size on the simulated stress-strain curve, the evolution
of σu with plate size is presented in Figure 5. As shown in Figure 5(a), the ultimate stress decreases
marginally for the range of sizes analyzed. In the bi-logarithmic graphical representation of equation
(28), shown in Figure 5(b), the fractal coefficient dσ is negligibly small. Obviously, for a different range
of sizes or material parameters this conclusion should be revised.

5.2 Fractal critical strain

Figure 6(a) shows in a bi-logarithmic scale the relations between εu and εc with the plate size b.
It may be seen that εc presents two typical regions: for plates smaller than about 0.5m, it clearly
decreases with the plate size, but for plates larger than 0.5m it remains invariant, at least within the
range of sizes and material properties herein examined. This behavior is clearly illustrated by Figure
4(b), which shows that the largest plates fail in a brittle manner at the same the εc. For the larger
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(a) (b)

Figure 5: (a). Variation of maximum stress with plate size (logarithmic scale): Mean and one standard
deviation of simulated values and (b) Graphical representation of equation (28).

(a) (b)

Figure 6: Variation of εu , εc and εcc with plate size b and (b) Variation of wu, wc and wcc with plate
size b (in bi-logarithmic scale).
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plates (b ≥ 0.5m) the correct value of final strain εc must be lower than εu, and rupture becomes
instable. It is possible to obtain the true values of the critical strain by extrapolating the values for
the large plates (b ≥ 0.5m) using the data obtained for the smaller plates (b < 0.5m). The final strain
that coincides with the critical strain, denoted εcc, was obtained fitting the εc curve in Figure 6(a) for
lengths smaller than 0.5m, to a straight line. Taking b in mm, it follows that:

log εcc = log 0.144− 0.966 log b (34)

Equation (34) allows the estimation of the true final strain for the larger plates (b≥0.5m). Table 4
presents the results obtained for all the plates, also shown in Figures 6(a) and (b) in terms of strain
and displacement vs the plate size respectively.

Table 4: True final strain εcc and displacement wcc vs plate size.

L εcc wcc

[mm] [mm/mm] [mm]

50 3.24E-03 0.1619

75 2.30E-03 0.1725

100 1.64E-03 0.1640

150 1.16E-03 0.1743

200 8.51E-04 0.1703

250 6.94E-04 0.1734

500 3.56E-04 0.1779

750 2.40E-04 0.1803

1000 1.82E-04 0.1821

1500 1.23E-04 0.1847

3500 5.43E-05 0.1900

Using the corrected critical displacement wcc and equation (31) it is found that ε∗c = 0.144

[mm/mm0.034], resulting a fractal coefficient dε = 0.966. Note that in the present case the fractal
tensile strength σ∗

u is equal to the maximum stress σu because the fractal dimension coefficient dσ was
negligible and taken equal to zero.

Carpinteri [1–3] define w as:

w = wT − wpre-peak (35)

where wT is the total displacement and wpre-peak is the displacement due to elastic and anelastic
deformations before the peak stress in attained in the test under examination. In the reported DEM
simulations, size independence of the σ∗ vs ε∗ curve using this definition of w is not confirmed.
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However, size independence of this curve is verified when in equation (35) wpre-peak is replaced by we,
the displacement due only to elastic deformations. The notation is clarified in Figure 7 below.

Figure 7: Stress-displacement curve for b=0.15m showing various displacement definitions.

Figure 8(a) presents the results in terms of σ∗ = σbdσ and the fractal strain ε∗, for ε = εu. The
definition of the fractal strain is given by equation (36). In the fractal dominium, this relation is
independent of size.

ε∗ = (wT − we) b−(1−dε) or ε∗ =

(
wT −

wu
σ∗
u

σ (wT )

)
b−(1−dε) (36)

Similarly, equation (37) presents the fractal strain ε∗in terms of strains:

ε∗ =

(
εT b−

εub

σ∗
u

σ (εT b)

)
b−(1−dε) (37)

Using the fact illustrated in Figure 7, that the stress corresponding to wT , wpre−peak and we is
the same, εT may be computed as:

εT = ε∗b(−dε) +
εu
σ∗
u

σ (ε∗) (38)

Figure 8(b) shows the stress-strain curves for the larger plates (b = 0.5m) with the softening branch
computed with equation (38) considering the invariant fractal strain-stress curve σ∗ vs ε∗ presented
in Figure 8(a). To measure directly the unstable post-peak part of the stress-strain curves, it would be
necessary to apply non conventional boundary conditions. Experimental evidence presented by van
Mier and van Vliet [13] lets support to the unstable branches of the corrected stress-strain curves
shown in Fig.(8a).
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(a) (b)

Figure 8: (a) Corrected fractal law diagrams and (b) corrected stress-strain curves for larger plates.

In summary, using the methods proposed by Kosteski et al [14], values of the fractal dimensions
of the invasive area described by equation (29) were obtained by simulation, leading to values of dG
between 0.03 and 0.065. Thus, the values of the dimensional coefficients are compatible with the CML
proposed by Carpinteri, that establishes that the sum of the three fractal exponents equals unity.

dσ ≈ 0, dε ≈ 0.966, dG ≈ [0.032, 0.065], dG + dε + dσ ≈ 1 (39)

6 Conclusions

The numerical analysis of plates subjected to tensile fracture employing the truss-like Discrete Element
Method (DEM) is initially described in the paper. Then a brief explanation of the Carpinteri’s multi-
fractal law (CMF) is also presented. The determination of fractal dimension over a set of simulated
DEM rock plates subjected to uniaxial tension is described next. The calculus of the three exponents
dσ, dε and dG is finally presented.

The results show that the DEM model captures the CML predictions and therefore it remains a valid
alternative to simulate fracture processes in quasi fragile materials, and to explore different aspects of
fracture in real solids.

It is important to note, in agreement with the CML theory, that the sum of the three coefficients
is approximately 1. The fractal exponent dG obtained in the DEM simulations reported herein was
considerably smaller than the value expected in real materials, which according to Refs. [1–3] ranges
from 0.2 to 0.3. The values of the exponents obtained in DEM simulations depend on the variability
and type of random distribution adopted in the definition of Gf as a random field, and also on the
unloading criteria adopted in the elementary constitutive law. The influences of these factors, as well
as objectivity requirements, are presently under study.
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Abstract

This paper examines the vertical response of a rigid circular foundation embedded in a viscoelastic, transversely
isotropic bi-material interface. The Cauchy-Navier equations, which describe the behavior of the aforemen-
tioned media, are solved by using Hankel integral transforms. A boundary-value problem corresponding to
the case of a distributed vertical ring load in the interface of the two materials is introduced. The model of
embedded disc is formulated in terms of a discretized integral equation, which couples the rigid displacement
of the disc with the tractions acting over its surface. The disc is discretized by a number of annular discs, and
over each of these elements the traction is considered to be constant. The system of the resulting discretized
integral equations is solved numerically, which gives the tractions over each elementary disc. The weighted
summation of these results by the respective area of the elements gives the total force applied over the disc
corresponding to a unitary rigid displacement. The dynamic compliance of the media-inclusion system is shown
in this paper for different constructions. The present solutions contribute to the study of the dynamic response
of deeply buried foundations and anchors in non-homogeneous interfaces.

Keywords: Green’s functions, soil-foundation interaction, transverse isotropy, deeply buried foundations.

1 Introduction

The study of the interaction of rigid foundations with transversely isotropic materials is a branch
of the theory of elasticity which has important practical applications in earthquake engineering and
seismology. The case of a rigid foundation embedded in the interface of two different transversely
isotropic materials is of particular interest to the study of foundations deeply buried in soil.

The present study is concerned with the steady-state vertical response of a rigid annular or solid
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circular disc embedded in the interface of two bonded viscoelastic, transversely isotropic, three-
dimensional half-spaces. Figure 1 illustrates the present problem.

The first section of the paper introduces the Cauchy-Navier equations, which describe the behavior
of the aforementioned media. This system of equations is solved by using Hankel integral transforms.
Hankel transforms are the most suitable transforms in the present case because cylindrical coordinates
are used. The viscoelastic behavior of the medium is introduced by Christensen’s elastic-viscoelastic
correspondence principle. In the following section, a boundary-value problem corresponding to the
case of a distributed vertical ring load in the interface of the two half-spaces is introduced. Next, the
model of embedded disc is formulated in terms of an integral equation, the kernel of which corresponds
to the influence function regarding those buried ring load. This integral equation couples the rigid
displacement of the disc with the tractions acting over its surface. The disc is discretized by a number
of concentric rigid annular discs. The traction over each of these elements is considered to be constant.
Because the disc is rigid, the displacement of all these elements is the same. The system of the resulting
discretized integral equations is solved numerically, which gives the tractions over each elementary disc.
The weighted summation of these results by the respective area of the elements gives the total force
applied over the disc corresponding to a unitary rigid displacement. Finally, some numerical results
are presented in the form of dynamic compliance of the disc. The paper shows the convergence of the
solution for increasing discretization levels, for different types of transversely isotropic materials, for
varying inner radiuses of an annular disc with unitary outer radius, and for different combinations of
two materials at the interface.

Figure 1: Interface between two infinite half-spaces containing a circular foundation.
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2 Governing equations

Consider two transversely isotropic elastic half-spaces bonded together throughout an infinite plane.
A cylindrical coordinate system O(r, θ, z) is adopted, the z-axis of which is perpendicular to the plane
that interfaces the two media (see Fig. 1). The equations of motion in these media are expressed by:
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In Eqs. (1) to (3), ρ is the density of the medium and cij are material constants of the transversely
isotropic material.

The solution of these coupled equations leads to the displacement field of the transversely isotropic
media, expressed by:

ur (r, θ, z) =

∫ ∞

0

(
g1Ae−δξ1z + g1Beδξ1z + g2Ce−δξ2z + g2Deδξ2z

)
· J0 (λr)λdλ

+

∫ ∞

0

(
g3Ae−δξ1z + g3Beδξ1z + g4Ce−δξ2z + g4Deδξ2z + g5Ee−δξ3z + g5Feδξ3z

)
· J1 (λr)λdλ

(4)

uθ (r, θ, z) =
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(5)
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uZ (r, θ, z) =
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The stress field of the transversely isotropic media is derived from Eqs. (4) to (6):
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σRZ
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3 Influence functions

In this section, boundary-value problems regarding interior distributed annular loads are considered.
The loads are applied at the interface between the media (1) and (2) (see Fig. 1). Figure 2 depicts a
vertical load, uniformly distributed over the area of an annular disc of inner and outer radius s1 and
s2.

Figure 2: Distributed transversal load applied on an annular area.

The continuity conditions at the infinite bonded interface between media (1) and (2) are established
as follows:
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The upper indices (1) or (2) in Eqs. (22) to (24) indicate the medium which each component of
displacement refers to. The arbitrary constants A, B, C, D, E and F in each case (m = 1 or m = 2) are
selected so that the amplitude of the displacement vanishes with increasing depth in z. The material
constants and other parameters also depend on the respective medium. For example, g(1)6 and ξ(1)1 are
different than g(2)6 and ξ(2)1 .

For the distributed vertical load depicted in Fig. 2, the stress boundary conditions are:

σ
(2)
ZZ (r, z = 0)− σ(1)

ZZ (r, z = 0) = cos (θ)

∫ ∞

0

{s2J1 (λs2)− s1J1 (λs1)}J0 (λr) dλ (25)

σ
(2)
RZ (r, z = 0) = σ

(1)
RZ (r, z = 0) (26)

σ
(2)
θZ (r, z = 0) = σ

(1)
θZ (r, z = 0) (27)

The system of six equations comprising Eqs. (22) to (24) and Eqs. (25) to (27) can be solved to
determine the arbitrary constants A(2), B(1), C(2), D(1), E(2) and F (1). Although this system can
be solved analytically with the aid of some mathematical software, the solution for the constants is
inconveniently long to be included in a program. In this present paper, this system of equations is
solved numerically whenever necessary in the computer code.

4 Vertical vibrations of an embedded rigid disc

Consider the harmonic excitation of a rigid disc of radius a, with zero thickness and no mass, embedded
in the interface of two infinite half-spaces as shown in Fig. 1. It is assumed that the disc experiences
time-harmonic displacements due to the loads applied. The relationship between unknown tractions
and the displacement of the disc can be expressed in terms of the following integral equation:∫ a

0

GZZ (r, θ, z = 0, ω)TZ (r, θ, z = 0, ω) dr = UZ (r, θ, z = 0, ω) (28)

In Eq. (28), TZ denotes a jump in tractions in the vertical direction; UZ denotes the vertical
displacements at a point of coordinates (r, θ) at the interface between the two materials (z = 0), and
GZZ denote the vertical displacements due to vertical loads of unitary intensity Pz = 1 (see Fig. 2).
The components GZZ are obtained from Eq. (??) when the boundary conditions in Eqs. (25) to (27)
are considered.

In this work, the coupled equation system expressed by Eq. (28) is solved by discretizing the surface
of the disc into M concentric annular disc of inner and outer radiuses s1k and s2k, k = 1,M . It is
assumed that TZ is constant within each of these elementary discs.

In the case in which a vertical load is applied uniformly over the surface of the rigid disc, the rigid
vertical displacement of each elementary disc k (k = 1,M) is the same, ∆0. In this case, the discretized
version of Eq. (28) becomes:
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M∑
k=1

GZZ (rk, θ = 0, z = 0, ω)TZ (rk, θ = 0, z = 0, ω) dr = ∆0 (29)

The tractions TZ(rk) due to a unitary displacement are obtained from Eq. (29) by making ∆0 = 1.
The total force acting on the surface of the disc corresponding to this case of unitary displacement is
obtained by:

F (ω) =
M∑
k=1

π
(
s22k − s21k

)
TZ (rk, ω) (30)

The vertical dynamic compliance of the system comprising the two infinite half-spaces and the
embedded rigid disc is obtained for each frequency as:

CV (ω) = ∆0aE
(m)/F (ω) (31)

In Eq. (31), E(m) is the Young’s modulus of one of the two materials (m = 1, 2).

5 Numerical results

Pak and Gobert [1] presented an analytical solution for the static vertical compliance (C ′
V ) of a rigid

circular plate buried in an isotropic full-space. Their solution is given by C ′
V = (3−4ν)/[32(1−ν)µa].

Table 1 shows the error between their solutions and the ones obtained by the present program, as
well as the convergence of the present solution with increasing discretization M . In these results, a
homogeneous full-space with µ = 1 and ν = 0.25 is considered.

Table 1: Comparison of results with an analytical solution for the static problem.

M CV (ω = 0)/C ′
V

5 1.03493353664750

10 1.01678531868697

20 1.00834989295149

35 1.00404587193815

50 1.00227108618090

The next results are presented in terms of the normalized compliance C∗
V = CV /CV (ω = 0). The

discretization of M = 20 disc is chosen, because it is enough to allow an error of less than 1% with
the analytical solution (see Table 1).
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(a) (b)

Figure 3: Vertical compliance of the system for different combinations of transversely isotropic bi-
material interfaces.

Table 2: Material constants for some isotropic and transversely isotropic materials, with c′ij = cij/c44
[2].

Material c′11 c′12 c′13 c′33 c44 (104 MN/m2)
Beryl Rock 4.13 1.47 1.01 3.62 1.00

Silty Clay 2.11 0.43 0.47 2.58 2.70

Layered Soil 4.46 1.56 1.24 3.26 1.40

Clay 4.70 1.70 1.20 3.30 0.01

Ice (257K) 4.22 2.03 1.62 4.53 0.32

Isotropic1 3.00 1.00 1.00 3.00 0.99997
1 Isotropic material considering µ = 1.0 and ν = 0.25.

Figure 4: Normalized compliance of the system for different combinations of transversely isotropic
bi-material interfaces for the case of vertical load.
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Figure 3 shows the compliance of the system for some combinations of two transversely isotropic
materials at the interface. In all six cases, the material of the bottom layer, medium (2), is Beryl Rock
(see Table 2). The material of the upper layer, medium (1), is chosen from Table 2.

In order to show more clearly the difference between the combinations of materials, the normalized
compliance C∗

V in Fig. 3 is also normalized by the homogeneous case, in which both media (1) and
(2) are Beryl Rock.

6 Conclusion

A set of influence functions for displacements and stresses of two bonded transversely isotropic half-
spaces subjected to time-harmonic circular loads has been introduced. These equations have been
presented in terms of semi-infinite integrals which were solved using globally adaptive numerical
quadratures. The problem of a circular rigid inclusion in the interface of the two half-spaces was
formulated as coupled integral equations containing those influence functions and the displacements
of the disc. A system of equations was obtained from these equations by considering the disc to
be formed by a number of annular elementary discs. This system is solved for different frequencies,
which yields the dynamic compliance function of the rigid circular inclusion under vertical loads. The
solutions presented in this paper characterize the response of deeply buried foundations and anchors
in bi-material interfaces.
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Analysis and optimization of stepped conical
shells with cracks

Jaan Lellep, Ella Puman
Institute of Mathematics, University of Tartu, 2 Liivi str., Tartu 50409 – Estonia

Abstract

Conical shells with stepped thickness loaded by a rigid central boss are studied. The optimization problem is
posed in a general form involving several different problems as particular cases.

The necessary optimality conditions are derived by the use of the variational methods of the control theory.
The problems regarding to the optimization of stepped conical shells in the case of the material obeying Hill’s
yield criterion and the associated gradientality law are studied in a greater detail.

Keywords: conical shell, optimization, anisotropic material, Hill’s criterion.

1 Introduction

Due to their low weight amalgamated with necessary stiffness, strength and load carrying capacity
thin-walled plates and shells are widely used in the mechanical and civil engineering. Conical shells
have many applications in the machinery.

Optimization of elastic and inelastic beams, plates and shells have been studied by many researchers.
Reviews of papers of this type can be found in the papers by Życzkowski [1], Lellep and Lepik [2] and
others. Banichuk [3], Kirsch [4], also Życzkowski [1] concentrated on elastic structures.

Optimal designs of conical shells made of inelastic materials are established by Lellep and Puman
[5, 6] whereas spherical caps made of von Mises material are studied by Lellep and Tungel [7].

It is well known that an especially high value of the strength-to-weight ratio is achieved by the
use of composite materials which exhibit the orthotropic and anisotropic behaviour. Exploiting the
upper bound theorem of limit analysis the anisotropic behaviour of structures was studied by Capsoni,
Corradi, Vena [8]; Corradi, Luzzi, Vena [9]; Pan, Seshadri [10].

In the present paper stepped conical shells loaded by the rigid central boss are considered. An
optimal design method is developed for conical shells made of non-linear inelastic materials which
obey the Hill’s yield criterion and the associated gradientality law.
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2 Formulation of the problem and basic equations

Let us consider a thin-walled conical shell loaded by the central rigid boss with the loading P (Fig.1).
Assume, that the shell is simply supported at the outer edge of radius R whereas the junction between
the boss and the shell wall at r = a can be considered as the clamped edge. In this paper shells of
sandwhich structure will be studied. Let the total thickness and the thickness of the face sheets be H
and h, respectively.

Figure 1: Shell geometry.

It is assumed that the face sheet thickness is piece wise constant, e.g.

h = hj (1)

for r ∈ (aj , aj+1) where j = 0, . . . , n. It is reasonable to denote a0 = a, an+1 = R. The parameters
aj (j = 1, . . . , n) and hj (j = 1, . . . , n) will be treated as preliminarily unknown design parameters.

The aim of the paper is to determine the design parameters so that the given cost function attains
its minimum value. In the particular case of minimization of the weight of the shell the cost function
can be presented as

V =
π

cosφ

n∑
j=0

hj
(
a2j+1 − a2j

)
(2)

where φ stands for the angle of inclination of the middle surface. However, we shall consider herein
a more general case of the optimization problem which involves a series of particular problems which
can be solved from a unique point of view.

The cost function to be minimized will be presented as

J = G (a1, . . . , an, h0, . . . , hn,W (r∗) , U (r∗) ,M1 (r∗) , N1 (r∗)) +

∫ R

a

F (W,U,N1,M1) dr (3)

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



Analysis and optimization of stepped conical shells with cracks 279

where F and G are given differentiable functions whereas W and U stand for displacements in the
two orthogonal directions. Here and henceforth M1, M2 stand for bending moments and N1, N2 for
membrane forces in the radial and tangential direction, respectively. The quantity r∗ is assumed to be
a given value of the current radius r ∈ [a,R].

If, for instance, G = W (r∗), F = 0, then the optimization problem consists in the minimization of
the radial deflection at r = r∗. If, however, F = 0 and G = V , then one has the minimum weight
problem for a stepped conical shell.

In particular cases the stress strain state of the shell can be constrained by certain constraints. In
the present paper we are studying the case when additional constraints are given as isoparametric
constraints

∫ R

a

Ti (a1, . . . , an, h0, . . . , hn,W,U,N1,M1) dr = Ai (4)

where i = 1, . . . ,m. In (4) Ti stand for given continuous and differentiable functions and Ai (i = 1, . . . ,m)

are fixed constants.
At the outer edge of the shell following boundary conditions must be satisfied

U (R) = 0, W (R) = 0, M1 (R) = 0, N1 (R) = 0 (5)

When minimizing the cost function (3) one has to take into account additional constraints (4)
as well as the governing equations which consist of the equilibrium equations with geometrical and
constitutive relations. The constitutive equations can be presented via strain components. In the case
of a conical element the strain components have the form (see [5, 11, 12])

ε1 =
dU

dr
cosφ,

ε2 =
1

r
(U cosφ+W sinφ) ,

κ1 = −d
2W

dr2
cos2 φ,

κ2 = − 1

r

dW

dr
cos2 φ, (6)

where ε1,ε2 stand for linear extension ratios and κ1, κ2 are curvatures of the middle surface of the
shell.

In what follows we will treat the shells made of different materials including elastic and inelastic
materials. It is well known that in the case of an elastic material the Hooke’s law holds good. The
latter can be presented as (see Hodge [11], Ventsel and Krauthammer [13])
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N1 = Doj (ε1 + νε2) ,

N2 = Doj (ε2 + νε1) ,

M1 = Dj (κ1 + νκ2) ,

M2 = Dj (κ2 + νκ1) (7)

for r ∈ (aj , aj+1), j = 0, . . . , n, where ν stands for the Poisson’s modulus and

Dj =
EH2hj
2(1− ν2)

, D0j =
2Ehj
1− ν2

. (8)

Here E denotes the Young modulus.
Note that the relations (7) are obtained for a shell with sandwich cross section according to the

formulas

Ni =
(
σ+
i + σ−

i

)
hj ,

Mi =
(
σ+
i − σ

−
i

)
hj
H

2
(9)

for each i = 1, 2. Here σ+
i and σ−

i stand for the stress σi at the upper and lower sheet, respectively.
It is assumed herein that the stress component σi is constant across the face sheet thickness.

Conical shells loaded beyond the elastic limit are investigated, as well. In this case it is assumed
that the shell is fully plastic and the material obeys the Hill’s yield criterion which can be presented
as [8, 9]

1

M2
0j

(
M2

1 − αM1M2 + βM2
2

)
+

1

N2
0j

(
N2

1 − αN1N2 + βN2
2

)
− Y 2

1 ≤ 0 (10)

for the section r ∈ (aj , aj+1). In (10) the quantities α, β and Y1 are certain material parameters
whereas N0j and M0j stand for the yield force and the yield moment for r ∈ (aj , aj+1). Evidently, in
the case of a sandwich shell

M0j = σ0Hhj , N0j = 2σ0hj (11)

where σ0 is the yield stress of the material. It is known from the theory of plasticity that in a plastic
region the associated flow law holds good. According to the associated flow law and the Hill’s yield
criterion (10) one has

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



Analysis and optimization of stepped conical shells with cracks 281

ε̇1 =
λj
N2

0j

(2N1 − αN2) ,

ε̇2 =
λj
N2

0j

(2βN2 − αN1) ,

κ̇1 =
λj
M2

0j

(2M1 − αM2) ,

κ̇1 =
λj
M2

0j

(2βM2 − αM1) , (12)

for r ∈ (aj , aj+1), j = 0, . . . , n. Here λj stands for a non-negative scalar multiplier and dots denote the
differentiation with respect to time or a time like variable [12, 14]. In the present paper the deformation-
type theory of plasticity will be applied. According to this concept the strain rate components in (12)
are substituted with strain components themselves. Combining the obtained equations with (6) results
in the system of equations

dW

dr
= − λjr

cos2 φ M2
0j

(2βM2 −M1) ,

d2W

dr2
= − λj

cos2 φ M2
0j

(2M1 − αM2) ,

dU

dr
=

λj
cosφ N2

0j

(2N1 − αN2) , (13)

and

1

r
(U cosφ+W sinφ) =

λj
N2

0j

(2βN2 − αN1) (14)

The equilibrium of a shell element furnishes equations (see Hodge [11])

d

dr
N1 =

1

r
(N2 −N1) ,

d

dr
M1 =

1

r
(M2 −M1) +

1

r cos2 φ

(
rN1 sinφ−

P

2π

)
(15)

Note that (13) – (15) with the inequality (10) present the system of governing equations for a shell
made of an ideal plastic material.
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3 Necessary conditions for optimality

Since a lot of attention has been paid in the literature on optimization of elastic plates and shells let
us concentrate on inelastic materials. In this case the problem consists in the minimization of the cost
function (3) accounting for constraints (4), (13) – (15) and boundary conditions (5).

It is reasonable to rewrite the system (13) as

dW

dr
= Z,

dZ

dr
=

Z (2M1 − αM2)

r (2βM2 − αM1)
,

dU

dr
= −

M2
0j · Z (2N1 − αN2)

N2
0j · r (2βM2 − αM1)

(16)

where Z is an auxiliary variable and

λj = −
cos2 φ ·M2

0j · Z
r (2βM2 − αM1)

(17)

Substituting (17) in (14) yields the equation

U cosφ+W sinφ+
M2

0j cos
2 φ

N2
0j

· (2βN2 − αN1)Z

(2βM2 − αM1)
= 0 (18)

For derivation of necessary conditions of optimality the methods of the theory of optimal control
will be used. Equations (15), (16) will be treated as state equations for r ∈ (aj , aj+1), j = 0, . . . , n

whereas variables W , Z, U , N1, M1 are state variables and M2, N2 – controls.
In order to minimize the cost function (3) under contraints (4), (15) – (18) let us introduce the

extended (augmented) functional
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J∗ =G+

∫ R

a

(
F +

m∑
i=1

ψ0iTi

)
dr +

n∑
j=0

∫ ai+1

ai

{
ψ1

(
dW

dr
− Z

)
+ ψ2

(
dZ

dr
− Z (2M1 − αM2)

r (2βM2 − αM1)

)
+

+ψ3

(
dU

dr
+
M2

0j (2N1 − αN2)Z

N2
0jr (2βM2 − αM1)

)
+ ψ4

(
d

dr
N1 −

N2 −N1

r

)
+

+ψ5

(
d

dr
M1 −

M2 −M1

r
− 1

r cos2 φ

(
rN1 sinφ−

P

2π

))
+

+νj

(
U cosφ+W sinφ+

M2
0j cos

2 φ

N2
0j

Z (2βN2 − αN1)

(2βM2 − αM1)

)
+

+φj

{
1

M2
0j

(
M2

1 − αM1M2 + βM2
2

)
+

1

N2
0j

(
N2

1 − αN1N2 + βN2
2

)
− Y 2

1

}}
dr

(19)

In (19) ψ1, . . . , ψ5 stand for conjugate (adjoint) variables whereas νj , λj , (j = 0, . . . , n) and
ψ0i, (i = 1, . . . ,m) are Lagrangian multipliers. It is well known that ψ0i = const (see Bryson [15],
Hull [16]) as multipliers corresponding to isoperimetric constraints must be constant.

When calculating the total variation of the extended functional (19) one has to take into account
that

∆y (aj ± 0) = δy (aj ± 0) +
dy

dr
(aj ± 0)∆aj (20)

where ∆y and δy stand for the total variation and the ordinary weak variation, respectively, of the
variable y. In the case of a Lagrange functional one has (see Lellep, Puman [5, 6], Hull [16], Bryson
[15])

∆

∫ R

a

Fdr = δ

∫ R

a

Fdr +

n∑
j=1

(F (aj − 0)− F (aj + 0))∆aj (21)

Calculating the total variation of (19) according to rules (20), (21) and applying the optimality
condition ∆J∗ = 0 leads to a set of differential and algebraic equations with integral terms. First of
all, one obtains the system of adjointe quations
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dψ1

dr
=

∂F

∂W
+ νj sinφ+

m∑
i=1

ψ0i
∂Ti
∂W

,

dψ2

dr
= −ψ2

r

2M1 − αM2

2βM2 − αM1
+
ψ3

r

M2
0j

N2
0j

2N1 − αN2

2βM2 − αM1
+
νjM

2
0j

N2
0j

cos2 φ
2βN2 − αN1

2βM2 − αM1
,

dψ3

dr
=
∂F

∂U
+ νj cosφ+

m∑
i=1

ψ0i
∂Ti
∂U

,

dψ4

dr
=
∂F

∂N1
+
ψ3

r

M2
0j

N2
0j

2Z

2βM2 − αM1
+
ψ4

r
− ψ5 sinφ

cos2 φ
+
νjM

2
0j

N2
0j

cos2 φ (−αZ)
2βM2 − αM1

+

+

m∑
i=1

ψ0i
∂Ti
∂N1

+
φj
N2

0j

(2N1 − αN2) ,

dψ5

dr
=
∂F

∂M1
− ψ2

r

Z
(
4β − α2

)
M2

(2βM2 − αM1)
2 +

ψ3

r

M2
0j

N2
0j

Zα (2N1 − αN2)

(2βM2 − αM1)
2 +

ψ5

r
+

+
νjM

2
0j

N2
0j

cos2 φ (2βN2 − αN1)Zα

(2βM2 − αM1)
2 +

m∑
i=1

ψ0i
∂Ti
∂M1

+
φj
M2

0j

(2M1 − αM2) .

(22)

Note that thes ystem (22) holds good for r ∈ (aj , aj+1), where j = 0, . . . , n.
The arbitrariness of increments ∆hj (j = 0, . . . , n) in the equation ∆J∗ = 0 results in

∂G

∂hj
+

∫ R

a

m∑
i=1

ψ0i
∂Ti
∂hj

dr+

+

∫ aj+1

aj

{
−2φjM−3

0j δ0H
(
M2

1 − αM1M2 + βM2
2

)
− 4δ0φj

N3
0j

(
N2

1 − αN1N2 + βN2
2

)}
dr = 0

(23)

for j = 0, . . . , n.
For determination of controls M2, N2 one obtains the equations

ψ2Z
(
α2 − 4β

)
M1

r (2βM2 − αM1)
2 −

ψ3

r

M2
0j

N2
0j

2Zβ (2N1 − αN2)

(2βM2 − αM1)
2 −

ψ5

r
−

−
2βM2

0j

N2
0j

cos2 φ (2βN2 − αN1)Z

(2βM2 − αM1)
2 +

φj
M2

0j

(2βM2 − αM1) = 0,

−ψ3

r

M2
0j

N2
0j

Zα

(2βM2 − αM1)
− ψ2

r
+

2βM2
0j

N2
0j

cos2 φZνj
(2βM2 − αM1)

+
φj
N2

0j

(2βN2 − αN1) = 0.

(24)

Due to the arbitrariness on increments ∆aj (j = 0, . . . , n) in the equation ∆J∗ = 0 one has
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∂G

∂aj
+

n∑
j=0

∫ aj+1

aj

(
∂F

∂aj
+

m∑
i=1

ψ0i
∂Ti
∂aj

)
dr − [ψ1 (aj)Z (aj)]−

−
[
ψ2Z (aj) (2M1 (aj)− αM2 (aj))

aj (2βM2 (aj)− αM1 (aj))

]
+

[
M2

0jψ3 (aj)Z (aj) (2N1 (aj)− αN2 (aj))

N2
0jaj (2βM2 (aj)− αM1 (aj))

]
−

−
[
ψ4 (aj)N2 (aj)

aj

]
−
[
ψ5 (aj)M2 (aj)

aj

]
= 0

(25)

for j = 1, . . . , n. Here the square brackets denote the finite jumps of corresponding variables at r = aj .
For instance, in the case of a variable y = y(r) one has

[y (aj)] = y (aj + 0)− y (aj − 0)

where y (aj + 0) and y (aj − 0) denote the right hand and left hand limits, respectively.
The independence of total variations of state variables ∆W (r∗) ,∆U (r∗), ∆Z (r∗), ∆N1 (r∗), ∆M1 (r∗)

results in the jump conditions of adjoint variables at r = r∗

[ψ1 (r∗)] =
∂G

∂W (r∗)
,

[ψ2 (r∗)] = 0,

[ψ3 (r∗)] =
∂G

∂U (r∗)
,

[ψ4 (r∗)] =
∂G

∂N1 (r∗)
,

[ψ5 (r∗)] =
∂G

∂M1 (r∗)
.

(26)

However, at r = aj (j = 1, . . . , n) one has

ψi (aj + 0) = ψi (aj − 0) (27)

for i = 1, . . . , 5; j = 1, . . . , n.
Note that the continuity of adjoint variables (27) takes place, if r∗ ̸= aj . In the alternative case one

has to account for the jump conditions (26) applied at r = aj = r∗.
Note that in the case of an elastic material optimality conditions can be derived in the similar

manner with a modified extended functional. In this case the constraints (16) – (18) and (10) must
be substituted by (7).
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4 Results and discussion

The results of calculations are presented in Fig. 2 – 6 and Table 1. Calculations have been carried out
for shells made of carbon steel. It was established by Corradi et al. [9] that for AISI-1018 carbon steel
the Hill’s criterion can be presented as

αxy (σx − σy)2 + αyz (σy − σz)2 + αzx (σz − σx)2 + 6ηxyτ
2
xy + 6ηyzτ

2
yz + 6ηzxτ

2
zx ≤

√
2σ0,

where
αxy = 1, 104, αyz = 0, 641, αzx = 1, 254, σ0 = 254, 112MPa.

In Fig. 2 the results obtained for the current shell are compared with those corresponding to the
shells made of a von Mises material for k = 0,3 in the cases
h0 = h1 = h∗ and h0 = 1, 2h∗, respectively. Note that in the case of a Mises material in (10) α = −1,

β = Y1 = 1.
Here following notations are used

γ0,1 =
h0,1
h∗

, α0,1 =
a0,1
R

, k =
M∗ cos

2 φ

RN∗ sinφ
, p =

P R

N∗ sinφ

where h∗ is the thickness of carrying layers for the reference shell of constant thickness and N∗ = 2δ0h∗;
M∗ = δ0Hh∗. Note that in Fig. 2 – 6 p stands for the limit carrying capacity of the shell and α = a/R.
It is somewhat surprising that in Fig. 2 the curves are quite close to each other.

Figure 2: Load carrying capacity for Mises and Hill material.
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Table 1: Limit loads for k = 0,3.

α0 c p0 p γ0 γ1 α1 e

0,55

0 0,4885
0,5107 1,05 0,4252 0,9717 1,0455

0,5752 1,2 0,4546 0,9016 1,1776

0,6156 1,3 0,4969 0,8599 1,2603

0,2 0,4118
0,4350 1,05 0,4252 0,9717 1,0564

0,50203 1,2 0,4546 0,9016 1,2191

0,54412 1,3 0,4969 0,8599 1,3213

0,4 0,3254
0,3508 1,05 0,4252 0,9717 1,0781

0,4224 1,2 0,4546 0,9016 1,2980

0,4668 1,3 0,4969 0,8599 1,4346

0,95

0 5,8268
6,1173 1,05 0,2819 0,9968 1,0498

6,9869 1,2 0,3992 0,9878 1,1991

7,5635 1,3 0,4734 0,9821 1,2980

0,2 4,6771
4,9679 1,05 0,2819 0,9968 1,0622

5,8387 1,2 0,3992 0,9878 1,2483

6,4170 1,3 0,4734 0,9821 1,3720

0,4 3,5202
3,8114 1,05 0,2819 0,9968 1,0827

4,6838 1,2 0,3992 0,9878 1,3305

5,2637 1,3 0,4734 0,9821 1,4953

Optimal values of parameters α1, γ1 for given γ0 and c are presented in Table 1. Here p0 stands
for the limit load for a shell of constant thickness whereas the coefficient of efficiency e = p/p0. Here
the problem of maximization of the limit load for given weight is studied.

In Fig. 3 the limit loads of stepped shells versus α = a/R are presented for different values of
the ratio h0/h∗. Calculations carried out showed that the load carrying capacity of the shell rapidly
increases when a0 tends to R. This result could be expected as the load carrying capacity of a narrow
annulus can be very high.

In Fig.4 the limit load of a shell of constant thickness with a surface crack is depicted versus a/R for
different values of the crack length c. The crack is a circular stable crack of a constant depth which is
located at the position r = a.

Calculations implemented for various combinations of geometrical parameters showed that cracks
with length c < 0, 1h1 have relatively small influence on the limit load. However, if c > 0, 9h1 then
the load carrying capacity of the shell diminishes drastically.
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Figure 3: Load carrying capacity for stepped
shell.

Figure 4: Limit load of a shell with crack.

Fig. 5 and Fig. 6 portray the dependencies of ratios h1/h∗ and a1/R upon the non-dimensional
radius a/R. It can be seen from Fig. 5, 6 that the optimized values of a1/R are smaller for greater
values of the thickness h0 and h1/h∗ are smaller for greater values of the thickness.

Figure 5: Optimal thickness vrs a/R. Figure 6: Optimal location of the step.

5 Conclusions

An optimization technique was established for circular conical shells loaded by a rigid central boss.
The material of the shells assumed to be elastic or an inelastic one obeying the Hill’s yield criterion and
the associated gradientality law. Necessary optimality conditions are derived for conical shells with
piece wise constant thickness. Calculations showed that the efficiency of the design can be essentially
increased even in the case of a single step of the thickness. Making use of a shell with greater number
of steps the eventual ascent of the efficiency of the design is more higher.

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



Analysis and optimization of stepped conical shells with cracks 289

Acknowledgement The partial support from the Estonian Science Foundation Grant N◦ 7461 “Opti-
mization of elastic and inelastic shells” and from the target financed project SF0180081s08 “Models of
applied mathematics and mechanics” is gratefully acknowledged.

References

[1] Życzkowski, M., Recent advances in optimal structural design of shells. European Journal of Mechanics
A Solids, 11, pp. 5–24, 1992.

[2] Lellep, J. & Lepik, U., Analytical methods in plastic structural design. Engineering Optimization, 7(3),
pp. 209–239, 1984.

[3] Banichuk, N., Introduction to Optimization of Structures. Springer-Verlag: New York, p. 300, 1990.
[4] Kirsch, U., Structural Optimization: Fundamentals and Applications. Springer: Berlin, 1993.
[5] Lellep, J. & Puman, E., Optimization of plastic conical shells loaded by a rigid central boss. International

Journal of Solids and Structures, 37, pp. 2695–2708, 2000.
[6] Lellep, J. & Puman, E., Optimization of inelastic conical shells with cracks. Structural and Multidisci-

plinary Optimization, 33, pp. 189–197, 2007.
[7] Lellep, J. & Tungel, E., Optimization of plastic spherical shells of mises material. Structural and Multi-

disciplinary Optimization, 30(5), pp. 381–387, 2005.
[8] Capsoni, A., Corradi, L. & Vena, P., Limit analysis of orthotropic structures based on hill’s yield condition.

International Journal of Solids and Structures, 38, pp. 3945–3963, 2001.
[9] Corradi, L., Luzzi, L. & Vena, P., Finite element analysis of anisotropic structures. Computational Methods

of Applied Mechanics and Engineering, 195, pp. 5422–5436, 2006.
[10] Pan, L. & Seshadry, R., Limit analysis for anisotropic solids using variational principle and repeated finite

element analysis. Transactions of the Canadian Society for Mechanical Engineering, 28(1), pp. 89–107,
2004.

[11] Hodge, P., Limit Analysis of Rotationally Symmetric Shells. Prentice Hall: New Jersey, 1963.
[12] Kaliszky, S., Plasticity. Theory and Engineering Applications. Elsevier: Amsterdam, 1989.
[13] Ventsel, E. & Krauthammer, T., Thin Plates and Shells. Theory, Analysis and Applications. Marcel

Dekker: New York, 2001.
[14] Chakrabarty, J., Theory of Plasticity. Elsevier, 2006.
[15] Bryson, A. & Ho, Y.C., Applied Optimal Control. Wiley: New York, 1975.
[16] Hull, D., Optimal Control Theory for Applications. Springer: Berlin, 2003.

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8





Simulating occupants injury in rollover crashes

Anderson de Lima
General Motors of Brasil Ltda., Technological Center

Avenida Goiás, 2769, São Caetano do Sul, 09550-051, SP – Brazil

Rogério José Marczak
Mechanical Engeneering Department, Federal University of Rio Grande do Sul

Rua Sarmento Leite 425, Porto Alegre, 90050-170, RS – Brazil

Abstract

During the last decades, a constant increase in the number of studies involving rollover crashes and injuries
associated with it can be observed. The existing experimental standards and procedures to test rollover crash-
worthiness are still not suitable for direct computer simulation because of the huge computational effort
required, and the need of faithful/overly complex representation of the aspects involved in actual crashes.
Yet, numerical simulation play a key role in keeping the design cost low and in delivering reliable structural
predictions. The objective of the present work is to show the application computational models adapted to
simulate three different procedures commonly used to assess vehicle roof strength. The models are compared,
and their advantages/disadvantages are discussed. It was found that one of the most used design procedures
is not representative of realistic rollover phenomena. Finally, we include finite element models of dummies
to simulate the occupants. These models allow retrieving important data concerning the severity of injuries
caused during the rollover.

Keywords: crashworthiness, vehicle simulation, rollover crash, roof strength, car safety, occupant injury.

1 Introduction

Nowadays, the automotive engineers and the industry have been challenged to develop safer vehicles,
and at the same time to reduce the design cycle time and cost. Physical crash tests are extremely
expensive, and therefore computer simulations have been playing a key role in assisting and analyzing
new vehicle designs.

Global numbers of manufactured cars are growing year by year; thereafter the number of occupants
injured and deaths due to vehicular crashes are increasing proportionally. Vehicular accidents are
among major causes of deaths in the country-regionUnited States according to the PlaceNameplace-
National PlaceTypeCenter for Health Statistics, 2005. Table 1 shows the rate of deaths per 100,000
standard population, where it can be verified that vehicular accidents have a significant participation.
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Among all types of vehicle accidents, rollover crashes are the most complex and least understood.
Rollover is defined as a maneuver in which the vehicle rotates 90 degrees or more around its longitudinal
axis [1]. Major automotive manufacturers have achieved a high safety level of their vehicles concerning
frontal, side, and rear crash situations. Rollovers, however, are still the most passenger threatening
crash mode, with a fatality rate second only to frontal crashes [2]. Although 3.3% of all car accidents
are characterized as rollover, they are responsible for more than 20% of the total passenger deaths.

Table 1: Causes of deaths per 100.000 U.S. standard population according to the US National Center
for Disease Control and Prevention (2005).

Cause of death 2005 2004
Diseases of heart 210.3 217.0

Malignant neoplasms 183.8 185.8

Brain vascular diseases 46.6 50.0

Diabetes mellitus 24.5 24.5

Alzheimer’s disease 22.9 21.8

Vehicular accidents [NHTSA, 2005] 14.7 14.6

Septicemia 11.2 11.2

Intentional self-harm (suicide) 10.6 10.9

Chronic liver disease and cirrhosis 8.9 9.0

Assault (homicide) 5.9 5.9

During the last decades a steady increase in studies of vehicular accidents and occupants injuries
involving rollovers has been observed. There are several studies in the literature showing the effects
of the vehicle’s roof crushing on the occupants due to rollover. Initial works demonstrated that there
were no correlation between roof crushing and the occupant injuries [3]. After reviewing some real
cases of rollover crashes, researchers found out that the severity of injury was associated with the
intrusion of the roof on the occupant survival space [4].

The roof strength clearly affects the likelihood of head and neck injuries in occupants during rollover
incidents [5]. If significant roof crushing is observed in a severe vehicular accident the occupants have
greater risk of injury. Even after several published studies on this field during the last two decades, the
role of roof crushing and the associated injury caused in vehicle’s occupant is still an area of intense
research. It is also possible to identify various points of view regarding the mechanisms which cause
the injuries and, accordingly, there has been considerable debate about the role of roof deformation in
this context. One of the major difficulties in analyzing rollover crashes and designing countermeasures
for it is the lack of a widely accepted standard measure of crash severity. The other is obviously the
cost and complexity of a reliable numerical model able to capture all intrinsic phenomena associated
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to vehicle crashes. Further discussion can be found in the partial reviews of Hoskins and El-Gindy
[6], Goldman et al [7], and Herbst et al [8]. Mao et al [9] discuss the recent modifications proposed
on FMVSS 216 standard to reflect more accurately the actual crash, as well as its main differences to
the inverted drop test from the structural point of view. Bidez et al [10] is a good example of how a
scientific work can be used to make more conspicuous bad practices by automotive industry, avoiding
acceptance of standards based on subjective or disputable claims.

The objective of the present study is the development of computational models to simulate and com-
pare different standards and procedures used to evaluate the roof resistance with respect to withstand
the rollover loads. Weak roofs are responsible for most of the serious injuries in occupants who are not
ejected during rollover accidents. The advantages/disadvantages of each approach are discussed. The
results of numerical models for two types of vehicles are compared with experimental tests. In a second
part, numerical models of dummies included in the FE analysis are used to predict possible injuries
caused in the head, neck, thorax and cervical spine. Numerical models of passenger’s vehicle and a
sport utility vehicle (SUV) are simulated including anthropomorphic dummy to represent the driver.
The injury risks and traumas are verified to the driver considering belted and unbelted dummies.
The driver’s risk of injury when driving a passenger car is also compared with the risks when driving
a SUV. The computational methodology developed proved to be efficient for the evaluation of the
vehicle’s roof structure in rollover events. It is shown that numerical methods can be used to assess
the structure of the vehicle and verify the occupants injury risk, reducing the amount of experimental
tests to be performed.

2 Standards and procedures

2.1 Roof crush resistance – FMVSS 216 [11]

It is well known US National Highway Traffic Safety Administration standard requires a passenger
car roof to withstand a load of 1.5 times its weight or 22.240 N (whichever is the smaller), applied on
each side of vehicle’s roof, and producing no more than 127 mm of crushing.

The load is applied by a rigid rectangular plate 762 mm by 1829 mm. The direction of the load
is 5 degrees from the longitudinal axis, applied at the front header, and 25 degrees from lateral axis,
applied at the side roof rails, as shown in Fig.1.

This standard has been criticized for being a static test which does not incorporates the dynamic
events related to rollover events, i.e. it actually refers to a quasi-static test [12]. On the other hand,
being devoid of highly transient effects imparts a more easily repetitive pattern in multiple tests
carried under this standard. The widespread use of FMVSS 216 is, however, possibly more rooted
its simplicity and low cost when compared to other tests than its statistical repeatability and simple
implementation.

In 2005 the NHTSA proposed an update to FMVSS 216 [9] by extending the gross weight limit of
vehicles to be subjected to it, by reducing the amount of roof intrusion allowed, and by increasing
the applied force to 2.5 times the weight of the vehicle. This proposal is intrinsically related to the
present work because, as it will be shown in section a3, a factor of 2.5 reflects more faithfully the loads
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necessary to actually test the roof strength by producing significant roof intrusions. The update has
been constantly delayed since then.

2.2 Inverted drop test [13]

The inverted drop test procedure was devised to minimize the occupant injury by assessing the struc-
tural integrity of roofs under dynamic loadings similar to those happening in actual rollovers. The
most interesting features of this procedure when compared to FMVSS 216 are: (a) the lateral or slip
velocity between the vehicle and pavement is taken into account during the testing; (b) the dynamics
of the roof crushing and the geometry of the roof are more faithfully considered in the evaluation
of occupant’s injuries; and (c) it easily allows the realistic use of dummies to help to assess possible
injuries in heat, neck, backbone and other parts of the occupant’s body.

According to this procedure the vehicle is hanged upside down in a 25◦ roll angle and 5◦ pitch angle
attitude and then dropped (Fig.2). This orientation is the same as the FMVSS 216. The suggested
drop heights are 304.8 mm and 457.2 mm.

Figure 1: FMVSS 216 test illustration.
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2.3 Dolly rollover test / FMVSS 216 [11, 14]

The SAE J2114 rollover test procedure was devised to emulate lateral rollover in laboratory conditions
as closely as possible of the actual phenomenon. The test vehicle is placed on a device inclined by
23◦ to the horizontal plane, hold in position by a 102 mm high flange touching the tires (Fig.3). The
distance of the inner corner of the flange and the concrete roll surface is 229 mm.

Figure 2: Inverted drop test setup.

The device is accelerated to a constant velocity of 48 km/h, and then halted to full stop within
a distance of no more than 914 mm. The test vehicle must not show any significant transverse or
rotational movement. The device deceleration cycle must reach at least 20 g during a minimum time
of 40 ms.

Figure 3: Dolly rollover test setup.

2.4 Some comments about the test procedures

Both the roof crush and the drop test procedures can be used primarily to validate the roof strength.
Neither of them are particularly realistic to estimate the physical integrity of the vehicle occupants,
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since the dynamics of the vehicle and the occupants as well are not considered during the rollover
event. Any estimate of loads and accelerations over the passengers bodies obtained through these
tests would be unreliable and, therefore, they cannot be used to analyze or quantify the probability
of injuries caused during the rollover. This situation does not contribute to improve the design of new
vehicles towards safer products.

Moreover, two opposing views exist in the published literature regarding whether roof crush causes
serious injury or whether it is simply associated or correlated with serious injury [10], although NHTSA
has already concluded that there is a relationship between roof intrusion and the risk of injury to
belted occupants in rollover events [15]. One alternative to study the risk of injury would be the use
of dummies in the tests, which curiously is not standardized.

Even though the SAE J2114 procedure does not require the use of dummies during the experimental
test they could be included to retrieve further evaluations of the effects on the occupants. The use
of dummies would allow the study and of several aspects which play key roles in the severity of the
injuries caused to the vehicle occupants. Driver’s neck forces produced during the roof crushing, size
and position of the dummies, non fastened seat belts, effectiveness of different configurations for air
bags, among other aspects, can be better understood if dummies are realistically included in the tests.
This idea will be explored later in the present work.

Nonetheless, the SAE J2114 procedure is also extremely complex for numerical simulation and
demand huge computational resources in both, the preparation of an accurate structural model and
the solution of the nonlinear governing equations as well. In addition, the resulting data must be
carefully retrieved from the analysis and interpreted.

These comments explain partially why the automotive industry in most cases has been relying on
the roof crush resistance test alone. Not only it is a simple and less expensive test, but also requires
far less computational efforts to be simulated when compared with the other two tests, if this is the
case.

3 Numerical simulations

Any numerical model to be used in rollover analysis must incorporate two essential capabilities: to
produce roof (and other structural parts) crushing and to deliver realistic dynamical behavior. Since
the interest in the present work also includes studying injuries of the occupants, finite element models
of the dummies belted to their seats will be necessary, too.

All three tests described in section 2 have been modeled in commercial finite element software for two
actual vehicles, including the passenger dummies to take into account the inertial contribution of the
occupants and verify possible contact between occupants and the vehicle structures. The simulations
followed in detail the standards for each test, in order to reproduce as faithfully as possible the
conditions of the testing [16], so they will be referred from now on as virtual tests.
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3.1 Generalities about the FEA models used

The FEA models refer to two different vehicles. A small passenger car and a SUV. They will be referred
as vehicle A and B from now on, but they share the same FE modeling techniques described herein.
Besides the intricate details present in numerical models of this type, the computational cost of the
analysis is an issue. Not only the CAD drawings were strictly followed, but also one must note that
this is a nonlinear analysis, containing plastic behavior of the material as well as large displacements.
In addition, the drop test and the dolly rollover test are fully transient dynamic cases.

Additionally, several important details must be considered. For instance, in the dolly rollover test
it was observed in experimental tests that, when the dolly is stopped to trigger the take-off of the
vehicle, the wheels hit the lower supporting tab of the dolly and break or deform permanently. This
effect was included in the analysis by using special finite elements which simulate the breakage of these
structural components at a given load magnitude. Features like this had to be modeled and tested
at an earlier stage, without the need of the FE mesh of the whole vehicle body. Concentrated mass
parameters were used instead. Figure 4 show the permanent deformation on the suspension during
the initial moments of the dolly rollover virtual test.

Figure 4: Permanent deformation on the suspension after the vehicle take-off.

None of the tests require the use of dummies. However the vehicles modeled in the present study
included belted and unbelted dummies. Dolly rollover simulations, in particular, enable to obtain
estimates for accelerations, deflections and loads on the human body. These values can be compared
to head [17], neck [16] and thorax [18] injury mechanisms and criteria to further homologate the
vehicles design. Table 2 summarizes the FE mesh used for the vehicle, while Fig.4 illustrates the FE
model of one of the cars studied, including the dummy employed in the analysis [19]. The dummies were
used in both configurations, belted and unbelted, and the windows of the vehicles were disregarded
to simulate the vehicle riding with open windows.
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Figure 5: Renderized illustrations of the FE models of the vehicle and the dummy.

Table 2: Elements count in the numerical model of the passenger vehicle (not counting the dolly
model).

Description Number
Subregions 444

Nodes 235351

Mass elements 995

Rigid elements 4175

Discrete elements 415

Joints 32

Beam elements 149

3-noded shell elements 30412

4-noded shell elements 234861

Solid elements 6678

3.2 Numerical results for toof crush resistance test

The roof strength is extremely important to reduce the injury to vehicle occupants during the rollover
phenomenon. FMVSS 216 states that the maximum allowed intrusion of the roof is 127 mm, under a
load of 1.5 times the weight of the vehicle (the vehicle’s mass considered in this work is 991 kg).
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Figure 5 shows a displacement vs. normal force plot of roof intrusion of the vehicle. When the
window is open, it is evident that the maximum roof displacement is much lower than the allowable
value. It is worth to note that the suggested load of 1.5 times the weight of the vehicle seems to be
too small for a realistic analysis.

Figure 6: Results of normal force vs. roof displacement for the FMVSS 216 virtual test. The upper
dashed line shows a more realistic strength requirement proposition.

According to the simulation results, the side windows are responsible by an increase of roughly 10%
in the resistance of the roof [16], provided the windows do not fail. As it will be shown in section 3.3,
the dynamic loads found in the drop test indicate a value of approximately 2,2 times the vehicle’s
weight, much greater than the value proposed by the FMVSS 216 standard. Therefore, two reference
loads are compared in Fig.5: 1.5 and 2.5 times the vehicle’s weight. The maximum allowed roof crush
is not reached in none of them, though. Figure 6 shows the deformed configuration at the end of the
virtual test.

3.3 Numerical results for the inverted drop test

Examples of numerical results for this test are shown in Figs.7 and 8. Figure 7 presents the force vs.
time plots obtained in the simulations for both drop heights. The normal contact force peak between
vehicle and the ground during the inverted drop test is 2.0 and 2.9 times the FMVSS 216 requirement,
for 304.8 mm and 457.2 mm drop heights, respectively. As one can expect, this test is more severe
than the FMVSS 216 test, and obviously take into account the dynamic effects more realistically, since
the test vehicle actually falls on the ground.

Considering that the driver remain in the same relative position to the seat during the inverted
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Figure 7: Deformed configuration after the 127 mm roof crushing.

Figure 8: Numerical results of normal force vs. time for the SAE J996 test simulations.

drop test, the head would strike the roof 0.045s after the contact between roof and ground, for the
304.8 mm drop height. Figure 8 shows a detail view of the finite element mesh of the driver’s head at
about the contact vehicle-ground instant.

Because the dynamic effects, the region of the roof just above the driver’s head (dummy) shows
larger deformation in the inverted drop test (SAE J996) than in the roof crush test (FMVSS 216).
This is expected, since besides the inertia effects, the latter does not allow rotation of the vehicle
once it comes in contact to the ground, i.e., the orientation of the contact area in the roof crush test
remains unchanged during the test.
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Figure 9: Detail view of the roof rail/dummy head contact during the inverted drop test (304.8 mm
drop height) finite element simulation.

3.4 Numerical results for the dolly rollover test

The objective of this simulation was to reproduce numerically the rollover test. The finite element
model used for one of the vehicles is shown in the Fig. 4. Obviously, the dolly rollover test simulation
demanded much more computational effort and time than the previous ones. Besides the inherent
greater complexity of the numerical model, it was found that it is required at least 1500 ms of simu-
lation to capture all relevant events of the test, resulting in a huge computational cost.

An important aspect in simulations of this magnitude is the difficulty in calibrating/updating the
FE models. Cost of sensitivity analysis in these cases is still prohibitively high, and experimental
modal data are virtually useless here. However, if experimental data from actual tests are available,
they can be used to minimally assess the confidence in the FE model. Two examples used in the present
analysis is the time when the vehicle first touched the ground, and direct comparison with movie stills
of the actual crash tests. Figure 9 shows the instant of tire-ground first contact, and they agree well
with the laboratory data. Similar ideas can be used in other types of vehicle to verify FE models. It
is very unlikely the specific data like this agree with experimental values when the numerical models
are not faithful to the actual phenomenon. Figure 9 shows images of the first contact between the tire
and the ground (375 ms) as well as the first contact between the roof and ground (530 ms). Although
the number of complete rolls during the rollover event is an important parameter, in ninety percent
of the cases the car do not exceed a complete turn [5]. During the present study it was found that one
the tests which better estimate the number of complete turns of the vehicle is actually the J2114, as
recommended by the Society of Automotive Engineers [14].

The graph in Fig.11 shows the contact force history obtained during the simulation. The peak
contact force between the roof and the ground obtained is 22,000 N. This value is approximately 2.2
times the weight of the vehicle. This is an important aspect found during this work, since it differs
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considerably from the 1.5 factor specified by FMVSS 216.

Figure 10: Retrieving the exact first contact time through force vs. time graphs.

Figure 12 shows the FE model used in the full rollover simulation of the SUV, while fig.13 compares
the results of the virtual test with stills of movies made from actual vehicles tested experimentally.
The agreement is surprisingly good, considering the complexity of both the FE model and analysis
type.

Although highly expensive, the simulation of SAE J2114 procedure represents more faithfully the full
size phenomenon, and incorporates more accurately the dynamic effects that occur during a rollover
accident. Therefore, as one of the main conclusions of the present study, it is suggested that the
FMVSS 216 standard cannot prevent or minimize the trauma and injuries in the vehicle occupants.
Evidently conclusive claims will depend on of the actual conditions of the rollover, but the significant
discrepancy found between the load factors of both methodologies, and the more faithful simulation
of the SAE J2114 point out in favor of the SAE standard.
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Figure 11: Images of the first contact between of the tire with the ground (375 ms) and the first
contact of the roof with the ground (530 ms). SAE J2114 full vehicle simulation.

Figure 12: Normal contact force for tire/ground and roof/ground. SAE J2114 full vehicle simulation.

3.5 Estimating injuries using numerical models

Even though the SAE J2114 procedure also does not require the use of dummies, the present study
advises to do so, at least in numerical simulations, since it provides an interesting way to verify directly
integrity of the vehicle occupants. Furthermore, numerical models for dummies are available, and they
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Figure 13: Finite element model of the SUV used in the SAE J2114 full vehicle simulation.

can be used to estimate the loads applied on occupants during the crash, helping to approve design
changes.

Once the computational model was proved to be reliable, different accident situations can be simu-
lated. While the first two tests can be used to assert the roof design strength, they are of little use to
simulate the consequences of a rollover on the vehicle occuplants. The present section will show some
examples of data that can be retrieved to estimate the severity of the injuries caused during a rollover
using the full vehicle simulation.

Hughes et al. showed that 85% of the rollover crashes involves only one roll or less. Due to the
occupant dive toward the roof and the roof crush, as shown in Fig.14, the dummy’s neck is submitted
to a lateral moment. This occurs after the dummy’s head strikes the roof and causes an increase in
the neck load.

Table 3 shows the parameter values used to determine the injury criteria and to evaluate the
probability of serious injury in drivers, using the results retrieved from the full vehicle simulation.

These values can change due to size, posture and position of the dummy. The significance of the
initial cervical spine position at the time of axial impact loadings was studied by Hodgson and Thomas
[21] in their cadaver impact tests for various neck and thorax positions and also for differing directions
of loading. Of the varying positions of load application, axial loading at the vertex with the cervical
spine neutral demonstrated the highest vertebral body strains, in comparison to more anterior force
application positions.

According to the computational simulation results the belt occupant does not suffer injury, as shown
in Table 4. However if the occupant does not use seat belt there is 21,8% probability that a serious
injury on the neck will occur, consequently the occupant can have a injury in the cervical spine. If an
occupant does not use seat belt during a rollover the probability a serious injury will occur is 3 times
higher.

Moffatt [3] set forth the theory that occupant injury in rollovers was the result of diving into the
roof rather than from the consequences of roof collapse or buckling. Subsequently other investigators
have shown that these conclusions had been manipulated. Other crashworthiness experts state that
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Figure 14: Comparison between experimental test movie stills [20] and the present computational
model.

Figure 15: Head position up to first contact roof/ground.

roof crush is linked to fatal and serious head and neck injuries resulting from rollover crashes [4, 5].
Then, in order to investigate the influence or not of the roof crush in the increase of injuries and

fractures of the neck, a passenger car with roof smaller resistance was simulated. Loads obtained
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Table 3: Peak values considering belted and unbelted dummy.

Peak values
Tolerable Values

Coefficient:
Belted /

Unbelted
Dummy
belted

Dummy
unbelted

Head Acceleration (g’s) 45,6 62,6 80 1,373

HIC 33,9 75,8 700 2,236

Neck axial load (N) -396,6 -1362,6 3300(t) / 4000(c) 3,436

Longitudinal moment (Nm) 88,8 238,9 57(e) / 190(f) 2,690

Lateral moment (Nm) -111,2 -120,4 - 1,083

Neck shear load (N) -223,8 939,9 3100 -4,200

Thorax acceleration (g’s) 14,0 14,4 60 1,029

Thorax deflection (mm) -5,2 -1,3 76 0,250
(t): tension, (c): compression, (e): extension, (f): flexion

Table 4: Injury AIS3 level probability for different body regions.

Region Parameter
Probability of AIS3

Belted dummy Unbelted dummy

Head HIC 0,0082 0,249

Neck Nij 7,3 21,8

Thorax
Amax 9,4 9,6

Dmax 3,0 2,5

CTI 0,2 0,1

through the neck of the dummy compared the results with the original model, without changing the
structure of the roof, and found that the resistance of the roof, especially the side of the roof structure
has great influence on the compression of the neck of the occupant. The comparison was between the
original model of passenger car and a model with roof and side structure with reduced thickness as
shown in Figure 15. Reducing the roof strength causes a high increase of the neck load, hence the
conclusion is that the rigidity of the roof has a large influence on the probability of occurrence of
injuries in the neck and consequently in the cervical spine.

Two examples of data retrieved from the virtual tests are the neck compression force and lateral
neck bending. Figure 16 shows the compression force during the complete rollover. A peak force of
1913 N, being in accordance to the experimental limits of 958-1962 N [10].
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Figure 16: Influence of the roof resistance in the neck force.

Figure 17: Dummy neck compression force during a complete rollover virtual test.

Bending forces are illustrated on Fig.17, showing a maximum value of 123,3 Nm. This value occurs
when the wheel touches the ground and the dummy head is projected against the door window. Values
registred by Bidez et al. [10] are in the 106-167 Nm range.

4 Conclusions

The main conclusions of the present study can be summarized as follows:
1. Regarding the FMVSS 216: This standard is not representative of the actual phenomenon.

Besides the application of a quasi-static loading, it does not reproduce the real conditions of
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Figure 18: Dummy neck lateral bending moment during a complete rollover virtual test.

rollover. The 1.5 load factor was found to be much lower than the necessary for an accurate
verification. In addition, the relative movement of the occupant is not taken into account. Even
though a vehicle being approved in the FMVSS 216 requirement may not prevent occupant
injuries.

2. Regarding the SAE J996: The inverted drop can be used to provide a better evaluation the
roof strength. The computational simulations showed that the load factor in may vary between
2.0 or 2.9 times the vehicle’s weight in order to preserve the survival space of the occupant.
Although the dynamic effects of this test are present, it does not consider the lateral movement
of a rollover. If used with the 457.2 mm drop height, it may be regarded as a conservative design
procedure.

3. Regarding the SAE J2114: Among the three standards studied in this work, this is the one which
more faithfully reproduces the actual conditions of a rollover. If dummies are included in the test,
the SAE J2114 procedure allows the reproduction of secondary impacts (dummy movement) and
therefore provides an attractive methodology determine the probability of occupant’s injuries.
According to the results of numerical simulations, the roof must withstand a minimum load of
2.2 times the vehicle’s weight. Given the level of detail considered in these simulations, such load
factor has the highest level of confidence among the standards tested here.

The SAE J2114 procedure proved to be extremely complex and demanding huge computational
efforts. One should realize that the high costs are not only associated to the complexity of the vehicle
structure, but mostly to the solution of nonlinear equations of the problem, which requires extremely
high computational resources and well trained analysts.

As for the risk of injury, neither the roof crush resistance test nor the inverted drop test accurately
reproduces the real dynamics of occupant and vehicle during rollover crashes. This work is yet another
one suggesting that the load factor used in quasi-static tests such as FMVSS 216 must be increased.
Although all the three standards studied can find use to estimate the roof strength, only the SAE J996
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and the SAE J2114 should be used to estimate the probability and severity of occupant’s injuries,
although the search for a fully repeatable and accurate dynamic rollover test to be used for a new
safety regulation is ongoing [6].

Our results showed, among other things, that roof crush combined with the dive of the dummy
towards the roof cause neck axial load during the rollover test. This axial neck load can cause serious
injuries. Current standards do not ensure occupants involved in a rollover will be safe because this kind
of effect is not considered. The present study suggests the incorporation of dummies to the numerical
models as an aid to predict the occupants’ injury mechanisms and their severity. Results show that
the belt occupant does not suffer injury, however if the occupant does not use seat belt there is a
21,8% probability of a serious injury on the neck will occur, consequently the occupant can have a
injury in the cervical spine. During the first complete roll of the vehicle if a driver does not use seat
belt the probability a serious injury will occur is 3 times higher than using seat belt. The roof crush
has a great influence in the axial neck load.
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Abstract

In deterministic optimization, the uncertainties of the structural system (i.e. dimension, model, material, loads,
etc) are not explicitly taken into account. Hence, resulting optimal solutions may lead to reduced reliability
levels. The objective of reliability based design optimization (RBDO) is to optimize structures guaranteeing
that a minimum level of reliability, chosen a priori by the designer, is maintained. Since reliability analysis
using the First Order Reliability Method (FORM) is an optimization procedure itself, RBDO (in its classical
version) is a double-loop strategy: the reliability analysis (inner loop) and the structural optimization (outer
loop). The coupling of these two loops leads to very high computational costs. To reduce the computational
burden of RBDO based on FORM, several authors decoupled the structural optimization and the reliability
analysis. These procedures may be divided in two groups: (i) serial single loop methods and, (ii) uni-level
methods. The basic idea of serial single loop methods is to decouple the two loops and solve them sequentially,
until some convergence criterion is achieved. On the other hand, uni-level methods employ different strategies
to obtain a single loop of optimization to solve the RBDO problem. This paper presents a review of such
RBDO strategies. A comparison of the performance (computational cost) of the main strategies is presented
for a structure modeled using the finite element method.

Keywords: RBDO, structural reliability, structural optimization.

1 Introduction

In deterministic design optimization, the uncertainties of the structural system (i.e. dimensions, mod-
els, materials, loads, etc) are taken into account in a subjective and indirect way, by means of partial
safety factors specified in design codes. As a consequence, deterministic optimal solutions may lead
to reduced reliability levels [1]. Reliability Based Design Optimization (RBDO) has emerged as an
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alternative to properly model the safety-under-uncertainty aspect of the optimization problem. With
RBDO, one can ensure that a minimum (and measurable) level of safety, chosen a priori by the
designer, is maintained by the optimum structure.

The RBDO problem may be stated as:

Minimize: J (x,B)

subject to: Pfi = P (Gi (x,B) < 0) ≤ P allowablefi i = 1 . . . nc

where x ∈ ℜn is the design vector (e.g. structural dimensions),B ∈ ℜm is comprised by all the random
variables of the system under analysis (e.g. random loads, uncertain structural parameters), J is the
objective function to be minimized (e.g. the structural weight, volume or manufacturing cost), Pfi
is the probability of failure of ith constraint (Gi), and P allowablefi

is the allowable (maximum) failure
probability for the ith constraint. Although the objective function is generally a random variable, it is
usual to consider it a deterministic value by calculating it using only the mean values of the random
variables B. Hence, from now on, the objective function it written as J (x). The reader is referred to
Mínguez and Castillo [2] and references there in for problems dealing with probabilistic quantities in
the objective function.

The failure probability Pfi for each constraint may be obtained by evaluating the integral in Eq.(1),
which is the fundamental expression of the structural reliability assessment:

Pfi =

∫
Gi(x,B)<0

fB (B) dB (1)

where fB (B) is the joint probability density function (PDF) of the random vector B. In practice, it
is impossible to obtain the joint PDF because of scarcity of joint observations for a high number of
random variables. At best, what is known are the marginal probability distributions of each random
variable and possibly correlations between pairs of random variables. Another difficulty in solving Eq.
(1) is the fact that the limit state equation, Gi, is sometimes given in implicit form, as the response
of finite element models, for example. Such difficulties have motivated the development of various
approximate reliability methods.

Intensive research has been carried out to provide methods to approximate this integral. These
methods may divided into three major classes: (i) simulation methods; (ii) numerical integration and
(iii) analytical methods [3]. For a detailed review on these methods, the reader is referred to Lee and
Chen [4] and Melchers [5].

i. Simulations methods using sampling and estimation are well known in the literature, the most
widely used being the Direct Monte Carlo simulation (MCS) method [6]. The main drawback
of MCS is that it requires a huge amount of calculations. Several derivations of the MCS have
been developed to reduce the computational effort, such as the quasi-MCS [7], the directional
simulation [8] and the importance sampling [9]. In practice, MCS is considered the reference
response and is used to validate the results of other, approximate methods.
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ii. The multi-dimensional integral to determine the probabilistic characteristics of random output
is evaluated numerically [10–12]. Numerical integration is limited, in practice, to dimension 5 or
6.

iii. The main approaches of this class are the First and Second Order Reliability Methods (FORM
and SORM, respectively). FORM and SORM are said to be transformation methods, because
the integral in Eq. (1) is not solved in the original space (B), but is mapped to the Standard
Gaussian space. In this space, the Most Probable Point of failure (MPP) is also the point, from all
points in the failure domain, closest to the origin. The reliability index β [13], which is a measure
of the reliability, can be evaluated as the distance between the MPP point and the origin, in the
transformed Standard Gaussian space. The main advantage of FORM-based approaches is their
computational cost, which is a fraction of the cost of Monte Carlo simulation, for instance.

Hence, FORM based approaches have been widely employed to evaluate Eq.(1) in RBDO prob-
lems. As will be detailed in Section 2, these approaches are optimization problems themselves and
consequently, the RBDO using FORM is a double-loop strategy:
• the inner loop is the reliability analysis,
• the outer loop the structural optimization,

i.e. the two optimizations are coupled. Such coupling of optimization loops: structural optimization
and reliability assessment – leads to very high computational costs. To reduce the computational
burden of RBDO, several papers decoupled the structural optimization and the reliability analysis.
Techniques for de-coupling the optimization loops may be divided in two groups: (i) serial single loop
methods and, (ii) unilevel methods.

This paper presents a review of RBDO methods based on FORM. First, the two main FORM
based approaches, Reliability Index Approach (RIA) and Performance Measure Approach (PMA), are
described and compared. Then, a review on decoupling methodologies is presented, and two decoupling
methodologies are described in detail. A comparison of the performance (computational cost) of the
main strategies is presented for one practical problem.

It should be noted that the review presented herein does not intend to cover all the papers published
on the subject, but to present the main techniques, in order to serve as a guide to those entering this
exciting and challenging subject.

2 FORM based approaches

This section briefly details the approximation of Eq.(1) using RIA and PMA, then presents a review
of the comparison between these two approaches. The interested reader is referred to Madsen et al.
[14], Melchers [5] and Haldar and Mahadevan [15] for more details on the RIA, and to Tu et al. [16]
for a full description of the PMA.

2.1 The iso-probabilistic transformation

In order to approximate the integral in Eq.(1), it is usual to introduce a vector of normalized and
statistically independent random variables U ∈ ℜm and a transformation T (Fig.1), so that U =
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T (B). The most common transformations are the Rosenblatt and the Nataf ones [5, 17]. The mapping
T transforms every realization b of B in the physical space into a realization u in the normalized space.
Note that it also holds for the constraints:

Gi (x,B) = Gi
(
x, T−1 (x,U)

)
= gi (x,U) , (2)

where gi is the ith constraint in the normalized space.

Figure 1: Transformation T and the FORM.

The main advantage in the use of this transformation is that the probability distribution on the
resulting space depends only on its norm. This fact is illustrated in Fig.1 by the circular reliability levels
of the normalized space. It must be highlighted that this transformation is the first approximation
proposed to solve Eq.(1): it only is exact when B is comprised by independent Gaussian random
variables. However, even with this simplification, it is still not an easy task to evaluate Eq.(1). The
FORM approximation is used to simplify this evaluation.

2.2 RIA and PMA

The main idea of the FORM is simple: it consists in replacing the limit state function Gi by a tangent
hyper-plane at the most probable point of failure (MPP). Figures 1 and 2 illustrate the approximation
made by this hyper-plane. The FORM approximates the probability of failure and the allowable failure
probability for the ith constraint by:

Pfi ≈ Φ(−βi) and P allowable
fi ≈ Φ

(
−βtarget

i

)
, (3)

where Φ is the standard Gaussian cumulative distribution function (CDF) and βtarget
i is the target

reliability index of the ith constraint. This is the second approximation proposed to solve Eq.(1) and
it only provides an exact result when the constraint is linear.
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Figure 2: Illustration of the FORM approximation.

Now, recall that in order to evaluate βi, one first needs to obtain the MPP: the point in the failure
domain closest to the origin of the normalized space. The difference between the RIA and the PMA is
the manner in which the MPP is calculated. The following optimization problems detail this difference:

RIA PMA
for a given design x for a given design x

find u∗
RIAi

which find u∗
PMAi

which

minimizes:∥u∥ = βi minimizes: gi (x,u)

subject to: gi (x,u) = 0 subject to: ∥u∥ = βtarget
i

The optimal solution u∗
RIAi

of the RIA yields the reliability index βi =
∥∥u∗

RIAi

∥∥ of the ith constraint
on the current design x. On the other hand, the optimal solution u∗

PMAi
of the PMA is the minimum

performance target point (MPTP) on the target reliability sphere (defined by ∥u∥ = βtarget
i ) and it

provides the so-called performance measure pmi = gi
(
x,u∗

PMAi

)
of the ith constraint on the current

design x. The performance measure pmi is related to the reliability index βi by the following relation:

pmi = F−1
Gi

(Φ(−βi)) (4)

where FGi
is CDF of the ith constraint. It is important to note that u∗

RIAi
and u∗

PMAi
will be equal

only when the reliability constraint is active, e.g., at the final design of a RBDO problem. At any
other point, u∗

PMAi
only represents the point of minimal performance on the target reliability sphere.

2.3 RIA versus PMA

In the paper that introduced the PMA, Tu et al. [16] showed that PMA is inherently robust and yields
a higher overall RBDO rate of convergence when compared to the RIA. Youn et al. [18], although
reaching the same conclusions, showed that the PMA is far more effective when the probabilistic
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constraint is either very feasible or very infeasible. In a different paper, Youn and Choi [19] concluded
that the PMA is quite attractive when compared to other probabilistic approaches in RBDO, such as
the RIA and the approximate moment approach [20].

The first main difference between the RIA and the PMA is the type of optimization problem which
is solved in each case. It is easier to minimize a complicated function subject to a simple constraint
(PMA) than to minimize a simple function subject to a complicated constraint (RIA). Different from
the RIA, in the PMA only the direction vector needs to be determined by taking advantage of the
spherical equality constraint ∥u∥ = βtarget

i to find the MPP u∗
PMA.

Still regarding the type of optimization problem, the conceptual iteration history during the search
facilitates the PMA. Usually, the RIA search requires several iterations to reach the failure surface
given by gi (x,u) = 0, while the PMA search immediately lies on the ∥u∥ = βtarget

i sphere; in other
words, the number of iterations of RIA increases with the reliability index while the PMA search is
independent of the target performance [20]. A second consequence is that, in the case of non-activated
constraints, the PMA becomes even more effective.

Regarding non-linearities in the RBDO problem (i.e. use of non-normal random variables), Youn
and Choi [21] showed that PMA is more stable, efficient and has a lower dependence on the distribution
of the random variables, since it introduces small non-linearities in the space-transformations. PMA
can thus handle a variety of distributions without significantly increasing the number of function
evaluations. Furthermore, RIA diverged when uniform or Gumble random variables were employed.
The former divergence was due to the fundamental nature of the uniform distribution and the latter
was due to numerical difficulties when dealing either with a nonlinear failure surface or with a failure
surface away from the design point.

3 Coupled method: the classical approach

As the reliability analysis is an optimisation procedure by itself, RBDO, in its classical version, is
a double-loop strategy: the inner loop is the reliability analysis and the outer loop is the structural
optimisation. Thus, the two optimisation loops are coupled:

for k = 1, 2, . . .
1) structural optimization

minimize: J
(
x(k)

)
subject to: βi

(
x(k−1)

)
+
(
∇xβi

(
x(k−1)

))T (
x(k) − x(k−1)

)
≤ 0 (RIA),

pmi

(
x(k−1)

)
+
(
∇xpmi

(
x(k−1)

))T (
x(k) − x(k−1)

)
≤ 0 (PMA),

i = 1 . . . nc,

xl ≤ x(k) ≤ xu
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where, at each step k, the reliability analysis routine is called:
2) Reliability analysis: given current design x(k−1)

RIA PMA
find u∗ (k−1)

RIAi
which find u∗ (k−1)

PMAi
which

minimizes: ∥u∥ = βi gi
(
x(k−1),u

)
subject to: gi

(
x(k−1),u

)
= 0 ∥u∥ = βtargeti

and, at the end of each reliability analysis, a sensitivity analysis of the design variables with respect
to the reliability index is pursued to obtain ∇xβi

(
x(k−1)

)
. This procedure is repeated until some

convergence criterion is achieved and, of course, it leads to very high computational costs. A review of
techniques developed to de-couple the RBDO problem, in order to reduce the computational burden,
is presented in the next section.

4 Decoupling strategies

De-coupling the two optimization problems means not to have to call the reliability analysis routine at
every step k of the structural optimization. In the sequel, the serial single loop and unilevel de-coupling
methods are reviewed.

4.1 Serial single loop methods

The basic idea of the serial single loop methods is to decouple the structural optimization (outer loop)
and the reliability optimization (inner loop). Each method of single-loop decoupling employs a specific
strategy to decouple the loops and then solves them sequentially until some convergence criterion is
achieved. Among these methods, the following may be cited: Traditional Approximation method [22],
Single Loop Single Variable (SLSV) [23], Sequential Optimisation and Reliability Assessment (SORA)
[24] and Safety Factor Approach (SFA) [25].

Yang and Gu [26] compared these four single-loop decoupling RBDO methods. Four different exam-
ples were solved including a vehicle side impact and a multidisciplinary optimization problem. Accord-
ing to their results, SLSV was the most effective method, converging nicely and requiring the fewest
number of function evaluations. The other methods also showed promising results when compared to
the classical approach. In a second paper [27], the authors investigated an engineering problem with
a large number of constraints (144) and with many local minima. In addition to the four single-loop
decoupling RBDO strategies, the Mean Value Method [28] was also studied. Results showed that the
number of function evaluations depends on the RBDO method, optimization algorithm and imple-
mentation. Furthermore, algorithms with good active-constraint handling tended to perform better
(e.g. SORA/SFA). Moreover, SORA/SFA and TAM have advantages over the other methods, as the
target reliability is obtained at the end. Regarding the local minima, different methods and different
starting points yielded different final results, since only local optimizers were used by the authors.
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4.2 Unilevel methods

The central idea of unilevel methods is to replace the reliability analysis by some optimality criteria
on the optimum (i.e. imposing it as a constraint in the outer loop). Thus, there is a concurrent
convergence of the design optimization and reliability calculation or, in other words, they are sought
simultaneously and independently.

Kuschel and Rackwitz [29] formulated a unilevel method based on replacing the inner loop of the
classical approach (FORM analysis using RIA) by the first order Karush-Kuhn-Tucker (KKT) opti-
mality conditions of the first-order reliability problem. In other words, the KKT optimality conditions
of the RIA search are imposed as constraints in the outer loop of the RBDO. As already commented,
the RIA may be ill-conditioned when the probability of failure given by a constraint is zero and it
is not computationally efficient when the reliability index is large. With this in mind, Agarwal et al.
[30] proposed a unilevel RBDO method which introduced the first order KKT necessary optimality
conditions of PMA as constraints in the outer loop, eliminating the costly reliability analysis (inner
loop) of RBDO.

Cheng et al. [31] proposed a unilevel strategy based on the sequential approximate programming
(SAP) concept which was successfully applied in structural optimization. In the SAP approach, the
original optimization problem is decomposed into a sequence of sub-optimization problems. Each
sub-optimization problem consists of an approximate objective function subjected to a set of approx-
imate constraint functions. A SAP strategy for RBDO using the PMA to approximate the reliability
constraints was also developed [32, 33].

Studies comparing the different unilevel methods have not been found in the literature. Yi and
Cheng [33] compared the SAP based on RIA and SAP based on PMA with SORA and SLSV methods.
Several examples, including the 144 constraint problem, were solved. Based on the results, the authors
concluded that SAP based on PMA achieved better results than the other methods. This result does
not imply that SAP-PMA is the most effective method in all cases; but it is, at least, one of the most
powerful algorithms in RBDO. As a general review of de-coupling approaches has been presented, one
method of each approach is described in detail in the sequence in order to highlight the differences of
each class of de-coupling squemes.

4.3 Sequential Optimization and Reliability Assessment (SORA)

The SORA [24] method is based on the strategy of serial single loops decoupling the structural
optimization and the reliability analysis. At each iteration of the method, the reliability analysis is
only conducted after the structural optimization. SORA makes use of three main artifices to increase
the algorithm’s performance:

(i) reliability is evaluated only at the desired level: it means that SORA is based on the PMA having
all the advantages when compared to RIA-based methods;

(ii) Using an efficient and robust MPTP search algorithm [34];
(iii) Employing sequential cycles of optimization and reliability.
The key concept of the method is to shift the boundaries of the violated equivalent deterministic

constraints to the feasible direction based on the reliability information obtained in the previous cycle,
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which makes the reliability constraints improve progressively and the cost of the search for the MPP
be reduced.

Figure 3 shows an example of the SORA boundary shifting procedure. The equivalent deterministic
constraint at iteration k and the probabilistic constraint that has to be fulfilled are represented in Fig-
ure 3. Based on the percentile information obtained through the reliability analysis, the shifting value
s is found and the equivalent deterministic constraint is shifted towards the probabilistic constraint
(dashed line). The reliability constraint is fulfilled when s is equal to zero, in other words, when the
dashed line coincides with the probabilistic constraint.

Figure 3: Shifting the boundaries of the violated deterministic constraints in SORA [24].

Thus, the RBDO-SORA works in the following manner:

for k = 1, 2, . . .
1) Deterministic optimization:

minimize: J
(
x(k)

)
subject to: gi

(
x(k),ui − s(k−1)

i

)
= 0, i = 1 . . . nc

x1 ≤ x(k) ≤ xu

where, at the end of each deterministic optimization k, the PMA routine is called:
2) PMA: given current optimal design x(k)∗ find u∗ (k)

PMAi
which

minimizes: gi

(
x(k) ∗,u

)
subject to: ∥u∥ = βtargeti
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and with the information provided by the MPTP, the shifting vector s is updated. Notice that the
optimization loops are no longer coupled, i.e., an entire deterministic optimization is performed and
then, the reliability analysis routine is called. This procedure is repeated until some convergence
criterion is achieved. Hence, the optimization problems are performed sequentially and by this reason
the name of this class of de-coupling methods is serial single loop methods.

4.4 Sequential Approximate Programming (SAP)

Cheng et al. [31] proposed a strategy based on the sequential approximate programming (SAP) concept
that was successfully applied in structural optimization. In the SAP approach, the original optimiza-
tion problem is decomposed into a sequence of sub-optimization problems. Each sub-optimization
problem consists of an approximate objective function subjected to a set of approximate constraint
functions. Thus, the SAP method makes use of an approximation of the reliability constraint, where
a linear Taylor approximation of the approximate reliability index is used instead of the accurate one,
reducing the computational effort by eliminating the need for the reliability analysis. Such approx-
imate reliability index and its sensitivity are determined from a recurrence formula that is derived
from the optimality conditions of the PMA and end up being the iterative formula of the Advanced
Mean Value (AMV) method [35]. The SAP-PMA problem is, then:

for k = 1, 2, . . .

minimize: J
(
x(k)

)
subject to: p̂mi

(
x(k−1)∗

)
+
(
∇xp̂mi

(
x(k−1)∗

))T (
x(k) − x(k−1)∗

)
≤ 0, i = 1 . . . nc

xl ≤ x(k)
l ≤ x ≤ x(k)

u ≤ xu

where k is the sub-optimization problem number, p̂mi

(
x(k−1)∗

)
is the approximate performance mea-

sure of the optimal design x(k−1)∗ of the previous sub-optimization problem, x(k)
l and x(k)

u are the
lower and upper bounds of x(k), respectively. Notice that at the end of each sub-optimization problem
k, the reliability analysis routine is not called. Instead, the approximate performance measure and the
approximate MPTP of the ith constraint are just updated by the following relations:

u
(k)
i =

∇ugi
(
x(k)∗ ,u

(k−1)
i

)
∥∥∥∇ugi (x(k)∗ ,u

(k−1)
i

)∥∥∥
p̂mi

(
x(k)∗

)
= gi

(
x(k)∗ ,u

(k)
i

)
. (7)

It should be noted that, at the end of this process, the optimal solution of the original problem is
found and that there is a concurrent convergence of the design optimization and reliability calculation;
in other words, they are sought simultaneously and independently. It is this fact that gives name to
this class of de-coupling methods: unilevel methods.
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4.5 Further comments

Some aspects should be stressed based on papers cited in this section:
(i) the observation that a given method’s effectiveness depends on several factors suggests that

different RDBO strategies may be better for different problems, and this, in turn, indicates that
more benchmark studies need to be performed in order to identify which RBDO strategy is best
for each type of problem (e.g., type of objective function and constraints);

(ii) this dependence also indicates that more robust methods (e.g. those less sensible to variance of
parameters) should be preferable;

(iii) the presence of many local minima, which is normal in complex engineering problems, indicates
the need of using global optimization algorithms in the solution of RBDO problems [36].

Recently, a benchmark study on several RBDO methods based on FORM was presented by Aoues
and Chateauneuf [37], comparing the performance and robustness of these methods. In the next
section, the classical approaches based on RIA and PMA, as well as the SORA and the SAP-PMA,
are compared in the RBDO of a structure modeled using the finite element method.

5 Numerical analysis

The case of a 2D square plate with a quarter of circle retired from a corner (Figure 4), modelled
using finite elements, is considered. The plate is made of steel with Young modulus E = 200GPa
and yield stress σY = 200MPa. The plate is clamped at its lower boundary and loaded at its left
boundary with a distributed load, with total magnitude of 800N. Uncertainties are considered on
the plate thickness and on the radius, which are modelled as random variables: H ∼ Γ (h, sh) and
R ∼ Γ (r, sr), respectively (where Γ and Si are the probability distribution and the standard deviation
of the random variable). These random variables are grouped into the random vector B = [ H R ].

Design variables of the optimization problem are the mean values h and r, which are grouped into
the design vector x = [ h r ]. The plate is optimized in order to minimize its volume under the
constraint remaining in the elastic domain, hence the maximum stress must remain below the yield
limit:

G (x,B) = 1− σMAX (x,B)

σY
, (8)

where σMAX is the maximum stress on the structure. Thus, the RBDO problem may be stated as:

Minimize: J (x) =

(
l2 − π · r2

4

)
· h

subject to: Pf = P

(
G (x,B) = 1− σMAX

σY
< 0

)
≤ P allowablef

1mm ≤ h

20mm ≤ r ≤ 60mm
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Figure 4: Square plate with a quarter of circle retired from a corner.

Notice that deterministic bounds were imposed on the design variables.
Two distributions are tested in this example: normal and lognormal. For both cases, the standard

deviations are sh = 0.1mm and sr = 4.0mm. The length of the plate’s border is fixed to l = 1m. A
convergence study lead to a mesh with 1352 elements and 1458 nodes. Stresses are evaluated on Gauss
integration points. The normal stress in the s-direction is used for the evaluation of the limit state
function G (Figure 5).

Figure 5: Stress distribution (MPa) in the s-direction.
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The probabilistic constraint was approximated using FORM (recall Eq. 3):

Pf ≈ Φ(−β) and P allowable
f ≈ Φ

(
−βtarget

)
,

and the optimization was performed for different values of βtarget. All the final designs are presented
in Table 1. The computational cost is evaluated in terms of the number of calls to the finite element
code.

Table 1: Comparison of the computational cost (number of calls to the finite element code) of RBDO
based methods.

Distribution Γ βtarget RIA PMA SORA SAP-PMA x∗

Normal
2 372 291 192 48 (1.00, 39.4)

3 356 319 216 48 (1.00, 34.6)

4 464 347 244 56 (1.00, 29.1)

LogNormal
2 500 311 196 64 (1.00, 39.5)

3 624 398 229 72 (1.00, 34.9)

4 816 455 290 96 (1.00, 29.9)

In comparison to the standard, most expensive approach (RIA), the methods PMA, SORA and
SAP-PMA lead to average reductions of 67%, 56% and 88%, respectively, on the computational cost
of the solution. The SAP-PMA approach significantly out-performed the other methods in solution of
this particular RBDO problem.

The reduction in computational cost is very significant in this example due to use of finite element
modeling for the mechanical problem. In the case of Lognormal random variables with βtarget = 4,
for example, the RIA method needed 816 finite element calls (about 3h20min) to obtain the optimal
design, whereas the SAP-PMA method required only 96 finite element calls (about 27 minutes).

Surely, other benchmark comparisons are required in order to make any more definite conclusions.
This will be the subject of future work.

6 Concluding remarks

The main goal of this paper was to review the main Reliability-based Design Optimization (RBDO)
methods based on the First-Order Reliability Method (FORM). The two main FORM approaches
were presented: the RIA and the PMA. A review and a comparison between them were presented. The
coupled approach to solving the resulting RBDO problems was detailed and its high computational cost
was highlighted. A general review of de-coupling techniques was also presented, and two of the main
de-coupling methods were presented in detail (SORA and SAP-PMA). The review presented herein
suggests that SORA and SAP-PMA should be the methods of better performance and robustness, in

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



324 R.H. Lopez and A.T. Beck

comparison to the other methods described herein. Finally, this review presented the main techniques
and references on the subject, and should serve as a guide to those entering this exciting and challenging
subject.
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Abstract

The applied qualification requirements for the packages used in the transportation of nuclear spent fuel ele-
ments are very severe due the nature of the radioactive content. They include the so-called normal conditions
of transport and the hypothetical accident conditions. The 9 m drop tests are the most critical hypotheti-
cal accident conditions. The package qualification under these conditions shall be conducted using full scale
models (prototypes), small scale models, numerical simulations and/or a combination of physical tests and
numerical simulations. The choice of the qualification approach depends on economical and safety aspects. To
comply with the nuclear safety functions, as the containment of the internal products and biological shield-
ing, the package itself has several components connected to each other in different ways (impact absorbers,
welded parts, flanged connections, surface contacts, etc.). This paper presents a discussion on the combination
approach with tests and numerical simulations for the structural assessment of a half scale model of a pack-
age for transportation of nuclear research reactor spent fuel elements under 9 m drop tests. The numerical
simulations of the 9 m free drops over a rigid surface of half scale model of the transportation package under
different orientations were conducted using a finite element explicit code considering several nonlinear aspects
as the nonlinear materials models and properties, with emphasis on the impact absorbers behavior, the differ-
ent package materials stiffness, and the different types of the contacts between the package components and
between the package and the rigid surface, including the friction in the contacts. Also, several 9 m drop tests
were conducted in a half scale model in different drop orientations. The numerical and experimental results are
compared and comments and conclusions are addressed based on the comparison. Also, some recommendations
are issued on the use of the numerical simulations for the full scale tests of the package.

Keywords: transportation package, drop test, impact, contact.
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1 Introduction

The radioactive materials transportation is regulated by guides and standards like [1] and [2]. The
main purpose of these regulations is to protect persons, property and the environment from the effects
of radiation during the transport of radioactive material. This protection is achieved by requiring the
containment of the radioactive contents, the control of external radiation levels, the prevention of
criticality, and the prevention of damage caused by heat.

The packages for the transportation of nuclear research reactors spent fuel elements are classified
as type B due the nature of the radioactive content. The applied qualification requirements are very
severe including the so-called normal conditions of transport and the hypothetical accident conditions.
These conditions are defined in the regulations [1, 2] and it must be demonstrated that the package
has to be sturdy enough to resist, among others:
• a drop onto a rigid target so as to suffer maximum damage, and the height of the drop measured

from the lowest point of the package to the upper surface of the target shall be 9 m;
• a puncture resultant from drop so as to suffer maximum damage onto a bar rigidly mounted

perpendicularly on a rigid target. The height of the drop measured from the intended point of
impact of the package to the upper surface of the bar shall be 1 m. The bar shall be of solid mild
steel of circular section, 15.0 ± 0.5 cm in diameter and 20 cm long unless a longer bar would
cause greater damage, in which case a bar of sufficient length to cause maximum damage shall
be used. The upper end of the bar shall be flat and horizontal with its edge rounded off to a
radius of not more than 6 mm;

• a fire resulting in a temperature of 800 ◦C for 30 min;
• a submersion to a 200 m depth of water.

The use of shock absorbers is allowed to assure that the resultant deceleration levels in the radioac-
tive content (spent fuel elements) are low enough and to keep the containment functional and structural
integrity in the free drop conditions. The shock absorbers are sacrifice devices that must absorb the
package kinetic energy in the impact after the drop by means of their deformation. Several materials
may be used to fill the shock absorbers such as natural wood, wood composites, low density concretes,
metallic foams, polymeric foams, and metallic honeycombs.

The 9 m drop tests are the most critical hypothetical accident conditions. The package qualification
under these conditions shall be conducted using full scale models (prototypes), small scale models,
numerical simulations and/or a combination of physical tests and numerical simulations. The choice
of the qualification approach depends on economical and safety aspects.

To comply with the nuclear safety functions, as the containment of the internal products and
biological shielding, the package itself has several components connected to each other in different
ways (welded parts, flanged connections, surface contacts, etc.). So, the package structural evaluation
under the drop test conditions should be conducted by finite element numerical simulations using
explicit methods and considering several nonlinear aspects as the nonlinear materials models and
properties, the different package materials stiffness, and the different types of the contacts between
the package components and between the package and the rigid surface, including the friction in the
contacts.
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This paper presents a discussion on the combination approach with tests and numerical simulations
for the structural assessment of a half scale model of a package for transportation of nuclear research
reactor spent fuel elements under 9 m drop tests. The numerical simulations of the 9 m free drops
over a rigid surface of half scale model of the transportation package under different orientations were
conducted using a finite element explicit code considering several nonlinear aspects as the nonlin-
ear materials models and properties, with emphasis on the impact absorbers behavior, the different
package materials stiffness, and the different types of the contacts between the package components
and between the package and the rigid surface, including the friction in the contacts. Also, several
9 m drop tests were conducted in a half scale model in different drop orientations. The numerical
and experimental results are compared and comments and conclusions are addressed based on the
comparison. Also, some recommendations are issued on the use of the numerical simulations for the
full scale tests of the package.

2 Package description

The package was designed to meet the transportation criteria established by the IAEA (International
Atomic Energy Agency) for Type B packages carrying fissile materials [1, 2]. Since no long term
storage strategy has been defined in Brazil for this kind of spent fuel, the package is regarded also as a
potential storage option. For that reason, some of its features were designed to attend long term storage
requirements, such as long-term stability of its constitutive materials and compatibility between them
and with the radioactive contents. Also the access to its internal cavity has to be granted for periodical
checks through gas sampling.

The package consists of a cylindrical body with internal cavity to accommodate the basket that holds
the spent fuel elements. The package body has a sandwich-like shielded wall consisting of stainless steel
outer and inner surfaces and lead in-between. A double lid system guarantees the required containment
and the internal lid – which is part of the pressure boundary – has a double sealing system. The package
is provided with two access ports to the internal cavity, one for pressurization and sampling of the
cavity filling gas, embedded in the internal lid, and the other for the cavity draining, located at the
lower region of the package wall. Both ports are equally equipped with two concentric seals. All double
seals are metallic, whereas external lid seal is elastomeric.

The structure of the basket is made of square tubes. For protection against mechanical and thermal
loads, the package is provided with top and bottom external removable shock absorbers. These are
structures made of external stainless steel skin and an energy-absorbing filling material. The filling
material chosen was an wood composite named Oriented Strand Board (OSB), which is an engineered,
mat-formed panel product made of strands, flakes or wafers sliced from small diameter, round wood
logs and bonded with a binder under heat and pressure. A schematic view of the package is shown
in Fig. 1. The main dimensions of the natural scale package are: main body, � 1,000 × 1,400 mm;
overall dimension with shock absorbers, � 2,160 × 2,010 mm. There are also four cylindrical tie bars
equally spaced connecting both shock absorbers. These bars are not shown in Fig. 1.
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Figure 1: Transport package for research reactor spent fuel.

3 The half scale model of the package

Considering the scale 1:2, the model external cylinder has a diameter of ≈0.50m and it is ≈0.60m
high. With the shock absorbers the package overall dimensions are: external diameter ≈0.90m and
≈1.00m high.

Regarding the half scale model, Fig. 2 to 5 show, respectively, the overall dimensions , a lateral
view, an internal view, and the bottom shock absorber partially assembled.

The half scale package model materials are indicated in Tab. 1.

Table 1: Half scale package model materials.

Cask Part Material

Lower shell stainless steel

Bottom shock absorber wood (OSB)

Inner shell stainless steel

Shielding lead

Outer shell stainless steel

Top shock absorber wood (OSB)

Upper shell stainless steel

Tie bars stainless steel
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Figure 2: Overall dimensions of the half scale
model of the package (in mm).

Figure 3: Lateral view of the package half scale
model.

Figure 4: Internal view of the package half scale
model.

Figure 5: Bottom shock absorber partial assem-
bling.

4 Shock absorbers material characterization

As the properties of the OSB are not well known, especially its response to dynamic loads, a testing
campaign was conducted to determine the parameters of interest for the intended use.

To study the effect of the lateral constraint in the dynamic response of the OSB, both encased and
non encased specimens were submitted to impact tests [3]. The specimens, also made of glued layers
of OSB, consisted of cylinders with 60 mm in diameter and 30 mm height. The direction normal to the
glued surfaces was defined as the specimen perpendicular direction, whereas the glued surfaces define
the specimen parallel directions. Besides the perpendicular and parallel directions, the specimens were
also tested at 45◦ angle. The encased specimens were surrounded by a 0.5 mm thick metallic shell.

The averaged stress-strain curves obtained are shown in Fig. 6 (all curves were filtered at 500 Hz,
low pass filter) [3]. As can be seen, from Fig. 6, the non encased specimens respond as an anisotropic
material. On the other hand, the OSB behaves as a nearly isotropic material when tested under lateral
constraint (encased) condition.

This behavior can also be seen clearly in Tab. 2, which shows the values for specific energy U

absorbed at 0.45 of strain. The difference in U values in parallel and perpendicular directions for
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Figure 6: Shock absorbers material stress-strain curves for different directions.

the unconstrained situation is 47% (7.0 to 3.7 MJ/m3), while the average difference for the encased
specimens between the three test directions is less than 10%.

Table 2: Specific energy absorbed (U) @ ε = 0.45.

U (MJ/m3)

Non-encased
specimens

Perpendicular 7.0

Parallel 3.7

Encased
specimens

Perpendicular 7.5

Parallel 8.2

45◦ 8.4

For the encased specimens, the values of Young modulus determined in the three impact test
directions are: Eperp = 68 MPa (perpendicular direction), Epar = 65 MPa (parallel direction) and E45

= 81 MPa (45◦ angle).
Although having the OSB mechanical properties characterization in two conditions obtained from

tests with non encased and encased specimens, the choice for the use of the properties of the later
may be justified by three reasons:
• The encased behavior of the OSB is not given only by the surrounding steel shell but also from

the self lateral constraining without splintering.
• The deformed configurations of the non encased specimens after the impact tests show splintering

in outer parts that are not expected to occur in the shock absorbers.
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• According to [4], only a minor increase in the compression forces can be observed due to the
influence of the steel casing with thicknesses of 0,5 mm in wood specimens of diameter of 100
mm, avoiding the specimens lateral splintering in the impact tests.

5 Numerical simulations of the package half scale model 9m drop tests

The half scale model of the package structural evaluation under the drop test condition was conducted
by finite element numerical simulations considering several nonlinear aspects as the nonlinear materials
models and properties, the different package materials stiffness, and the different types of the contacts
between the package components and between the package and the rigid surface, including the friction
in the contacts.

In this paper, the numerical simulations of the 9 m free drops over a rigid surface of half scale model
of the described transportation package under different orientations were conducted using the finite
element explicit code ANSYS LS-DYNA [5].

5.1 Contacts modeling

The following discussion is based on some recommendations from the LS-DYNA manual [5]. A contact
is defined by identifying (via parts, part sets, segment sets, and/or node sets) what locations are to be
checked for potential penetration of a slave node through a master segment. A search for penetrations,
using any of a number of different algorithms, is made every time step. In the case of a penalty-based
contact, when a penetration is found a force proportional to the penetration depth is applied to resist,
and ultimately eliminate, the penetration. Unless otherwise stated, the contacts discussed here are
penalty-based contacts as opposed to constraint-based contacts. Rigid bodies may be included in any
penalty-based contact but in order that contact force is realistically distributed, it is recommended
that the mesh defining any rigid body be as fine as that of a deformable body.

In high velocity impact analysis, the deformations can be very large and predetermination of where
and how contact will take place may be difficult or impossible. For this reason, the automatic contact
options are recommended as these contacts are non-oriented, meaning they can detect penetration
coming from either side of an element.

Due to the impact condition and due to the geometric features of package and of the the half
scale model of the package (see Fig. 1 to 5), it was used the so-called AUTOMATIC SURFACE TO
SURFACE contact option of the ANSYS LS-DYNA code.

This type of contact is a two way contact allowing for compression loads to be transferred between
the slave nodes and the master segments. Tangential loads are also transmitted if relative sliding
occurs when contact friction is active. A Coulomb friction formulation is used with an exponential
interpolation function to transition from static to dynamic friction. This transition requires that
a decay coefficient be defined and that the static friction coefficient be larger than the dynamic
friction coefficient. The constraint algorithm used in the LS-DYNA program is based on the algorithm
developed in [6].

This involves a two-pass symmetric approach and allows for compression loads to be transferred
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between the slave nodes and the master segments. The definition of the slave surface and master
surface is arbitrary since the results will be the same.

Modeling the contact between the OSB material (soft) and other steel package parts (rigid) poses
several challenges in impact conditions. This is due to its relatively low stiffness of the first when
compared with other structural materials which has an indirect effect on its contact-impact interactions
with other materials.

In ANSYS LS-DYNA the default procedure to compute the time-step and the contact stiffness is
based on the maximum value of the Young’s Modulus E, the maximum slope from the stress-strain
curve (Ecurve). This default approach is conservative to ensure that the computed time-step is stable
for all compressive strains. The default value of the modulus from this approach could either be too
small (if E is greater than Ecurve) or too large (if the Ecurve is greater than E). ANSYS LS-DYNA
allows the overriding of this default logic. Suppose a case where the Ecurve is 10 MPa and E is 50
MPa. Consequently, the E value of 50 MPa was used in the time-step and contact stiffness calculations
which is roughly 0.025% of the modulus of steel (200,000 MPa). This huge disparity in stiffness values
between the impacting bodies is naturally going to cause instabilities in contact. The alternative
approach is to use a penalty contact using soft-constraint algorithm. However, ANSYS LS-DYNA
always uses a penalty based approach based on material stiffness for contact between a rigid body
and deformable bodies. Therefore, it is recommended to alter the modulus to a value at least 1% of
the modulus of the impacting material (which, in this case, is steel).

An important point in contact modeling of the impact between materials with large differences in
their stiffness is the procedure to avoid the collapse of the first row of soft materials, due to large
compressive strains, that leads to an abnormal run ending with negative volumes issues. ANSYS LS-
DYNA follows strictly the stress-strain curve to the last input stress-strain point. For strain magnitudes
larger than the last input point in the curve, the code extrapolates using the last slope. This may
yield small stress values and fails to model the bottoming out effect that occurs at large compressive
strains. The fix to this is to manually provide an exponentially increasing curve to cover compressive
strains to a minimum of 95-99%. It must be noticed that the manual curve must be smooth.

Some penetration between soft and rigid materials can be found during the maximum compressive
strain. This may be attributed to the way the segment thickness is computed for solid elements. Much
like shell elements, in which the mid-surface is offset in both directions of the segment normal, the
solid segments maximum allowable thickness is also computed. The amount of maximum allowable
thickness is based on a small percentage (5%) of the solid element diagonal which, based on the
element geometry, could be very small making it vulnerable to nodal release. So, it is recommended
to increase the offset thickness to a value adequate to ensure that no nodes are released from contact.

5.2 Materials modeling

The shock absorbers filling material (OSB) was modeled as crushable foam with its correspondent
curve following an isotropic linear behavior until a strain of ε = 0.45, extended until ε = 0.95 to avoid
numerical instabilities. The rigid surface was modeled with the ANSYS LS-DYNA RIGID option.
The steel parts, including the round bars, as well as the lead ones were modeled as Bilinear Isotropic
Material (BISO). The basket was modeled in a simplified way as a continuous mass with fictitious
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values and a density value ‘calibrated’ to reproduce the mass predicted to fill the package. This was
done to capture the package overall behavior. All adopted material properties, except OSB, can be
seen in Tab. 3.

Table 3: Materials properties adopted in the analyses.

Steel Lead Mass Bar Rigid Surface units

E – Young’s modulus 200e9 14e9 2e9 200e9 200e9 N/m2

ν – Poisson’s ratio 0.3 0.42 0.0 0.30 0.30 —

ρ – Density 7500 11500 600 7500 7500 Kg/mm3

σys – Yield stress 310e6 14e6 — 310e6 — N/m2

E′ – Tangent modulus 7.6e8 1.0e7 — 7.6e8 — N/m2

5.3 Finite element model

A 180◦ finite element model, showed in Fig. 7, was developed using solid and shell elements and
considering the symmetries in the structures. Parts as trunnions, bolts and threads were not modeled.
This model can be rotated to cover all drop orientations that must be simulated (see Fig. 7).

5.4 Numerical simulations

The analysis starts as the model touches the rigid surface, so the applied initial velocity (13.3 m/s)
corresponds to the 9 m free drop. Additionally the gravity acceleration was applied to the model.

Three analyses were performed simulating the vertical, the horizontal and the corner impact. In
general, the results in terms of displacements along the time are smooth while in terms of accelera-
tions a filter like Butterworth-type should be adopted due to the noise introduced by the successive
integrations [7].

5.5 Deformed shapes

In Fig. 8, the contact modeling does not include the improvements discussed in section 5.1 above
related to time-step and contact stiffness and increased solid element thickness in contact while in
Fig. 9 all improvements were included in the contact modeling.
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Front view Back view

Vertical drop Corner drop Horizontal drop

Figure 7: 180◦ finite element model and drop orientations.

Figure 8: 180◦ finite element model deformed shape without improved contact modeling.
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Figure 9: 180◦ finite element model deformed shape with improved contact modeling.

6 Half scale transportation package 9 m drop tests

The half scale transportation package 9 m drop tests were performed in the following sequence: corner
drop, horizontal and vertical orientations. The shock absorbers were replaced from one test to other.
Figure 10 shows the model prepared to 9 m drop in the three orientations. Before the drop itself the
model, suspended by a crane, was carefully positioned to assure the desired position and angle. Some
deformed shapes after tests are showed in Fig. 11.

Vertical drop Corner drop Horizontal drop

Figure 10: Tests drop orientations.
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Corner drop Horizontal drop

Figure 11: Final deformed shapes for two impact orientations from tests.

7 Results comparison

The main results of numerical simulations and tests are related to the displacements, velocities and
accelerations of some chosen points, the maximum decelerations in the internal content of the package
and the deformed shapes of the structures in the time of their maximum deformation.

As an example, Fig. 12 shows the typical curves of displacement versus time, velocity versus time
and acceleration versus time of the finite element central node for the horizontal 9 m drop test.

The maximum deceleration can be observed in Fig. 12 (c). In this case, the value is ≈280g (g is the
acceleration of the gravity) (as mentioned before, it should be applied a Butterworth-type low pass
filter [7]).

Some important results for the package project are those related to maximum decelerations and
deformations. Table 4 presents some of the obtained results in terms of the package maximum decel-
erations (after a filtering operation) and deformation in the shock absorbers from the numerical
simulations and from the tests.

Table 4: Internal content maximum decelerations and shock absorbers maximum displacements from
numerical simulations and tests.

Numerical simulations Tests Error

Decel. Disp. Decel. Disp. Decel. Disp.

(g) (mm) (g) (mm) (%) (%)

Corner drop 138 46 116 51 +19 -10

Horizontal drop 237 28 280 23 -15 +22

Vertical drop 299 13 273 16 +10 -19
g – gravity acceleration

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



Improvements on the assessment of a nuclear spent fuel elements transportation package under drop tests 339

(a) Displacement × time (b) Velocity × time

(c) Acceleration × time

Figure 12: Movement curves of the 180◦ finite element model central node under 9 m drop test in the
horizontal orientation.

8 Comments and conclusions

At a first glance, there is a reasonable agreement between the numerical and experimental results with
errors [(numerical-experimental)/experimental] around ±20%. Nevertheless, with a deeper look on the
results, it is clear that the drop orientation has an important influence on the results comparison and
this influence is related to the shock absorbers behavior.

Although the numerical and experimental maximum displacements values have differences, the final
shock absorbers deformed shapes are quite similar.

For the corner and vertical drops, the observed maximum displacements in the tests were greater
than that obtained from the numerical simulations. Also, the correspondent decelerations were smaller.
On the other hand, for the horizontal drop the opposite situation occurred.

Also, during the tests, some rebound of the model was observed in an extension not reproduced
in the numerical simulations, especially in the vertical orientation. This indicates that the energy
absorption of the shock absorbers in the vertical orientation (impact load perpendicular to the OSB
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fiber/grain) appeared to be less than expected. The OSB energy absorption characteristics appear to
vary more with respect to wood fiber/grain orientation than it is considered in the material modeling
used for the OSB.

As one of the main objectives of the comparison between the results from numerical simulations
and from tests is to establish a qualified methodology to simulate the 9 m drop tests of a package
prototype further assessments must be done in the future numerical simulations such as:
• Review of the shock absorbers material characterization.
• Review of the shock absorbers material model used in the numerical simulations.
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Abstract

Local wall thinning on pipelines or pressure vessels are common in industry and, usually, they occur because of
the corrosion or mechanical damages. To study the impacts that these cracks do on pipelines, some analytical
models and some failure criterion are mentioned. One of them is called Net-Section-Collapse Analysis (NSC),
which predicts the maximum moment of a circumferentially cracked pipe with a variable-depth internal surface
crack subject to loads like bending moment and, eventually, tension (pressure-induced). To preserve the struc-
tural integrity and stop the external corrosion on crack point, an important method has been developed. It is
a composite overwrap pipeline repair system. In this method, a composite, usually a carbon fiber, is applied
circumferentially around the defect on external face of pipeline. In this paper will be presented the study of
limit moment of local wall thinning in rigid pipeline under bending and repaired by a composite around the
crack. In this context the value of limit bending moment will be analyzed as a function of some discrete values
of depth and angle of surface crack. In order to validate the method, the analytical results are compared with
a commercially available finite element code.

Keywords: limit moment, local wall thinning, pipeline, repair system.

1 Introduction

In industry, especially of oil and gas, there is a wide application of rigid pipelines. According to Duell
et al. [1] there are more than 1.7 million kilometers of oil and gas pipelines in operation. In North
America, it is expended around two or three billion dollars with repairing or replacement of pipelines
with failing, been by wear or abrasion, or even mechanical damage.
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Nomenclature

θ Half of local thinning angle

β Half of neutral angle

Ro External radius of pipe

Ri Internal radius of pipe

Rm Average radius of pipe

ta Thickness of pipe

tc Thickness of composite repair

d Crack depth (radial direction)

η (t− d)/t
Ld Longitudinal thinning length

L Pipe length

N.A. Neutral axis

σadm Allowable strength (Limit strength considered for each material)

σ0 Strength for pipe without crack under limit bending moment

a(ξ) Function of crack depth

M0 Limit bending moment for pipe without crack

M Limit bending moment for pipe with crack and repair applied

For example, on offshore/subsea segment the risers can be rigid pipelines. They are called Steel
Catenary Riser (SCR) [2]. These pipes are usually submitted to external loads from their laying step
to their operation step. In other engineering areas like energy and mining, they also have rigid pipelines
in production plants. All of them are subjected to beginning of failing on their structures and in this
case, it is important to know how to solve the problem.

Several works have been developed to have the knowledge of mechanical properties of material
and the limit loads allowable for determinate application of pipeline. Rahman [3] offers a generalized
method of Net-Section-Collapse (NSC), where the limit bending moment depends on the angle (2θ) and
the radial depth of local thinning, which is a function of crack a(ξ), where 0 ≤ ξ ≤ θ. Nevertheless,
ASME Section XI [4] considers the same methodology NSC, but the depth of crack is a constant (d)
and it is defined by the biggest value of a(ξ).

The longitudinal thinning length has theoretically no effect on limit bending moment in analytical
calculation, however Han et al. [5] have proved by finite elements method that there is an effect,
which is associated to the constraint of remaining material surrounding local wall thinning. In work
developed by Han et al. [5], the same methodology of ASME Section XI was used.

The Net-Section limit moments was also the subject of papers issued by Song et al. [6] and Moulim
et al. [7]. However, both made an additional calculation for elbows. Moulim et al. have performed an
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experimental to confirm the analytical methodology.
The purpose of this work is to investigate the limit moment of local wall thinning in rigid pipeline

under bending. It is considered a failing the loss of material in a determinate section of a pipe. In
the present analysis, this cracked pipeline is repaired using composite material. In this context the
value of limit bending moment is analyzed as a function of some discrete values of depth and angle
of surface crack. Finally, the analytical results are confronted to commercially available finite element
code.

2 Case description

A pipe was considered with length L and external and internal radius, Ro and Ri, respectively. The
local wall thinning, which has longitudinal length Ld, is in the centre of the pipe, see Figure 1. Then,
a carbon fiber composite with length Lc and thickness tc was applied around the damage. Normally,
an epoxy resin is applied between the pipe and composite, in the failing region, but this was not
considered in the present calculation.

The strength for a pipe without crack under bending moment (M0) can be calculated as:

σ0 =
4M0Ro

π(R4
o −R4

i )
(1)

Then, considering a material that presents an allowable strength σadm, the limit bending moment
will be:

M0 =
σadmπ(R

4
o −R4

i )

4Ro
(2)

This paper will consider that the yield strength of material is equal to allowable strength σadm.
It is important to mention that the value of longitudinal thinning length Ld was considered constant

and it follows the relation described on ref. [5]. That is to avoid divergence on results, and it is given
by:

(
Ld√
Rmt

)
≥ 1, 5 (3)

Other important assumptions were adopted about the composite to expedite the analyses. Although
carbon fiber gives orthotropic properties its Young modulus, tangent modulus and Poisson coefficient
were considered isotropic. Another simplification was to consider the equation 3 also for composite
length (Lc) to avoid divergence on results.

The behavior of materials was assumed as elastic-plastic, or bilinear, during numerical analyses by
finite elements analysis (FEA). The table 1 presents the mechanical properties of the materials of
pipeline and its repair.
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Figure 1: Geometry of pipeline, a) without crack, b) with crack and composite.

Table 1: Mechanical properties of materials.

Component Material
Properties

σadm
(Mpa)

E

(GPa)
Poisson
(ν)

Tangent
Mod.
(Mpa)

Pipe ASTM A36 250 200 0.3 2535

Repair Carbon fiber 355 23.4 0.196 7882

3 Analytical model for pipe with external local wall thinning repaired by composite

An analytical model was developed considering all data of the problem, to represent the relation of
crack and repair geometries in a tube under bending. The Thin-walled tube method (Rm << t) was
considered for the formulation.

According ref. [5], considering NSC simplified criterion, which its depth is a constant (d), the limit
bending moment (M) can be performed by two cases, for now without repair:
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1. First case: The crack exists only in one side of neutral axis so, θ ≤ π− β (Figure 1). In this case
the limit bending moment is represented by:

M ≈M0

(
sin (β)− (1− η)

2
sin(θ)

)
(4)

Where β is,

β =
π

2

(
1− (1− η) θ

π

)
(5)

2. Second case: The crack geometry overpasses to the other side of neutral axis so, θ > π−β. Then,
the limit bending moment is:

M ≈M0

(
η sin (β) +

(1− η)
2

sin(θ)

)
(6)

Where β is,

β =
π

2η

(
2η +

(1− η) θ
π

− 1

)
(7)

Now considering the repair, the same relation can be performed. From the force equilibrium equation,
on Figure 1:

M =

∫
dFr =

∫ β

0

(σadmRmtdy)R cos (y) (8)

Solving,

M = σadmR
2
mt

∫ β

0

cos (y) dy (9)

M = σadmR
2
mtsen (β) (10)

Considering both materials (steel and composite), the force equilibrium relation is:∑
F = 2R

[
− (σa

admta + σc
admtc)

∫ β

0

dy + (σa
admta + σc

admtc)

∫ π−β

θ

dy + (σa
adm (ta − d) + σc

admtc)

∫ θ

0

dy

]
= 0

(11)

Assuming that,
σ̄eq = σaadmta + σcadmtc (12)

For the first case (θ ≤ π − β):

β =
σ̄eqπ − σaadmdθ

2σ̄eq
(13)

So, the bending moment equilibrium equation is:

M =2R2
m

[
[σa

adm (ta − d) + σc
admtc]

∫ θ

0

cos (y) dy+

[σa
admta + σc

admtc]

∫ π−β

θ

cos (y) dy + [σa
admta + σc

admtc]

∫ β

0

cos (y) dy

] (14)
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Then, the limit bending moment relation for the first case is given by:

M = 2R2
m [2σ̄eq sin (β)− σaadmd sin (θ)] (15)

M0 = 4R2
mσ

a
f ta (16)

M

M0
=

1

2σaadmta
[2σ̄eq sin (β)− σaadmd sin (θ)] (17)

Analogously, in second case (θ > π − β):

β =
σaadmd (2π − θ)− σ̄eqπ

2 (σaadmd− σ̄eq)
(18)

M = 2R2
m [2 (σ̄eq − σaadmd) sin (β) + σaadmd · sin (θ)] (19)

M

M0
=

1

2σaadmta
[2 (σ̄eq − σaadmd) sin (β) + σaadmd sin (θ)] (20)

4 Numerical model – finite elements analysis (FEA)

A numerical model was performed to validate the analytical method presented in section 3. This model
was developed in finite elements software. The pipeline was modeled with the local wall thinning and
the repair and all the mechanical properties presented on table 1 were also inserted on analyses.

Two symmetry planes were applied in the geometry, one concerning the longitudinal plane and
the other one concerning the transversal plane in the center of the pipe. Then, bending moment was
applied only on pipe, not in the composite, in the end section of the pipe, only in one side, because of
its symmetry.

The Shell method was used to streamline the processing of results, being possible the modeling of
three membranes; the first layer represents the internal sheath of pipe (the layer without failing); the
second layer represents the external sheath of pipe (the layer with failing); and the last one represents
the composite sheath. The Figure 2 presents the geometry rendered by Shell method.

It is important to mention that this model was compared to a conventional model (considering solid
elements) used in [5] and there were not significant differences on the results.

With the Shell model was possible to perform a refined mapped mesh that offers confinable results,
as illustrated in Fig. 3. The mesh applied is the Shell Quadrilateral Linear type, which gives four
nodes per element, with six degrees of liberty each, translation and rotation in direction x, y and z.

Due to the symmetry of the pipe, the bending moment was applied only in one side. It guarantees
the major plane of stresses is in the middle of the length pipeline.
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Figure 2: Shell model of pipeline with external local wall thinning repaired.

Figure 3: Mesh of model.
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5 Results and discussion

By analytical model and numerical solution presented in previous sections, the results of the behavior
of the pipeline considering different geometries of the crack and different mechanical properties of the
composite was plotted and analyzed.

Figure 4 presents a decrease of limit bending moment considering a gradual growth of the angle
and depth of local wall thinning for a pipeline without repair. This result is only for comparison. The
others present the same relation, nevertheless, with the composite.

In order to investigate the mechanical behavior of cracked pipe with repair the thickness of composite
is varied. In Figure 5, the thickness of composite (tc) is taken equal to the thickness of the pipe (ta). In
Figure 6, tc is equal to 1.5ta. Analyzing these results, it can be seen that the variation of tc displaces
all the curves proportionally to up or down. This occurs because of σeq from equations (17 e 20),
which depends directly on tc.

Figure 4: Limit bending moment considering the growth of angle and depth of crack for a pipeline
without repair.

Figure 5: Limit bending moment considering the growth of angle and depth of crack for a pipeline
with repair (tc = ta).
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Figure 6: Limit bending moment considering the growth of angle and depth of crack for a pipeline
with repair (tc = 1.5ta).

Another important variable from the equation of limit bending moment is σcadm. In the present
work, this value was adopted as 355 MPa in the beginning. Now, for evaluating the influence of this
parameter, the Figure 7 presents the variation of limit bending moment with σcadm = 500 MPa. This
result proves that the limit bending moment also varies with mechanical properties of the composite.

Figure 7: Limit bending moment considering the growth of angle and depth of crack for a pipeline
with repair (tc = ta and σcadm = 500 MPa).

Figure 8 and Figure 9 show the compatibility of analytical and numerical results, and proves that
the analytical model developed in this paper is valid. The discrete points on graph are the numerical
results and gives trend lines close to analytical curves. The geometry and mechanical proprieties are
the same previously presented in above analyses.

The major deviation founded between the analyses was 2.29%. Some of these results were added in
the following tables, where is possible to compare the deviation for different cases.
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Figure 8: Limit bending moment: Analytical model x Numerical model (tc = ta).

Figure 9: Limit bending moment: Analytical model x Numerical model (tc = 1.5ta).

Table 2: Analytical results x numerical results for θ/π = 0.1.

d/t tc/ta σcadm (MPa)
Deviation
M/M0

(%)

0,2 1 355 1.16

0,4 1 500 0.36

0,6 1.5 355 -0.64

0,8 1.5 500 -0.09
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Table 3: Analytical results x numerical results for θ/π = 0.3.

d/t tc/ta σcadm (MPa)
Deviation
M/M0

(%)

0,2 1 355 -0.17

0,4 1 500 -0.81

0,6 1.5 355 -0.95

0,8 1.5 500 -0.92

Table 4: Analytical results x numerical results for θ/π = 0.5.

d/t tc/ta σcadm (MPa)
Deviation
M/M0

(%)

0,2 1 355 -0.15

0,4 1 500 -0.13

0,6 1.5 355 -1.59

0,8 1.5 500 -1.69

6 Conclusion

The utilization of composite around the failing influences considerably on limit bending moment of
the pipeline. The NSC method used to develop the expression of limit bending moment for a pipeline
repaired was validated and gives inexpressive deviations when compared to numerical results. The
thickness of the composite and its admissible strength are directly proportional to the limit bending
moment, in other words, higher are these values, as higher will be the pipeline resistance for bending
moment.

The described analysis of limit bending moment for a pipeline with external local wall thinning
repaired by composite presents consistent and reliable results for industry application. It is impor-
tant to emphasize that using the simple expression, developed in this work, is possible to estimate
the thickness of composite necessary to repair a damaged pipeline, in which the original mechanical
behavior can be recovered.
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Evaluating velocity and mass correction when scaling
structures subjected to impact loading
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Abstract

Velocity and mass factors can be troublesome to be set in some experimental impact tests, mainly for scaled
structures that demands extreme conditions. Therefore, the present study introduces a method for scaling
structures subjected to dynamic loads in which both velocity and mass can be changed in a rational manner.
A set of factors different from the usual scaling laws is developed considering strain rate effects into the
formulation. Two examples are used to infer the approach: an analytical study of a double plate subjected to a
top impact load and a numerical analysis of a double bottom structure hit by a mass. The numerical analysis
indicates that the velocity factor yields closer results to the real size structure when it is enclosed between 0.8
and 2.0, with the striker mass calculated via the equations here illustrated.

Keywords: scaling, similarity, ship collision, strain-rate sensitive.

1 Introduction

Scaling (or similarity) laws are employed by engineers to represent a structure response using scaled
models. The inherent difficulty to experiment full-scaled structures lead authors to study reduced
models [1, 2]. Despite the huge development on numerical methods, real tests are still needed in order
to find and understand some phenomena [2]. It is well established in many investigations, such as
Booth et al. [3], Jones [4], Oshiro and Alves [5], that the direct application of “traditional” similarity
laws on dynamic-impact-driven events leads to unmatched results for strain rate sensitive materials.
This fact is attributed to the non-scalability of strain rate effects, resulting in higher stresses in the
scaled models, stiffening their response [6]. Oshiro and Alves [5, 7] overcame this issue by distorting
the scaling laws, modifying the striker velocity to take strain rate effects into account. Later, Oshiro [8]
proposed a procedure to change the impact mass, which was explored numerically and experimentally
by Mazzariol et al [9]. This study detected that the velocity fine-tuning is critical and hard to set due
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to many experimental details. The use of constant impact mass and a corrected impact velocity [5]
adds even more complexity to the experiment setup.

The present investigation deals with scaled model behaviour where first the velocity is defined, and
only later the impact mass is calculated, respecting the relations between mass and velocity factors.
This flexibility would be a benefit when velocity must be reduced or increased as a result of the impact
rig limitations.

The behaviour of two different scaled structures is investigated when both impact mass and velocity
are modified. A velocity factor is defined while the impacted mass is analytically calculated. One
structure is a double plate, axially impacted, and the second is a simplified ship double bottom,
impacted in a cross intersection. In Section 2 details of both similarity procedures and material model
are described. The results for the double plate model are presented in Section 3, while Section 4
analyses the simplified double bottom. Discussion and main finding are presented in Section 5, with
Section 6 concluding the paper.

2 Similarity

The technique in which a structure scaled by a factor β (model) is used to infer the real size structure
(prototype) behaviour is termed similarity or similitude. This method has been extensively studied
[10, 11] and widely applied in many works [4, 12]. For impact phenomena, the main variables scaling
factors are long known and summarized in Table 1.

In order to achieve perfect similarity, the Π theorem asserts that all predominant dimensionless
numbers of the model must be equal to the corresponding prototype dimensionless numbers [13],

(Πi)m = (Πi)p (1)

with m and p referring to model and prototype.
It is also known that structures under severe dynamic loads usually do not follow scaling laws

due to effects such as material strain rate sensitivity, material failure, material thermal response and
gravity. A distorted or imperfect similarity model is defined as a model that cannot be related to the
corresponding prototype by a single geometric scaling factor [3, 7, 14, 15].

Oshiro and Alves [5] proposed a method that correct strain rate distortion effects. The initial impact
velocity is changed, compensating the yield stress increase due to strain rate, according to

βV = βq/(q−2), (2)

with β being the prototype to model length ratio, q a material parameter and, βV = Vm/Vp a ratio
between the velocities applied to the model and prototype.

Oshiro [8] proposed a modification in the impact mass, G, to correct strain rate effects, according
to

βG = β3−q, (3)

being,
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Table 1: Factors relating the model variables to the prototype

Variable Factor Variable Factor

length, L β time, t β

displacement, δ β velocity, V 1

mass, G β3 strain rate, ε̇ 1/β

strain, ε 1 acceleration, A 1/β

stress, σ 1 energy, E′ β3

force, F β2

βG =
Gm
Gp

. (4)

The material constant, q, is used in the Norton’s law

σd = σ0

(
ε̇

ε̇0

)q
(5)

to take the material strain rate sensitivity into account, being σ0 and σd the quasi-static and dynamic
flow stresses, evaluated at a reference strain rate ε̇0.

In the present study, the impact mass and velocity are changed in the following manner. An impact
mass velocity is defined considering only experimental aspects, such as maximum height of a free fall
hammer or even the maximum pressure used to initially accelerate the impact mass in a free hammer
with limited height. The following step consists in calculating the impact mass factor as function of
βV with the use of a proposed general equation.

The indirect similitude technique employed by Drazetic et al. [14] defined different dimensionless
numbers. In this study, rather than mass-length-time, the basis comprises the initial velocity, V0,
dynamic yielding stress, σd, and impact mass, G. The analysis of the main variables of the impact
phenomena lead to the dimensionless numbers [7]

Π1 =

[
A3G

V 4
0 σd

]
, Π2 =

[
t3σdV0
G

]
, Π3 =

[
δ3σd
GV 2

0

]
, Π4 =

[
ε̇G1/3

(σdV0)1/3

]
and Π5 =

[
σ

σd

]
(6)

Rearranging Π3, one can obtain

(Π3)m = (Π3)p →
[
δ3mσdm

GmV0
2
m

]
=

[
δ3pσdp

GpV0
2
p

]
→
(
δm
δp

)3

.

(
σdm
σdp

)
.

(
Gp
Gm

)
.

(
Vp
Vm

)2

= 1 (7)

and defining βσ = σdm/σdp, Eq. (7) can be rewritten as
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(β)
3
. (βσ) .

(
1

βG

)
.

(
1

βV

)2

= 1 → β3βσ
βGβ2

V

= 1 → βG =
β3βσ
β2
V

(8)

following the same procedure, Π4 can be also rearranged in such a way

(Π4)m = (Π4)p →

[
ε̇mG

1/3
m

(σdmV0m)1/3

]
=

[
ε̇pG

1/3
p

(σdpV0p)1/3

]
→

(
ε̇m
ε̇p

)
.

(
Gm
Gp

)1/3

.

(
σdp
σdm

)1/3

.

(
V0p
V0m

)1/3

= 1 (9)

and using Eq. (4), from the definition of βσ and defining βε̇ = ε̇m/ε̇p, Eq. (9) can be rewritten as

(βε̇) . (βG)
1/3
.

(
1

βσ

)1/3

.

(
1

βV

)1/3

= 1 → βε̇

(
βG
βσβV

)1/3

= 1 → βε̇ =

(
βσβV
βG

)1/3

. (10)

If model and prototype are made of the same material, βσ can be expressed as

βσ =
σdm
σdp

=
σ0m

(
ε̇m
ε̇0m

)q
σ0p

(
ε̇p
ε̇0p

)q =

(
ε̇m
ε̇p

)q
= (βε̇)

q (11)

Using Eq. (10) in Eq. (11) one can find

βσ = (βε̇)
q → βσ =

((
βσβV
βG

)1/3
)q
→ βσ =

(
βV
βG

) q
3−q

(12)

Substituting Eq. (12) in Eq. (8), it is possible to define the impact mass factor as function of scaling
factor, β, velocity factor, βV , and parameter q as

βG =
β3

β2
V

βσ → βG =
β3

β2
V

(
βV
βG

) q
3−q

→ βG = β
(q−2)
V β(3−q) (13)

By noting from Eqs. (12,13) that the stress scaling factor can be written as βσ = (βV /β)
q, the

dimensionless numbers in Eq. (6) can be rewritten as a function of q, βV and β as
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Π1 =
A3G

V 4
0 σd

→ β3
AβG
β4
V βσ

= 1 → βA =
β2
V

β
, (14)

Π2 =
t3σdV0
G

→ β3
t βσβV
βG

= 1 → βt =
β

βV
, (15)

Π4 =
ε̇G1/3

(σdV0)1/3
→

βε̇β
1/3
G

(βσβV )1/3
= 1 → βε̇ =

βV
β

and (16)

Π5 =
σ

σd
→ βσ = (βε̇)

q → βσ =

(
βV
β

)q
. (17)

being βA the acceleration scaling factor and βt the time scaling factor.
As a result, after defining the geometric scaling factor, β, and the possible impact velocity (and

consequently the velocity scaling factor), βG is calculated via Eq. (13). From βG and the prototype
impact mass it is possible to calculate the model impact mass capable of correcting disparities due to
strain rate effects.

In the following sections, the models based on traditional scaling laws, with a Mass-Length-Time
basis, will be referred as MLT models. The models that applies factors defined by Eqs. (13-17) will be
termed VSG, in reference to Initial Velocity - Dynamic Yield Stress - Impact Mass G basis.

3 Double plate model

The structural configuration in Fig. 1, also called Calladine model, was extensively explored by Calla-
dine and English [16], Tam and Calladine [17] and Zhang and Yu [18]. It consists of two plates pre-bent
to form three plastic hinges (θ0) and bolted at top and bottom, struck by an impact mass G at velocity
V0. This structure was chosen due to its high strain rate sensitivity [17]. The plates compression leads
to two phases of motion described as a function of time [17]. Considering that θ remains small, strain
rate is simplified to V0/l and the first phase equation can be obtained from equilibrium forces acting
on the lateral links,

V0 −
Sσdt

G
= 2

(
12σdS

lm

)1/2
w2

0

l
sinh

[
2

(
12σdS

lm

)1/2

t

]
+ ċ, (18)

being c the plate shortening, S the cross section of the plate, m the mass of the plates, l the total
length (2L) and w0 the initial horizontal displacement on midspan, that corresponds to initial rotation,
i.e. w0 = L sin θ0. The first phase finishes when there is no more shortening, meaning ċ = 0, but only
the evolution of plastic hinges.

From Eq. (18) one obtains horizontal displacement, w1 and velocity, ẇ1, used to obtain θ1 and θ̇1,
which are initial conditions for the second phase of motion [18], described by

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



358 L.M. Mazzariol, R.E. Oshiro, M.A.G. Calle, R.T. Moura and M. Alves

G

V0

L

L

M2

M1

M1

θ
0
θ
0

θ
0
θ
0

Figure 1: Calladine structure

θ̈1 +
l2(m+G)(sin(θ) cos(θ)θ̇2 + (M1 +M2)

l2 [m/3 + (m+G) sin(θ)2]
= 0. (19)

in which, M1 and M2 are bending moments (Fig. 1) given by Oshiro and Alves [5]

M1 =
M0K

σ0(q + 2)2q−1

(
θ̇

4

)q
and (20)

M2 =
M0K

σ0(q + 2)2q−1

(
θ̇

2

)q
, (21)

being M0 = σ0bh
2/4, K = σ0/ε̇

q; b, the plate width and h, the plate thickness.

3.1 Results

The numerical solutions of Eqs. (18,19) for L=50mm, b=h=5mm, θ0=1.07◦, G=4.08 kg, β=0.1,
V0 =7m/s, q=0.077, σ0 =2.35 × 108 Pa, ε̇0 = 1.0 × 10−3 1/s and ρ = 7800 kg/m3 [5], are depicted
in Fig. 2(a), showing the corrected θ as function of dimensionless time. This correction is made for
comparison purposes, and consists in multiplying time and displacement by factors from Table 1 for
the MLT model and, for VSG models, multiplying the displacement by β (defined above) and the
time by βt, evaluated with Eq. (15) for nine different βV . It is worthy to state that both prototype
and velocity-only correction model (VSG-V) θ dimensionless time curves are coincident.

Fig. 2(b) describes discrepancy between the prototype and the corrected final rotation angle θ. For
velocity factors between 0.3 and 2.0, the applied correction gives results with smaller error than the
MLT model.
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Figure 2: Calladine Model results

4 Double bottom

Ship collisions and ways to mitigate the consequences of these events have been studied and discussed
by many authors [19–21]. Despite of the high cost involved, there were several large-scale tests provid-
ing important information for further analysis [22–25]. The inherent difficulty and costs lead studies to
be ran in reduced models, many as quasi-static indentation [26, 27], some under dynamic load [28–30]
and fewer using similarity to correlate model to prototype focusing on hydrodynamic effects [31] and
internal mechanics on simplified structures [9]. Even though the list of publications in this area is
quite extensive the correlation between a scaled model and prototype, both under dynamic load, is
still a challenge.

This second example consists in a double bottom structure impacted transversely by a dropping
mass, numerically, for a range of velocities. The calculated striker mass is capable of correcting the
strain rate effects for each of many impact velocities. Concerning the prototype geometry, the simplified
double bottom was designed with 30mm-thick sheets (sketch in Fig. 3(b)) and the striker designed
as similar as possible to a simplified bulbous bow with 2000mm cylinder diameter and conical lower
part with apex angle of 45◦ fit in a 600mm radius sphere nose. All finite element meshes were created
using Altair Hypermesh 9.0.

The simulation was solved using LS-Dyna 971 R4.2.1 for velocity factors between 0.5 and 4.0
(described in details in Table 2) and respective calculated model impact mass (Fig. 3(a)) for the
defined 800 ton prototype impact mass. For modelling the double bottom, it was used a 8-node Thick
Shell Brick elements with 3 integration points through thickness and two elements through thickness in
main cross area. The shell mesh refinement, required to well capture the buckling phenomena, resulted
in an element size much smaller than the thickness, which was avoided. Between the two remaining
element types, solid or thick shell, the later one was chosen based on the much smaller computational
cost. Striker was modelled with solid elements.
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Figure 3: Double bottom general specification

Table 2: Summary of simulations for double bottom

Model
Scaling
factor β

Impact
Mass [g]

Initial
Velocity
[m/s]

Velocity
Factor
βV

Energy ×
10[kJ]

Prototype 1 8.00× 108 5.00 - 1.0× 106

MLT 0.01 8.00× 102 5.00 1.0 1.000

VSG-V 0.01 8.00× 102 5.50 1.10 1.209

VSG-G 0.01 9.64× 102 5.00 1.0 1.205

βV = 0.5 0.01 3.75× 104 2.50 0.5 1.171

βV = 1.5 0.01 4.36× 102 7.50 1.5 1.225

βV = 2.0 0.01 2.48× 102 2.50 2.0 1.239

βV = 2.5 0.01 1.60× 102 12.5 2.5 1.250

βV = 3.0 0.01 1.12× 102 15.0 3.0 1.260

βV = 3.5 0.01 8.76× 101 17.5 3.5 1.268

βV = 4.0 0.01 6.37× 101 20.0 4.0 1.275
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Concerning the representation of the material behaviour response, the impact mass was assumed to
be rigid (MAT 020) and for the double bottom it was chosen a model that uses powerlaws to describe
both hardening law and strain rate dependency, similar to Norton material model, Eq. (5). Among
many material model options in LS-Dyna 971 R.4.2.1, the most suitable one is MAT 064, described
as

σ = kεmε̇q, (22)

with the parameters listed in Table 3.

Table 3: Material properties for Finite Element Modelling

Material ρ [ton/mm3] E [GPa] ν [-] k [MPa/sq] m [-] q [-]

1006 Steel 7.85× 10−9 6.63 ×102 0.3 680 0.206 0.0405

4.1 Results

Figure 5(a) shows the deformed mesh at the end of the simulation, defined by the striker reaching
its maximum displacement. In order to compare the results from both scaling methods, the results
must be multiplied by scaling factors following the same procedure used in Section 3. However, in
this second example, the force is the main variable and, for VSG models, its scaling factor can be
defined as the product of βG = β

(q−2)
V β(3−q) and βA = β2

V /β (Eqs. 13 and 14 respectively), resulting
in βForce = βqV β

2−q. The application of this procedure for each case described in Table 2 is shown in
Fig. 4. Moreover, Fig. 5(b) plots the model deviations in reference to prototype.

5 Discussion

The examples here presented that the proposed procedure provides excellent results, extending the
results shown in [5] to a more general formulation that takes into account the real limitations of
experimental testing, bringing the methodology to a more practical use. However, this methodology
has some limitations.

The similarity technique does not distinguish variables with same dimensions. Hence, mass scaling
factor is applied to both impact mass and structure mass, but the correction is applied only to the
impact mass. For impact mass, G, much greater than the structure mass, m, the inherent errors are
negligible. This fact can be verified in both examples by observing that high βV values implies in
low βG values. Consequently, the impact and structure masses are similar, reducing drastically the
inertia forces and increasing the results discrepancies. This is shown in Figs. 2(a) and 2(b), in which
the errors increase monotonically for βV within an optimal interval. For the Calladine example, this
almost symmetric interval is centred on βV = 1.09 (VSG-V, exact solution), although any βV chosen
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Figure 4: Simulation results for force actuating on striker per displacement

between 0.3 and 2.0 provides better correlation results than MLT model. For the double bottom
example, same stiffer behaviour is shown in Fig. 5(b).

A second limitation of the present study arises from the fact that there is no distinction between
elastic and plastic stresses. This is why the results for the Calladine model, that uses analytic solution
with a rigid-plastic material, are better (exact for VSG-V) than in the double bottom example, in
which the material model considers also the elastic regime.
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Figure 6: Different buckling modes for double bottom
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When creating scaled models with factors as small as 0.01, tiny geometric imperfections can influence
the results, since they would represent large deviations from the prototype. Moreover, model and
prototype material will have different properties.

It is very important to assure that similar buckling modes are obtained. The buckling pattern for
models βV = 0.5 and βV = 2.5 (Fig. 6) were not exactly similar to the reference, leading to different
results. For example, βV = 2.5 model had a higher maximum force than βV = 3.0 and almost the
same maximum displacement.

This study is also a further step on scaling models made of different materials. If βG is function
of material properties, then one is able to calculate the appropriate V0. For example, if the scaled
model (β = 0.01) is made of aluminium, and q = 0.04 (same as steel, hypothetically), the velocity
factor would be βV = (((2.7/7.85) ∗ β3)(3−q)/β(3−q)))1/(q−2) = 1.896 and the errors of not correcting
the model mass would not occur. One problem is that the parameter q is not the same for steel and
aluminium. Hence, further development must be made in order to allow the scaling correction for even
more general cases.

6 Conclusions

This paper presented a different approach for scaling of structures subjected to impact load. Via
simulations of scaled models in addition to similarity laws, it was shown that the behaviour of a real-
scale structure can be predicted while overcoming real experiment limitations. This is made by altering
both the initial velocity and impact mass, without further information on the structure response. In
order to calculate the correction of impacted mass one need: material parameter, q; the scale factor,
β, and the relation between desired velocity and real one, βV .

Even though the present method does not contemplate the strain hardening and the material elastic
portion, reasonable results could be achieved if velocity factors are not far from the unity, reducing
the mass scaling factor disparities. It is important to remind that buckling modes of both prototype
and scaled structure must be similar so to allow the use of similarity laws. This study also brought
concepts for future development of scaling of structures made of different materials.
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Abstract

Non-proportional (NP) multiaxial fatigue life predictions require the calculation of equivalent stress or strain
ranges associated with the history path. A traditional way to find such ranges is to use spherical, ellipsoidal
or prismatic hull methods, which search for enclosures of the entire history path in stress or strain diagrams.
In this work, all existing hull methods are presented and compared using results from more than 3,000,000
placeMonte Carlo simulations of random and especially chosen path topologies in stress or strain diagrams.
New models are also proposed, based on Deperrois’ idea of longest chords. It is found that the proposed models
are very similar to the Maximum Prismatic Hull model, but with a much simpler and efficient algorithm to
compute equivalent stresses. It is also shown that the Minimum Circumscribed Ellipsoid, Minimum Volume
Ellipsoid, and Minimum Ball methods may result in very poor predictions of the stress or strain amplitudes.
The only recommended method based on ellipsoids is the Minimum F-norm Ellipsoid which, together with the
Maximum Prismatic Hull model and its variations, is efficient to predict equivalent amplitudes in NP histories.

Keywords: multiaxial fatigue, equivalent stress, convex hull.

1 Introduction

Multiaxial fatigue damage models are based on stress or strain ranges. It is not difficult to define these
ranges for constant amplitude loadings, where only two stress or strain states need to be considered,
one associated with the peak and the other with the valley. However, for multiaxial variable amplitude
(VA) loadings, in special when the history is non-proportional (NP), it is not clear how these ranges
should be defined and identified.

Consider that the periodic history is formed by repeatedly following a given loading path domain
D, where D contains all points from the stress or strain variations along one period of the history.
For a complex-shaped history, it is not easy to decide how to obtain the effective maximum strain
range ∆τmax associated with D. The so-called convex hull methods [1–5] try to find circles, ellipses or
rectangles that contain the entire path (in the 2D case). In a nutshell, in the 2D case, the Minimum
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Ball (MB) method [1] searches for the circle with minimum radius that contains D; the minimum
ellipse methods [2–4] search for an ellipse with semi-axes a and b that contains D with minimum area
π.a.b or minimum norm (a2+b2)1/2; and the maximum prismatic hull methods [3, 5] search among the
smallest rectangles that contain D the one with maximum area or maximum diagonal (it’s a max-min
search problem). The value of ∆τmax in Fig. 1 would either be assumed as the value of the circle
diameter, or twice the ellipse norm, or the rectangle diagonal. If the history path were represented in
a shear strain γB× shear strain γB2 diagram, these exact same methods would result in estimates for
the effective maximum shear strain range ∆γmax.

The convex hull methods can also be applied to traction-torsion histories, if a σx×τxy
√
3 diagram is

considered. The effective range in this case is the Mises stress range ∆σMises. Similarly, for traction-
torsion histories where plastic strains dominate, a strain diagram εx × γxy/

√
3 can be used to predict

an effective Mises strain range ∆εMises.
Such convex hull methods can be extended to histories involving more than two stress or strain

components. E.g., if the history path is plotted in a 3D diagram representing 3 stress or strain com-
ponents, the convex hull methods will search for spheres, ellipsoids or rectangular prisms. For higher
dimension diagrams, the search is for hyperspheres, hyperellipsoids, and rectangular hyperprisms.

Figure 1: Stress history path D in a shear stress τB × shear stress τB2 diagram, enclosed in convex
hulls based on circles (balls), ellipses and rectangular prisms.
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The convex hull methods are described in detail in the following sections. Their framework is based
on deviatoric stress (or strain) diagrams and Mises stress (or strain) parameters, which are discussed
next.

2 Mises stress and strain parameters

The methods to obtain effective (or equivalent) stress and strain ranges usually make use of stress and
strain parameters based on the Mises yield function. For linear elastic histories, both Mises effective
stress σMises and Mises (or octahedral) shear stress τMises can be used as auxiliary parameters, where

σMises =
3√
2
τMises =

1√
2

√
(σx − σy)2 + (σy − σz)2 + (σx − σz)2 + 6(τ2xy + τ2yz + τ2xz) (1)

Since the Mises stress σMises (as well as the octahedral shear stress τMises) equation is always
positive, a Mises stress range ∆σMises (also known as relative Mises stress σRMises) should be used
to correctly evaluate the variation of σMises due to a change (∆σx, ∆σy , ∆σz , ∆τxy, ∆τxz , ∆τyz) in
the stress components along some loading path D:

∆σMises = σRMises =

√
(∆σx −∆σy)2 + (∆σx −∆σz)2 + (∆σy −∆σz)2 + 6(∆τ2xy +∆τ2xz +∆τ2yz)

√
2

(2)
Note that the Mises stress range correlates with the octahedral shear range parameter ∆τMises,

used in both Sines and Crossland models, through ∆σMises = ∆τMises . 3/
√

2.
The Mises effective strain εMises is another useful quantity in VA-NP histories, in special to deal

with plastic strains. It uses the mean or effective Poisson coefficient ν̄ = (0.5εpl + νelεel)/(εpl + εel) to
include plastic effects, where εel and εpl are the elastic and plastic components of the strains, and νel
and νpl are the elastic and plastic Poisson coefficients (where νpl = 0.5). The Mises strain correlates
with the octahedral (or Mises) shear strain γMises, which is the combination of both shear strains
that act in each of the octahedral planes, through

εMises =
3

2
√
2 · (1 + ν̄)

γMises =

√
(εx − εy)2 + (εx − εz)2 + (εy − εz)2 + 1.5(γ2xy + γ2xz + γ2yz)

√
2 · (1 + ν̄)

(3)

Since the εMises (as well as the γMises) equation is always positive, a Mises strain range ∆εMises

(also known as the relative Mises strain εRMises) should be used to evaluate its variation due to a
change (∆εx, ∆εy , ∆εz , ∆γxy , ∆γxz , ∆γyz) in the strain components along some loading path:

∆εMises = εRMises =

√
(∆εx −∆εy)2 + (∆εx −∆εz)2 + (∆εy −∆εz)2 + 1.5(∆γ2xy +∆γ2xz +∆γ2yz)

√
2 · (1 + ν̄)

(4)
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An octahedral (or Mises) shear range parameter ∆γMises can also be defined, related to the Mises
strain range by

∆εMises =
3 ·∆γMises

2
√
2(1 + ν̄)

(5)

Note that the octahedral stress or strain shear ranges ∆τMises or ∆γMises are measured on the
octahedral planes, they are not equal to twice the shear amplitudes τa or γa acting on the considered
plane. But those shear amplitudes could be easily obtained by

τa =

√
6

4
∆τMises =

√
3

6
∆σMises and γa =

√
3

6
∆γMises =

1 + ν̄√
3

∆εMises (6)

Finally, for the linear elastic case, all these relative Mises stresses and strains correlate with the
Mises shear range parameters by

∆σMises = E ·∆εMises =
3√
2
·∆τMises =

3E

2
√
2 · (1 + ν̄)

·∆γMises (7)

3 Reduced order stress and strain spaces

When dealing with incremental plasticity, it is convenient to represent the stresses or strains in a 9-
dimensional (9D) space. In particular, when representing the deviatoric stress tensor in 9D, its norm
|S̄| becomes directly proportional to the Mises stress and octahedral (or Mises) shear stress, namely
|S̄| = σMises.

√
6/3 = τMises.

√
3. In addition, the Prandtl-Reuss flow rule results in slightly different

(and probably better) equations when formulated in 9D space than the equations derived using a
reduced 6-dimensional (6D) formulation.

But, to find effective ranges in VA-NP histories, it is a good idea to work in a space with reduced
dimensions, saving computational effort without modifying the results. The reduction from 9D to
6D deviatoric stresses is simply a matter of eliminating the τyx, τzx and τzy components from the
deviatoric stress tensor, which are redundant because τyx ≡ τxy, τzx ≡ τxz, and τzy ≡ τyz.

Since the deviatoric stresses Sx, Sy and Sz are linear-dependent, because Sx + Sy + Sz = 0, it is
possible to further reduce the deviatoric stress dimension from 6D to 5D. There are infinite ways to do
this, for example replacing the stresses Sx, Sy and Sz by new variables S1 ≡ ax1.Sx+ay1.Sy+az1.Sz and
S2 ≡ ax2.Sx+ay2.Sy+az2.Sz, where the user-defined coefficients ax1, ay1, az1,ax2, ay2 and az2 are any
values that make the vectors [ ax1 ay1 az1 ]T , [ ax2 ay2 az2 ]T , and [ 1 1 1 ]T become linear
independent. A notable example of such transformation is the one proposed by Papadopoulos et al.
[6], who chose [ ax1 ay1 az1 ]T = [

√
3/2 0 0 ]T and [ ax2 ay2 az2 ]T = [ 0 0.5 −0.5 ]T ,

resulting in a reduced-order deviatoric stress tensor S̄′ represented in a 5D transformed Euclidean
stress-space E5σ, where

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



On the use of spherical, ellipsoidal and prismatic hulls to predict stress in multiaxial fatigue 371


S̄′ ≡

[
S1 S2 S3 S4 S5

]T
S1 ≡ σx − σy

2 −
σz

2 = 3
2Sx, S2 ≡ σy−σz

2

√
3 =

Sy−Sz

2

√
3

S3 ≡ τxy
√
3, S4 ≡ τxz

√
3, S5 ≡ τyz

√
3

(8)

The above defined 5D deviatoric stress S̄′ has three very interesting properties:
1. The norm of the 5D vector S̄′ from the E5σ transformed deviatoric stress-space is equal to the

Mises equivalent stress σMises

2. The Euclidean distance in the 5D E5σ stress-space between any 2 points
S̄′
A = [ S1A S2A S3A S4A S5A ]T and S̄′

B = [ S1B S2B S3B S4B S5B ]T , respec-
tively associated with the 9D deviatoric stresses S̄A and S̄B , is equal to the Mises stress range
∆σMises between these stress states

3. The locus of the points which have the same ∆σMises with respect to a point S̄′ in the E5σ

deviatoric stress-space is the surface of a hypersphere with center in S̄′ and radius ∆σMises.
This is a simple corollary from the second property.

Note that, for unnotched specimens under histories combining uniaxial tension σx and torsion τxy,
the 5D deviatoric stress S̄′ can be represented in the classical diagram σx × τxy

√
3 using the 2D

projection [ S1 S3 ]T , since in this case S1 = σx, S3 = τxy
√
3, and S2 = S4 = S5 = 0.

After defining all involved stress and strain parameters, the convex hull methods are discussed.
These methods are based on convex hulls enclosing the history path in the above defined stress or
strain sub-spaces. There are 3 types of convex hulls: balls, ellipsoids and rectangular prisms. The
Minimum Ball method is presented next.

4 Minimum Ball method

Dang Van [1] realized that the search for an effective stress range must take place on the deviatoric
stress space. For periodic elastic histories, the mesoscopic stresses and strains in the critically oriented
grain should stabilize by the process of elastic shakedown, generating a local residual stress [σij ]res
at such critical grain. Dang Van assumed that the subsequent mesoscopic (µ) stress history at such
grain, after the stabilization, is related to the macroscopic (M) history through

[σij(t)]µ = [σij(t)]M + dev[σij ]res (9)

where dev[σij ]res is the deviatoric part of the residual stresses tensor stabilized in that grain.
The calculation of the mesoscopic stresses in Dang Van’s model can be interpreted as a hardening

problem, caused by elastic shakedown. When the periodic macroscopic history is represented in the
deviatoric space, Dang Van assumes that the stabilized residual stress is the vector from the center of
the minimum ball that circumscribes the history to the origin of the diagram. The word “ball” is used
here to describe a circle, sphere or hypersphere, respectively for 2D, 3D or higher dimension histories.
The same result holds if the reduced stress E5σ space is used, or a sub-space from it.
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The values of the mesoscopic Tresca stress τµ(t) and mesoscopic hydrostatic stress σµh(t) (which is
equal to the macroscopic hydrostatic stress) are calculated for each point in the mesoscopic history
path Dµ. Dang Van then predicts infinite life if and only if all points satisfy the inequality

τµ(t) + αDV σµh(t) ≤ βDV (10)

In summary, Dang Van is a type of Minimum Ball (MB) method where each stress state along the
history path is compared to a limiting stress level to predict infinite life. However, it is not useful to
calculate finite fatigue lives, since it does not deal with stress (or strain) ranges, only with individual
stress states.

But the same MB circumscribed to the macroscopic history can be used to estimate an effective
Mises stress range ∆σMises (or strain range ∆εMises). The diameter d of such MB in the transformed
deviatoric stress-space E5σ or strain-space E5ϵ (or in a 2D, 3D or 4D sub-space of such spaces) is the
magnitude of the variation ∆S̄′ (or the deviatoric strain variation ∆ē′), which is equal to ∆σMises (or
∆εMises). Therefore, the effective shear ranges ∆τmax (used in the Findley and McDiarmid models)
and ∆γmax (used in the Brown-Miller and Fatemi-Socie models), Mises ranges ∆σMises and ∆εMises,
and octahedral shear ranges ∆τMises (used in the Sines and Crossland models) and ∆γMises, can all
be estimated from d using the MB method by

∆σMises = 3 ·∆τMises/
√
2 = ∆τmax

√
3 = (2τa) ·

√
3 = |∆S̄′| = d ≡ L · λMB or

∆εMises = 3 · ∆γMises

2
√
2(1 + ν̄)

=
∆γmax

√
3

2(1 + ν̄)
=

(2γa) ·
√
3

2(1 + ν̄)
= |∆ē′| = d ≡ L · λMB (11)

where L is the longest chord in the history (the maximum Euclidean distance in the transformed space
between any two points along the history path, measured in either stress or strain units) and λMB is
a dimensionless parameter defined as the ratio between the Mises stress or strain range and L.

In the 2D case, if any two points from the history define the diameter of a circle that contains the
entire path, then their distance L is equal to the diameter d, therefore λMB = 1.0. A notable 2D case
is for a path forming an equilateral triangle, where λMB = 2/

√
3 ∼= 1.155. For any other 2D path, it

is found that 1.0 ≤ λMB ≤ 1.155.

5 Minimum Ellipsoid methods

The Minimum Ball (MB) method is not efficient to represent the behavior of NP histories. For instance,
it would predict the same Mises ranges for a NP 90◦ out-of-phase circular path and a proportional
path defined by a diameter of this circle, both resulting in λMB = 1.0. But a higher value of λMB

would certainly be expected for the NP history.
To solve this problem, Freitas et al. [2] proposed the Minimum Circumscribed Ellipsoid (MCE)

method. It searches for an ellipse (or ellipsoid or hyperellipsoid, for higher dimensions) that circum-
scribes the entire history, with its longest semi-axis a1 equal to the radius of the minimum ball, and
with the smallest possible values for the remaining semi-axes ai (i > 1). The Mises ranges are
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∆σMises or ∆εMises = 2 ·

√√√√dim∑
i=1

a2i ≡ 2 · F (12)

where dim is the dimension of the history path, 2 ≤ dim ≤ 5, and F is defined as the Frobenius norm
of the ellipsoid, which is equal to the square root of the sum of the squares of the ellipsoid semi-axes.
Here, the Frobenius norm is essentially an Euclidean distance (or Euclidean norm) between the origin
and a point with coordinates (a1, a2, . . . , adim), since the axes of the reduced stress (or strain) space
are orthonormal. In the case of tensors, the Euclidean norm is commonly called the Frobenius norm,
usually abbreviated as F-norm.

The ratio λMCE between the Mises ranges calculated by the MCE method and the longest chord
L reproduces experimental data better than λMB generated by the MB method. In the 2D case, a
NP circular path would result in λMCE =

√
2 instead of the proportional value 1.0, which is much

more reasonable than the Minimum Ball prediction. It is also found that any 2D path results in
1.0 ≤ λMCE ≤

√
2, with the maximum value occurring e.g. for circular and square paths. In general,

for any dimension dim, it is found that 1.0 ≤ λMCE ≤
√
dim, with the maximum value

√
dim occurring

e.g. for paths that follow the edges of hypercubes or large portions of the surface of hyperspheres.
The downside of the MCE method is the requirement that the longest semi-axis must be equal to

the radius of the Minimum Ball. For the rectangular path shown in Fig. 4, this requirement results
in a circle as the minimum circumscribed ellipse, with λMCE =

√
2 ∼= 1.414. But this would be true

even for very elongated rectangles with very low aspect ratios between their side lengths. The MCE
would thus predict λMCE =

√
2 for an almost proportional rectangular path, instead of the expected

value of 1.0.
A possible alternative to the MCE method is to search for the Minimum Volume Ellipsoid (MVE),

also known as the Löwner-John Ellipsoid. In the 2D case, it is basically the search for an enclosing
ellipse with minimum area. Such MVE method solves the issue with rectangular paths, however it
tends to find ellipses with lower aspect ratios than expected. In addition, the search for such ellipsoid
or hyperellipsoid can be computationally intensive for 3D or higher dimension histories.

Another alternative to the MCE method is the search for the Minimum F-norm Ellipsoid (MFE)
[3]. Instead of searching for the minimum volume (or area), the MFE looks for the ellipse, ellipsoid, or
hyperellipsoid with minimum value of its F-norm F, defined in Eq. (12). Zouain et al. [4] present an
efficient (although computationally intensive) method to numerically find such MFE. Other efficient
algorithms can be found in [7].

The ratios between the Mises stress or strain ranges 2.F , calculated from the MCE, MVE and MFE
methods, and the longest chord L are defined, respectively, as λMCE , λMVE and λMFE . All these
ratios must be greater than or equal to 1.0. In the 2D case, a notable path is the one with the shape
of an equilateral triangle with sides L (which are also its longest chords), where the resulting hull is
a circle with diameter d = 2L/

√
3 and F-norm F = d

√
2, resulting in λMCE = λMVE = λMFE =

2.F/L = 2
√
2/
√
3 ∼= 1.633. For any other 2D path, it is found that 1.0 ≤ λMCE ≤ 1.633 and 1.0 ≤

λMFE ≤ 1.633, however λMVE can reach values beyond 2.0 when a very elongated enclosing ellipse is
the solution with minimum area, an indication that the MVE method can be very conservative.
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6 Maximum Prismatic Hull methods

Another class of convex hull methods tries to find a rectangular prism with sides 2a1, . . . , 2adim that
encloses a load history path, where dim is the dimension of the considered space. There are essentially
4 methods to fit rectangular prisms to the history path.

The first is the Maximum Prismatic Hull (MPH). This method searches for the smallest rectangular
prism that encloses the history (the minimum prism), for each possible orientation of the prism. Among
them, the one with highest F-norm is chosen. The F-norm and resulting Mises ranges are the same
defined in Eq. (12), except that here ai are the semi-lengths (half the length) of the sides of the
rectangular prism. The MPH was originally proposed by Gonçalves et al. in [3] for sinusoidal time
histories, and later extended by Mamiya et al. in [5] for a general NP loading.

Another prismatic hull method is the Maximum Volume Prismatic Hull (MVPH), which searches
among the minimum prisms the one with maximum volume. Although the search is for a maximum
volume, the F-norm is also used to compute the Mises range. In the 2D case, the MVPH method is
essentially the search, among the minimum rectangles that enclose the entire path, of the one with
maximum area (it’s a max-min problem).

A third method is proposed here, called the Maximum Prismatic Hull with Longest Chords (MPHLC).
It is basically an improvement of Deperrois’ method [8]. In the Deperrois method, the longest chord
L5 between any two points of the path in the projected 5D deviatoric stress-space E5σ (or deviatoric
strain-space E5ϵ, for strain histories) is determined. Then, the path is projected onto a 4D stress-
subspace E4σ orthogonal to L5, and the new longest chord L4 is computed in this subspace. The path
is then projected onto a stress-subspace E3σ orthogonal to both L5 and L4, and the new longest chord
L3 is computed in this subspace. Analogously, the longest chord L2 is found in the stress-subspace
E2σ orthogonal to L5, L4 and L3. Finally, the longest chord L1 is found in the stress-subspace E1σ

orthogonal to L5, L4, L3 and L2.
The Deperrois method provides satisfactory results [9]. However, Papadopoulos [6] criticizes it

because, if any longest chord is non-unique, then different rectangular prisms and resulting shear
amplitudes could be obtained for the same history. But this non-uniqueness could be easily solved
by stating that, when the longest chords are non-unique, then the chosen prismatic hull would be
the one with maximum F-norm among all possible results. The use of rectangular prisms with max-
imum F-norm has shown good results in the MPH method, therefore this could be the solution to
Papadopoulos’ criticisms.

The combination of the MPH and Deperrois’ methods thus leads to the MPHLC method, performed
in 4 steps:

1. define the longest side 2a1 of the rectangular prism in the direction of the longest chord L of the
history;

2. project the history into the sub-space orthogonal to the directions of all sides of the prisms that
have already been defined (for a history with dimension dim, if m sides have already been chosen,
then such sub-space will have dim−m dimensions);

3. define the next side 2ai of the rectangular prism in the direction of the longest chord measured
in the projected sub-space, and repeat step 2 until all sides are found;
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4. if multiple solutions for the rectangular prism are found, the one with maximum F-norm is
chosen – this step addresses Papadopoulos’ criticisms [6].

The advantage of the MPHLC method over the MPH or MVPH is that it does not require a
numerical search for the prismatic hull orientation. Its orientation is deterministically defined by the
longest chords. In special for 3D or higher dimension histories, the MPHLC method can lead to a
huge decrease in computational effort. For instance, the orientation of a 5D hyperprism is given by
10 angles, therefore the search for the orientation associated with maximum F-norm (or maximum
volume) involves a search in a 10-dimensional space, which can be very costly. In addition, the next
sections will show that the MPHLC predictions give almost the same results as the MPH and MVPH
methods.

A variation of the MPHLC is also proposed, called the Maximum Prismatic Hull with Container
Chords (MPHCC). It is similar to the MPHLC, but all chords that contain the orthogonal projection
of the entire history onto them (called here “container chords”) are considered as candidate directions
for the sides of the rectangular prism. Note that every longest chord LC is a “container chord” CC,
but not every CC is a LC. From the probable multiple solutions for the resulting rectangular prisms,
the one with maximum F-norm is chosen.

The ratios between the Mises stress or strain ranges 2.F , calculated from the MPH, MVPH, MPHLC
and MPHCC methods, and the longest chord L are defined, respectively, as λMPH , λMV PH , λMPHLC

and λMPHCC . All these four ratios are, in average, very close to each other, therefore any of the four
variations of the prismatic hull methods could be used interchangeably. For a history path with
dimension dim, it is found that 1 ≤ λMPHLC ≤ λMPHCC ≤ λMPH ≤

√
dim, therefore the MPHCC

results in Mises ratios slightly closer to the MPH predictions than the MPHLC. In addition, it is also
found that 1 ≤ λMV PH ≤ λMPH ≤

√
dim.

In the next section, all convex hull methods presented in this paper are evaluated and compared.

7 Comparison among the Convex Hull methods

To compare all convex hull methods, it is necessary to study all possible history path topologies in
2D, 3D, 4D and 5D deviatoric stress or strain spaces. placeMonte Carlo simulations are performed
for 3.106 random 2D history paths, in addition to a few selected paths to try to cover all possible
path topologies. All convex hull methods are applied to each of these simulated paths, to evaluate and
compare the λ predictions.

Figure 2 compares the λ ratios estimated from the MPH and MPHCC methods, for the 3.106

Monte Carlo simulations. The point (λMPH , λMPHCC) = (1, 1) in the graph denotes a proportional
path, while the point (

√
2,
√
2) is obtained for rectangular or circular paths. The “belly” in the graph

under the straight line λMPHCC = λMPH shows that the MPHCC tends to underestimate λ when
compared to the MPH, as expected. However, the points located in this “belly” are quite rare: for 2D
paths, in average, λMPHCC is about 98% of λMPH , with a standard deviation of only 2%. And, even
for the rare paths where the (λMPH , λMPHCC ) points are located in such “belly,” λMPHCC never
underestimates λMPH by more than 10%. In addition, the MPHLC and MPHCC usually give almost
identical results, with λMPHLC being in average about 99.85% of λMPHCC , with a standard deviation
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of only 0.9% for these 3.106 simulations.
The Monte Carlo simulations are now used to compare the other convex hull methods. Figure 3

shows that the MPH and MVPH have a very good agreement, except for low values of λ. In addition,
λMV PH ≤ λMPH and, in average, λMV PH is about 98.6% of λMPH , with a standard deviation of only
1.8%. Similar conclusions are found for 3D, 4D and 5D histories.

Figure 2: Comparison between the λ ratios predicted by the MPH and MPHCC methods for 3.106

Monte-Carlo simulations with random 2D history paths.

Figure 3: Comparison between the λ ratios predicted by the MPH and MVPH methods for 3.106

Monte-Carlo simulations with random 2D history paths.
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Figure 4 compares the MPH and MFE methods in 2D. Even though these methods seem coherent in
the graph, they can lead to very different λ predictions. It is found that λMFE ≥ λMPH and, in average,
λMPH is about 92.9% of λMFE , with a standard deviation of 4.3%. Similar conclusions are found for
3D, 4D and 5D histories. Note that the point (λMPH , λMFE) = (0.5 +

√
3/2 ∼= 1.366, 2

√
2/
√
3 ∼= 1.633)

in the graph denotes the (extreme) case of a path with the shape of an equilateral triangle. This
significant difference between λ predictions suggests that a path shaped like an equilateral triangle
would provide a very good discriminant experiment to compare the adequacy of the MPH and MFE
methods for a certain material.

Figure 4: Comparison between the λ ratios predicted by the MPH and MFE methods for 3.106 Monte-
Carlo simulations with random 2D history paths.

Figure 5 compares the MPH and MVE methods in 2D. It is easy to see from the graph that the MVE
method can severely (and wrongfully) overestimate λ, in special for low values of λMPH , associated
with almost proportional paths. As discussed before, almost proportional paths can lead to overly
elongated ellipses in the MVE method, which can have a small area but an unrealistically large F-
norm, leading to λMVE values larger than 2.0 in some extreme cases. Similar conclusions are found
for 3D, 4D and 5D histories.

Figure 6 compares the MFE and MCE methods in 2D, suggesting that λMCE overestimates λ,
in special for low values of λMFE , associated with almost proportional paths. For instance, for an
almost proportional history defined by a rectangular path with very low aspect ratio, the expected λ
would be close to 1.0 (which is the expected value of λ for proportional histories), however the MCE
method would circumscribe a circle (instead of an elongated ellipse) to such elongated rectangular
path, wrongfully predicting λMCE =

√
2. An almost proportional triangular path would also result in

this same notable point (λMFE , λMCE) = (1,
√

2) in the graph, revealing the inadequacy of the MCE
method. Similar conclusions are found for 3D, 4D and 5D histories.
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Figure 5: Comparison between the λ ratios predicted by the MPH and MVE methods for 3.106 Monte-
Carlo simulations with random 2D history paths.

Figure 6: Comparison between the λ ratios predicted by the MFE and MCE methods for 3.106 Monte-
Carlo simulations with random 2D history paths.

Figure 7 compares the MFE and MB methods in 2D. It is easy to see from the graph that the MB
method can severely (and wrongfully) underestimate λ, except for almost proportional load histories
(where λMB

∼= λMFE
∼= 1.0). Good discriminant experiments to confirm the inadequacy of the MB

method could make use of a square or circular path, where (λMFE , λMB) = (
√
2, 1), or a path shaped

as an equilateral triangle, where (λMFE , lMB) = (2
√
2/
√
3 ∼= 1.633, 2/

√
3 ∼= 1.155), see Fig. 7. Both

cases would result in λMFE/λMB =
√
2, a 41% difference that could be easily verified experimentally.

Similar conclusions are found for 3D, 4D and 5D histories.
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Figure 7: Comparison between the λ ratios predicted by the MFE and MB methods for 3.106 Monte-
Carlo simulations with random 2D history paths.

8 Conclusions

In this work, all convex hull methods from the literature were reviewed and compared, and new
methods were proposed. The conclusions from the comparisons are:

1. the prismatic hull methods MPHLC and MPHCC are very similar to the MPH and MVPH
methods, but with a much simpler search algorithm for 3D to 5D histories;

2. the only recommended ellipsoid hull is the Minimum F-norm Ellipsoid (MFE), which results in
similar (but not equal) λ predictions when compared to the prismatic hull methods; and

3. the Minimum Circumscribed Ellipsoid (MCE), Minimum Volume Ellipsoid (MVE), and Mini-
mum Ball (MB) methods may result in very poor predictions of the stress or strain amplitudes.

In summary, the Minimum F-norm Ellipsoid and all four Maximum Prismatic Hull (MPH) models
are efficient to predict equivalent amplitudes in NP histories.
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Abstract

In recent years, favored by good strength/stiffness ratio and to chemical inertness, high density polyethylene
(HDPE) has gained sustained and increasing space in civil construction, particularly for use in pipe manufac-
turing. Pipelines made of this material are laid either submersed or buried for water and gas transportation.
Owing to typical polymeric viscoelastic (time-dependent) material behavior, a proper design using these mate-
rials must account for long term effects. Linear viscoelasticity implies that creep deformation of the material
for different load levels differ only by a scale factor. However, some polymers – as HDPE – present a nonlinear
stress dependence even at very low stresses, which makes their modeling more involved. In this work, two
modeling approaches to account for nonlinear viscoelasticity are compared: the stress-time equivalence and a
new method based on the interpolation of Prony coefficients which are obtained experimentally in uniaxial
creep tests for different stress levels. In both cases, the generalized Kelvin rheological model is adopted. The
strategies are applied to HDPE samples taken from water distribution pipes. It is observed that the approach
that interpolates the Prony coefficients is simpler and provides better results in all the considered cases. A
slight modification with respect to the original formulation of the interpolation procedure is proposed in this
work, which shows better agreement with experimental results.

Keywords: nonlinear viscoelasticity, high density polyethylene, stress-time equivalence.
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1 Introduction

High Density Polyethylene (HDPE) is a semi-crystalline thermoplastic which, according to Lai [1],
exhibits a unique combination of excellent properties such as abrasion and impact resistance, out-
standing fatigue behavior and an optimum balance between stiffness, creep behavior and processabil-
ity. Owing to these properties, the use of HDPE in structural engineering applications has gained
sustained increase in last years. In particular, due to the additional feature of chemical inertness, a
growing application is the manufacture of submersed or buried large-diameter pipes for water and oil
distribution [2, 3]. Figure 1 shows the laying of a submersed water pipeline for distribution of fresh
water in the coast of São Francisco do Sul, Santa Catarina, Brazil [4].

Figure 1: Use of HDPE for submersed water distribution pipes.

Polymers exhibit viscoelastic (and possibly viscoplastic) material behavior, and so, their constitutive
relation is a function of time. Two time scales can be considered in this context: the first one refers
to chronological time, which can be measured in a clock; and the second one is a material intrinsic
time, which can be determined via a relaxation test and is influenced by different factors such as
temperature, damage, stress and strain levels, etc [5].

Viscoelastic and viscoplastic behavior can be linear or nonlinear, and usually a given material will
behave either linearly or nonlinearly depending on the stress level. Although not a unanimous opin-
ion, HDPE is generally considered to exhibit a nonlinear viscoelastic behavior up to nearly vanishing
stresses [6]. Some researchers even hold that for these materials there is no threshold under which
the viscolastic behavior is linear. This statement has been questioned, for instance by Elleuch and
Taktak [7], who found a linear viscoelastic behavior for HDPE in both tensile and compressive creep
tests in the range of 3 to 10 MPa. In fact, a correlation between linear-nonlinear viscoelastic behavior
and temperature is presented by Papanicolau et al. [8]. If experimental evidence leads to nonlinear
viscoelastic behavior in the full stress range at a given temperature for HDPE, the Boltzmann super-
position principle cannot be used to determine strains, and a different strategy must be sought for.
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Many theories exist for this purpose, but all of them bring practical difficulties. Among the possibilities
described in the literature, the Schapery model [9] is the most frequently employed. Nonetheless, two
methods which seem to be simpler to use in practice are studied in this work. These methods are the
stress-time equivalence [5, 6, 10–14] and a procedure based on interpolation of rheological properties
proposed by Liu et al. [3]. It is noteworthy that the former is many times used in conjunction with
the Schapery model, but in the present study a different approach will be discussed.

2 Linear and nonlinear viscoelasticity modeling

2.1 Linear viscoelasticity

In linear viscoelasticity, for given constant constitutive parameters, the material response depends
only on time and the Boltzmann superposition principle can be applied. Linear viscoelastic models
can be expressed either in differential or integral forms. While an integral representation of the time-
dependent stress is given by

σ(t) =

∫ t

0

D(t− τ) .ε(τ)dτ, (1)

the analogous integral representation for time-dependent strain is given by

ε(t) =

∫ t

0

J(t− τ) .σ(τ)dτ (2)

where D (t) is a stress-relaxation function and J (t) is a creep-compliance function, both known in
advance. Since linear viscoelastic material properties are ideally independent of experimental tests,
Eqs. (1) and (2) completely define the material response.

Phenomenological modeling requires macroscopic evaluation of the stress-relaxation and creep-
complliance functions. In the latter, stress is kept constant and strain is monitored in time. Hence,
Eq. (2) becomes

ε(t) = σC J(t) (3)

Material modeling aims to find the creep-compliance function J(t) which best matches experimental
tests. In order to represent the creep-compliance, different rheological models can be used. The present
work adopts the generalized Kelvin model, which consists of a spring and a series of dashpots and
springs in parallel, as displayed in Fig. 2. The inclusion of the spring sometimes is emphasized by
naming the model as generalized Voigt-Kelvin solid model [15].

The material properties are the spring (E0, Ei) and dashpot (ηi) coefficients in the Kelvin arrange-
ment. From these, the relaxation time (τi = ηi/Ei) can be defined. Each lower index i corresponds to
a rheological block.

When subjected to a constant unit stress state during a finite time interval, linear viscoelastic
materials show an instantaneous elastic strain, followed by a viscous strain which grows along time.
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Figure 2: Generalized Kelvin viscoelastic model.

This behavior is represented by the Kelvin model in Fig. 2 and the corresponding exponential equation,
in terms of a Prony series is given by

J(t) = Je + Jv(t) =
1

E0
+

nrb∑
i=1

1

Ei

(
1− e−

t
τi

)
(4)

where Je represents the instantaneous elastic component, Jv(t) represents the time-dependent vis-
coelastic effects and nrb stands for the number of rheological blocks adopted. No attempt is made here
to evaluate and/or model the presence of permanent strain. The material constants are the elasticity
E0, which defines the instantaneous response and the moduli Ei, which correspond to the relaxation
time τi. When the compliance functions are independent of the stress level, the model given by Eq.
(4) is linear [3].

2.2 Nonlinear viscoelasticity

Several polymeric materials, such as HDPE, exhibit simultaneous dependence on stress and time for a
given temperature. In these cases, a single compliance curve does not suffice to describe the material
behavior. In creep tests, for each stress level a different compliance curve is found and so, different
material parameters must be identified (see Fig. 3).

Equation (4) can be adapted for the nonlinear case as

J(σ, t) = Je(σ) + Jv(σ, t) =
1

E0(σ)
+

nrb∑
i=1

1

Ei(σ)

(
1− e−

t
τi(σ)

)
(5)

where E0(σ) and Ei(σ) are stress dependent functions, which must be appropriately found for a
successful modeling. Then, the nonlinear constitutive response is given by replacement of Eq. (5) in
Eq. (2), yielding

ε(t) =

∫ t

0

{J(σ, t− τ)} .σ(τ)dτ (6)

2.2.1 Interpolation of rheological properties

Liu et al. [3] proposed a simple procedure to account for the nonlinear dependence of the creep-
compliance on stress. The procedure can be summarized in the following steps:
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(a) (b)

Figure 3: Linear and nonlinear viscoelasticity. (a) Strain and (b) creep-compliance curves for different
stress levels: the behavior associated to σ1 characterizes nonlinear viscoelasticity.

1. Step 1: Creep tests are conducted for different stress levels (σ1, . . . , σn);
2. Step 2: For each stress level a set of material parameters (E0, Ei, τi, i = 1, nnrb) is obtained using

Eq. (5) and least-squares fitting (the same number of parameters must be considered for each
stress level);

3. Step 3: The compliance curve at any arbitrary stress state is obtained by Eq. (5) in which the
material parameters are obtained via linear interpolation based on the values found in Step 2.

In step 2, a finite number of rheological blocks must be adopted. In his work, Liu considered
three rheological blocks to be enough in order to obtain acceptable errors for engineering purposes.
He proposed to evaluate the material parameters for intermediate stresses using the following linear
interpolation

Ji(σ) =
1

Ei(σ)
= Ji(σm) +

σ − σm
σn − σm

[Ji(σn)− Ji(σm)] (7)

where Ji = 1/Ei ; σm and σn are the stresses corresponding to step 1, such that σm < σ < σn.
The use of a reciprocal variable simplifies the least-squares fitting in step 2, leading to a linear

programming problem. The static stiffness (instantaneous response) E0(σ), is interpolated directly by

E0(σ) = E0(σm) +
σ − σm
σn − σm

[E0(σn)− E0(σm)] (8)

Since linear interpolation of the reciprocals might lead to substantial error, as depicted in Fig. 4,
this work introduces a slight modification to the interpolation in Eq. (7). The least-squares fitting is
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performed in terms of compliance coefficients, but these are inverted before executing the interpolation.
Hence, the following expression is proposed:

Ei(σ) = Ei(σm) +
σ − σm
σn − σm

[Ei(σn)− Ei(σm)] (9)

Although the proposed procedure results in enhanced accuracy, it has the disadvantage that if the
nonlinear fit leads to Ji = 0, the inverse is infinity and cannot be interpolated. Thus, this situation
must be avoided.

Figure 4: Interpolation of material properties.

2.2.2 Temperature-stress-time equivalence

The principle of stress – temperature – time equivalence is based on the theory of free volume.
According to Riande et al. [16], the free volume is the space in a solid or liquid which is not occupied
by the molecules (intermolecular space). Within this theory, the material viscosity, η, can be defined
by the free volume fraction (f) through Doolittle’s equation:

η = AeB/f (10)

where A and B are material constants.
The dependence of the fraction of free volume on a temperature change is widely considered to be

linear, and given by
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f = f0 + αT (T − T0) (11)

where αT is the thermal expansion coefficient of the free volume’s fraction and f0 is the fraction of
free volume at the reference temperature. A time-temperature shift factor can be defined by φT =

τ/τ0 = η/η0, where η0 and τ0 are the viscosity of the material and the relaxation time at a reference
temperature T0; and η and τ are the viscosity of the material and the relaxation time in an arbitrary
temperature T [5], so that

logφT =
B

2.303

(
1

f
− 1

f0

)
(12)

Replacing Eq. (11) in (12), results in the William-Landel-Ferry (WLF) equation [12, 16]

logφT = − B

2.303

(
T − T0

f0/αT + T − T0

)
=
−C1(T − T0)
C2 + (T − T0)

(13)

where C1 = B/(2.303f0) and C2 = f0/αT .
Based on a similar reasoning, Bernstein and Shokooh [11] proposed the concept of “stress-clock” or

stress-time equivalence. In this theory, it is assumed that just as the relaxation time is affected by
temperature, it is also affected by the applied stress level, which modifies the free volume fraction.
Considering the influence of both, temperature and stress on the free volume fraction, Eq. (11) can
be modified to [5]

f = f0 + αT (T − T0) + ασ(σ − σ0) (14)

where ασ is the stress-induced expansion coefficient of the free volume fraction. Supposing that there
exists a shift factor φTσ, which combines stress and temperature effects and satisfies

η(T, σ) = η(T0, σ0)φTσ (15)

It comes from Eq. (10) and (14) that

logφTσ = −C1

[
C3(T − T0) + C2(σ − σ0)

C2C3 + C3(T − T0) + C2(σ − σ0)

]
(16)

where C3 = f0/ασ.
If there is no change in stress, Eq. (16) reduces to Eq. (13). A stress shift factor at constant

temperature, and a temperature shift factor at constant stress are defined as φTσ and φσT , respectively.
These shift factors result from

η(T, σ) = η(T, σ0)φ
T
σ = η(T0, σ0)φ

σ0

T φ
T
σ = η(T0, σ)φ

σ
T = η(T0, σ0)φ

T0
σ φ

σ
T (17)

so that
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logφTσ = −C1
C2

C2 + (T − T0)

[
C2(σ − σ0)

C2C3 + C3(T − T0) + C2(σ − σ0)

]
(18)

logφσT = −C1
C3

C3 + (σ − σ0)

[
C3(T − T0)

C2C3 + C3(T − T0) + C2(σ − σ0)

]
(19)

From Eq. (14) and (16), it follows that

φTσ = φσ0

T φ
T
σ = φT0

σ φ
σ
T (20)

It must be emphasized that temperature and stress shifts are only allowed for thermorheologically
and piezorheologically simple materials, respectively [17]. Provided these conditions are satisfied, it is
shown from Eq.(20) that time-dependent mechanical properties of viscoelastic materials at different
temperatures and stress levels can be shifted along the time scale to construct a master curve, valid
in a wider time scale, at a given temperature T0 and stress σ0. This shifting can be performed in
one step by the application of the combined stress-temperature shift factor φTσ, or in two steps by
the sequential application of the stress and the temperature shift factors φTσ and φσT [5]. HDPE is a
semi-crystalline polymer, and thus not thermorheologically simple, so time-temperature equivalence
cannot be applied. However, successful application of the stress-time equivalence has been reported in
some references [5, 6].

Defining φσ as the stress shift factor at reference temperature T0,

logφσ = − C1(σ − σ0)
C3 + (σ − σ0)

(21)

the creep-compliance curves at different stress levels can be related by the concept of reduced time
ξ (ξ = t/φσ) as

J(t, σ) = bσJ(t/φσ, σ0) =
∼
J(ξ, σ0) (22)

where
∼
J(ξ, σ0) is the creep-compliance master curve at the reference stress σ0, and bσ is the vertical shift

factor which reflects the effects of microstructural changes due to the induced stress on the mechanical
properties of the material and has the form below, similar to the horizontal stress shift factor

log bσ = − D1(σ − σ0)
D2 + (σ − σ0)

(23)

where D1 and D2 are material constants. In the present work bσ has not been considered.

3 Parameters identification and models fitting

The nonlinear viscoelastic modeling approaches described in Section 2 were coded using Maple soft-
ware, which gives access to numerical libraries, including optimization routines and enables the use of
symbolic algebra for obtaining analytical gradients with ease. Two Maple worksheets were developed:
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one for determining the material parameters at each stress level, as discussed in step 2 of Section 2.2.1
and the other for obtaining the master curve for the stress-time equivalence corresponding to Section
2.2.2.

4 Experimental set-up

Firstly, aiming at validation of the proposed procedure, experimental results were taken from the
literature [3], and the stress-time equivalence theory was applied. In a second stage (after validation),
actual experiments were conducted for HDPE pipes and the viscoelastic properties were modeled by
both Liu’s and Luo’s methods. This Section discusses some aspects of the experimental settings in the
studied cases.

Small deformation is assumed for the tensile creep tests. Engineering stress and strain are used in
calculating the material responses.

4.1 Validation study: experimental results taken from literature [3]

The experiments conducted by Liu et al. were performed in a four-pole frame with a tensile rod-clipper
device going vertically along the centre axis. A clip-on strain gauge was used to measure displacement
in the sample between the gauge knife edges, which are 25.4 mm apart initially (gauge length). The
measured displacement is recorded at 30 second intervals by a data acquisition system connected to
the strain gauge (data stored in the computer’s hard drive).

The tensile specimens have dimensions that conform to ASTM D638-02A (ASTM 2002), shown in
Fig. 5. The specimen’s thickness and width are measured at three locations along the length of the
sample to account for the dimension variation along the specimen length. The measurement averages
are taken in calculating the initial cross-sectional area for the specimen.

Figure 5: Specimen dimensions of the tests conducted by Liu [3]. Dimensions in [mm].

4.2 Experimental results conducted in the present work

Material samples were taken from HDPE – PE80 water pipes according to the NBR 96-22 Brazilian
norm (similar to ISO 6259), as displayed in Fig. 6(a). The thickness of the specimen is 5 mm (thickness
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of the pipe wall) and the other dimensions are shown in Fig. 6(b). The samples were cut out from the
pipe using a mechanical press. This procedure is discussed in more detail, for instance in Dusunceli
and Colak [18]. An important aspect is that after removing the specimens from the pipe, all of them
bent in the axis direction due to residual stresses probably introduced in the manufacturing process,
as shown in Fig. 7.

(a) (b)

Figure 6: Material sample cut off from the pipe according to ISO 6259 norm. (a) orientation; (b)
dimensions in [mm].

Figure 7: Detail of the specimen showing the curvature along the axial direction.

The material probes were separated into 2 groups: one group was tested at the Mechanical Engi-
neering Department of the Federal University of Santa Catarina, and the other one at the Civil
Engineering Department of the Federal University of Rio Grande do Sul, both in Brazil. In the tests,
the temperature was kept constant at T = 24(±1) ◦C.

4.2.1 Creep tests conducted at the Federal University of Santa Catarina

The tests were performed at GRANTE – Stress Analysis Group (Mechanical Engineering Department)
under supervision of Prof. P. T. R. Mendonça. The ASTM D2990 norm was followed using 15 HPDE
specimens subjected to 5 different stress levels (2, 4, 6, 8, 10 MPa).
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The material samples were subjected to axial loading given by dead weight during 24 hours. The
strains were measured by means of a clip-gage and the load was monitored using a load cell positioned
in series with the sample axis. Load, time and strain were all measured using a data acquisition system
in order to store the necessary information for further determination of the creep-compliance curves.

4.2.2 Creep tests conducted at the Federal University of Rio Grande do Sul

The tests were performed at the Viscoelasticity Laboratory (Civil Engineering Department) under
supervision of Prof. G. J. Creus. In this case the creep tests were performed by applying axial traction
induced by dead weights by means of a device designed for this task. Details of the sample fixture in the
testing device are shown in Fig. 8. The stress levels of the creep tests were set as 2.3, 3.98, 11.34 MPa
and were applied during 24 hours. A LVDT (Linear Variable Differential Transformer) was employed for
displacement measurement and the information was stored using a data acquisition system for further
determination of creep-compliance curves.

Figure 8: Detail of the experimental set-up.

5 Results and discussion

The results below show the comparison between the interpolation of rheological properties, studied
by Liu, the stress-time equivalence presented by Luo and the modified interpolation of rheological
properties proposed in this work.

5.1 Stress-time equivalence: evaluation of the creep behavior of HDPE samples studied by Liu et al.
[3].

As a first study, the creep-compliance curves presented Liu et al. [3] for two different sample types
(HDPE made of resin and HDPE extracted from a pipe, as shown in Fig. 6) were compared to
Luo’s stress-time equivalence method. The material modeling adopted by Liu corresponds to Eq. (4)
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with three rheological blocks, whose material parameters are given in Tables 1 and 2 for the resin
and for the pipe, respectively. The comparison of the creep-compliance curves for the HDPE resin is
shown in Figure 9, indicating higher disagreement as the stress level increases. The creep-compliance
master curve was obtained using nine rheological blocks and is shown in Figure 10 which includes the
corresponding material parameters. Figures 11 and 12 display the master curve in linear coordinates
and the associated horizontal stress shifts.

Table 1: Material (rheological) properties. HDPE resin [3].

Stress level E0

τ1 τ2 τ3

500 10000 200000

E1 E2 E3

2.68 2500 2848.6134 3650.6457 1053.8829

5.58 2300 2125.6411 1811.4240 696.3469

7.28 1700 1515.4295 1537.4866 603.9634

10.60 1200 1180.3846 1111.9421 405.5838

13.72 1100 999.9933 810.1940 145.0453

Figure 9: Comparison between the two meth-
ods for HDPE resin.

Figure 10: Master curve for HDPE resin in
logarithmic coordinates.

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



Modeling nonlinear viscoelastic behavior of HDPE 393

Figure 11: Master curve for HDPE resin in
linear coordinates.

Figure 12: Horizontal shift for each stress level
for HDPE resin.

Table 2: Material (rheological) properties. HDPE pipe [3].

Stress level E0

τ1 τ2 τ3

500 10000 200000

E1 E2 E3

2.97 650 797.3889 2320.3566 925.0882

5.97 580 913.5936 1212.2605 695.0461

7.71 520 1224.7911 1104.9922 385.8572

10.31 500 1034.2045 694.1084 226.4555

12.19 470 1128.4448 806.0972 140.6875

Figures 13-16 reproduce the analyses shown in Figs. 9-12, now for the HDPE samples extracted
from the pipe. One possibility that could explain the large difference between the curves in Fig. 13
and the difficulty to match a master curve (Fig. 14) is the presence of initial strain in the specimen,
as depicted in Fig.7. The master curve employed 7 rheological blocks and is shown in Fig. 14 together
with its corresponding material parameters. The master curve in linear coordinates is displayed in
Fig. 15 and the horizontal shifts are shown in Fig. 16.
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Figure 13: Comparison between the two meth-
ods for HDPE pipe.

Figure 14: Master curve for HDPE pipe in log-
arithmic coordinates.

Figure 15: Master curve for HDPE pipe in lin-
ear coordinates.

Figure 16: Horizontal shift for each stress level
for HDPE pipe.
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5.2 Stress-time equivalence versus interpolation of rheological properties: evaluation of the creep
behavior of HDPE samples taken from water pipes in the present research.

The results below are based in creep experimental tests made in HDPE samples taken from water
pipes during this research. Figure 17(a) presents the comparison between the creep-compliance curves
obtained by experiments and by the stress-time equivalence at five different stress levels. Figure
17(b) shows the creep-compliance curves obtained by direct fitting of a Prony series using three
rheological blocks at each stress level. The material parameters obtained are shown in Table 3. The
creep-compliance master curve associated to Fig. 17(a) used 11 rheological blocks and is depicted in
Figures 18(a) and (b). The corresponding horizontal stress shifts are presented in Fig. 19.

Table 3: Material (rheological) properties. HDPE pipe (this work).

Stress level E0

τ1 τ2 τ3

500 10000 200000

E1 E2 E3

2.00 515.3614 1623.7904 2555.0553 2350.5472

4.00 763.6466 503.0608 1047.8427 992.2184

6.00 815.0536 346.7152 1829.3498 378.7913

10.00 951.4141 294.6865 481.1448 152.2551

11.34 556.8556 262.0088 303.6087 107.3255

In the sequence, each of the methods was used to interpolate the creep behavior at stress levels within
the range adopted for identification. Three intermediate stress values were considered: 6, 8 and 10 MPa.
For 6 and 10 MPa, the experimental result was suppressed in the respective stress, interpolating the
rheological properties between 4 and 10 MPa, and between 6 and 11.34MPa, respectively. Figures 20,
21 and 22 show the creep-compliance functions for 6, 8 and 10MPa respectively, comparing to the
corresponding experimental result. It is noteworthy that the modified interpolation proposed in this
work [Eq.(9)], provided a better matching with experimental results in all the cases.

5.3 Unloading of creep tests for 6 and 10 MPa. Comparison between the modified linear interpolation
and Liu’s method with the experimental results.

When the loading is removed, the stress in the sample becomes zero and there is an instantaneous
strain recovery. The remaining deformation recovers gradually with time and if there is no permanent
deformation, the strain becomes zero in long recovery times. Figures 23 and 24 illustrate the creep
curves for loading/unloading at 6MPa and 10MPa respectively, evaluated by the modified and the
original approaches for the interpolation of rheological properties [Eqs. (9) and (7), respectively]. The
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Figure 17: Creep-compliance at different stress levels obtained: (a) by using a master curve based on
stress-time equivalence and (b) by curve fitting using Prony series at each stress level.

(a) (b)

Figure 18: Master curve for creep-compliance based on stress-time equivalence compared to experi-
mental results. (a) Logarithmic coordinates and (b) linear coordinates.
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Figure 19: Horizontal stress shifts associated to the master curve in Fig. 18.

Figure 20: Interpolations for 6MPa. Figure 21: Interpolations for 8MPa.
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Figure 22: Interpolations for 10MPa.

Figure 23: Loading/Unloading creep curve for
6MPa.

Figure 24: Loading/Unloading creep curve for
10MPa.
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loading/unloading simulation was done in a homemade finite element code inspired in the incremen-
tal procedure described in Zienkiewicz et al. [19]. The Figures are merely illustrative, since further
experiments and a more elaborate procedure, such as the one proposed by Dasappa et al. [20], are
necessary in order to verify the presence of viscoplastic effects.

6 Conclusions

Aiming at a good and simple modeling of nonlinear viscoelasticity, particularly for HDPE pipes,
a modified interpolation of rheological properties was proposed and compared with some methods
described in the literature. The modified method was inspired in Liu et al. [3], and showed a slightly
better agreement to experimental data. The results obtained were also compared to the stress-time
equivalence [5] providing better matching. The original and modified interpolation approaches were
also applied to loading/unloading cases, just for illustrative purpose, since additional research is needed
in order to evaluate the presence of viscoplasticity.
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Abstract

In this work, we propose an optimization algorithm based on the topological derivative and a level-set domain
representation for the compliance topology design of Kirchhoff plates, with volume constraint. We start by
deriving the topological asymptotic expansion of the total potential energy associated to the Kirchhoff plate
bending problem, considering as topological perturbation the nucleation of a circular inclusion. Next, we
present a topology optimization algorithm based on the topological derivative together with a level-set domain
representation method. Finally, some numerical examples are presented in the context of compliance topology
optimization with volume constraint.

Keywords: topological derivative, level-set domain representation, topology optimization, Kirchhoff plates.

1 Introduction

The topological derivative measures the sensitivity of a given shape functional with respect to an
infinitesimal singular domain perturbation, such as the insertion of holes, inclusions, source-terms or
even cracks. The topological derivative was rigorously introduced by Sokołowski & Żochowski 1999 [1].
Since then, this concept has proved to be extremely useful in the treatment of a wide range of problems,
namely, topology optimization [2–8], inverse analysis [9–13] and image processing [14–18], and has
became a subject of intensive research. See, for instance, applications of the topological derivative in
the multi-scale constitutive modeling context [19] and fract ure mechanics sensitivity analysis [20].
Concerning the theoretical development of the topological asymptotic analysis, the reader may refer
to [21–23], for instance.

In [7] the topological derivative was obtained, through the approach developed in [6], for the total
potential energy associated to the Kirchhoff plate bending problem, considering as singular perturba-
tion the nucleation of a circular hole. This result was used to devise a hard-kill like topology algorithm
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and some numerical experiments were presented. More recently, in [24] the closed formulas associated
to a large class of shape functionals were derived using the approach proposed in [21] and a full math-
ematical justification for the formula obtained in [7] was provided. In addition, the result derived in
[7] was extend by considering as topological perturbation the nucleation of an infinitesimal circular
inclusion instead of a hole. This last result allows to devise a topology design algorithm as proposed
in [3].

Therefore, as a natural sequence of this research, in this work we propose an optimization algorithm
based on the topological derivative and a level-set domain representation for the compliance topology
design of Kirchhoff plates, with volume constraint. For the sake of completeness, we start by deriv-
ing the topological asymptotic expansion of the total potential energy associated to the Kirchhoff
plate bending problem, considering as singular perturbation the nucleation of a circular inclusion.
The topological derivative is obtained through the approach proposed in [6]. Next, we present an
optimization algorithm based on the topological derivative together with a level-set domain represen-
tation method as proposed in [3]. Finally, some numerical examples are presented in the context of
compliance topology optimization with volume constraint.

1.1 The topological derivative concept

Let us consider a bounded domain Ω ⊂ R2, which is subject to a non-smooth perturbation confined in
a small region ωε(x̂) = x̂+ εω of size ε, as shown in fig. 1. Here, x̂ is an arbitrary point of Ω and ω is
a fixed domain of R2. We introduce a characteristic function associated to the unperturbed domain,
namely χ = 1Ω. Then, we define a characteristic function associated to the topologically perturbed
domain of the form χε. In the present case, the perturbed domain is obtained when a circular hole
ωε(x̂) = Bε(x̂) is introduced inside Ω, where Bε(x̂) is used to denote a ball of radius ε and center at
x̂ ∈ Ω. Next, this region is filled by an inclusion with different material property. In particular, we
introduce a piecewise constant function γε of the form

γε = γε(x) :=

{
1 ifx ∈ Ω \Bε
γ if x ∈ Bε

, (1)

where γ ∈ R+ is the contrast in the material property. Therefore the characteristic function will take
the form χε(x̂) = 1Ω−(1−γ)1Bε(x̂)

. Note that in this case the topologies of the original and perturbed
domains are preserved. However, we are introducing a non-smooth perturbation in the coefficients of
the differential operator through the contrast γε, by changing the material property of the background
in a small region Bε ⊂ Ω. Therefore, the sensitivity of the shape functional with respect to the
nucleation of an inclusion can also be studied through the topological asymptotic analysis concept,
which is, in fact, the most appropriate approach for such a problem. Then, we assume that a given
shape functional ψ(χε(x̂)), associated to the topologically perturbed domain, admits the following
topological asymptotic expansion

ψ(χε(x̂)) = ψ(χ) + f(ε)TΩ(x̂) + o(f(ε)) , (2)
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Figure 1: The topological derivative concept.

where ψ(χ) is the shape functional associated to the original (unperturbed) domain, f(ε) is a positive
function such that f(ε)→ 0, when ε→ 0. The function x̂ 7→ TΩ(x̂) is called the topological derivative
of ψ at x̂. Therefore, this derivative can be seen as a first order correction of ψ(χ) to approximate
ψ(χε(x̂)).

1.2 Relation between shape and topological changes

The topological derivative can be considered as the singular limit of the shape derivative, so it is a
generalization of the classical tool in shape optimization. Among the methods for calculation of the
topological derivative currently available in literature (see, for instance, [25, 26]), here we shall adopt
the methodology developed in [27], which is given by the following result:
Theorem 1. Let ψ(χε(x̂)) be the shape functional associated to the topologically perturbed domain,
which admits, for ε small enough, the topological asymptotic expansion of the form

ψ(χε(x̂)) = ψ(χ) + f(ε)TΩ(x̂) +R(f(ε)) , (3)

where ψ(χ) is the shape functional associated to the original (unperturbed) domain, the positive func-
tion f(ε) is such that f(ε) → 0, with ε → 0, and the function TΩ(x̂) is the topological derivative of
the shape functional ψ. We assume that the remainder R(f(ε)) = o(f(ε)) has the following additional
property R′(f(ε))→ 0, when ε→ 0. Then, the topological derivative can be written as

TΩ(x̂) = lim
ε→0

1

f ′(ε)

d

dε
ψ(χε(x̂)) , (4)

where d
dεψ(χε(x̂)) is the derivative of ψ(χε(x̂)) with respect to the small parameter ε.

Proof. See, for instance, [6].

The derivative of ψ(χε(x̂)) with respect to ε can be seen as the sensitivity of ψ(χε(x̂)), in the
classical sense [28, 29], to the domain variation produced by an uniform expansion of the perturbation
Bε. Therefore, since we are dealing with topologically identical domains, we can use the concept of
shape sensitivity analysis as an intermediate step in the topological derivative calculation. We will see
later that this procedure enormously simplifies the analysis. In the case of a circular inclusion, we can
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construct a shape change velocity field V ∈ C∞(Ω) that represents an uniform expansion of Bε(x̂).
In fact, it is sufficient to define V on the boundaries ∂Ω and ∂Bε in the following way{

V = 0 on ∂Ω

V = −n on ∂Bε
, (5)

where n = −(x− x̂)/ε, with x ∈ ∂Bε, is the normal unit vector field pointing toward the center of the
circular inclusion Bε.

2 The topological derivative for the kirchhoff plate bending problem

In this section we evaluate the topological derivative for the total potential energy associated to
the Kirchhoff plate bending problem, considering the nucleation of a small inclusion, represented by
Bε ⊂ Ω, as the topological perturbation.

2.1 Problem formulation

The shape functional in the unperturbed domain which we are dealing with is defined as

ψ(χ) := Jχ(u) = −
1

2

∫
Ω

M(u) · ∇∇u−
∫
ΓNq

qu+

∫
ΓNm

m∂nu+

ns∑
i=1

Qiu(xi) , (6)

The scalar function u is the solution to the variational problem:
Findu ∈ U , such that

−
∫
Ω

M(u) · ∇∇η =

∫
ΓNq

qη −
∫
ΓNm

m∂nη −
ns∑
i=1

Qiη(xi) ∀η ∈ V,

with M(u) = −h
3

12C∇∇u .

(7)

In the above equation, C is the constitutive tensor given by

C =
E

1− ν2
((1− ν)I+ νI ⊗ I) , (8)

where I and I are the second and fourth order identity tensors, respectively, E is the Young modu-
lus and ν the Poisson ratio, both considered constants everywhere. The set U and the space V are
respectively defined as

U :={φ ∈ H2(Ω) : φ|ΓDu
= u, ∂nφ|ΓDρ

= ρ} , (9)

V:={φ ∈ H2(Ω) : φ|ΓDu
= 0, ∂nφ|ΓDρ

= 0} . (10)

In addition, h is the plate thickness assumed to be constant everywhere, q is a shear load distributed
on the boundary ΓNq , m is a moment distributed on the boundary ΓNm and Qi is a concentrated shear
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Figure 2: The Kirchhoff problem defined in the unperturbed domain.

load supported at the points xi where there are some geometrical singularities, with i = 1, ..., ns, and ns
the number of such singularities. The displacement field u has to satisfy u|ΓDu

= u and ∂nu|ΓDρ
= ρ,

where u and ρ are a displacement and a rotation respectively prescribed on the boundaries ΓDu

and ΓDρ . Furthermore, ΓD = ΓDu ∪ ΓDρ and ΓN = ΓNq ∪ ΓNm are such that ΓDu ∩ ΓNq = ∅ and
ΓDρ
∩ ΓNm

= ∅. See the details in fig. 2.
The strong formulation associated to the variational problem (7) reads:



Findu, such that

div(divM(u)) = 0 in Ω ,

M(u) = −h
3

12C∇∇u
u

∂nu

=

=

u

ρ

on

on

ΓDu ,

ΓDρ ,

Mnn(u)

∂τM
τn(u) + divM(u) · n

[[Mτn(u(xi))]]

=

=

=

m

q

Qi

on

on

on

ΓNm ,

ΓNq ,

xi ∈ ΓNq .

(11)

Now, let us state the same problem in the perturbed domain. In this case, the shape functional
reads

ψ(χε) := Jχε(uε) = −
1

2

∫
Ω

Mε(uε) · ∇∇uε −
∫
ΓNq

quε +

∫
ΓNm

m∂nuε +

ns∑
i=1

Qiuε(xi) , (12)
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Figure 3: The Kirchhoff problem defined in the perturbed domain.

where the scalar function uε solves the variational problem:


Finduε ∈ Uε, such that

−
∫
Ω

Mε(uε) · ∇∇η =

∫
ΓNq

qη −
∫
ΓNm

m∂nη −
ns∑
i=1

Qiη(xi) ∀η ∈ Vε,

with Mε(uε) = −h
3

12γεC∇∇uε .

(13)

with γε defined by (1). The set Uε and the space Vε are defined as

Uε:={φ ∈ U : [[φ]] = 0, [[∂nφ]] = 0 on ∂Bε} , (14)

Vε:={φ ∈ V : [[φ]] = 0, [[∂nφ]] = 0 on ∂Bε} , (15)

where the operator [[φ]] is used to denote the jump of function φ on the boundary of the inclusion
∂Bε, namely [[φ]] := φ|Ω\Bε

−φ|Bε
on ∂Bε. See the details in fig. 3. The strong formulation associated
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to the variational problem (13) reads:

Finduε, such that

div(divMε(uε)) = 0 in Ω ,

Mε(uε) = −h
3

12γεC∇∇uε
uε

∂nuε

=

=

u

ρ

on

on

ΓDu ,

ΓDρ ,

Mnn(uε)

∂τM
τn(uε) + divM(uε) · n

[[Mτn(uε(xi))]]

=

=

=

m

q

Qi

on

on

on

ΓNm ,

ΓNq ,

xi ∈ ΓNq ,

[[uε]]

[[∂nuε]]

[[Mnn
ε (uε)]]

[[∂τM
τn
ε (uε)]] + [[divMε(uε)]] · n

=

=

=

=

0

0

0

0

 on ∂Bε .

(16)

2.2 Shape sensitivity analysis

The next step is to evaluate the shape derivative of functional Jχε(uε) with respect to an uniform
expansion of the inclusion Bε. Before starting, we note that after considering the constitutive relation
Mε(uε) = −h

3

12γεC∇∇uε in (12), with the contrast γε given by (1), the shape functional Jχε(uε) can
be written as follows

Jχε(uε) = −
1

2

(∫
Ω\Bε

M(uε) · ∇∇uε +
∫
Bε

γM(uε) · ∇∇uε

)

−
∫
ΓNq

quε +

∫
ΓNm

m∂nuε +

ns∑
i=1

Qiuε(xi) . (17)

where M(uε) = −h
3

12C∇∇uε. Thus, we have the explicit dependence with respect to parameter ε.
Therefore, let us start by proofing the following result:
Proposition 2. Let Jχε(uε) be the shape functional defined by (12). Then, the derivative of this func-
tional with respect to the small parameter ε is given by

J̇ χε(uε) = −
∫
∂Bε

[[Σε]]n · n−
∫
∂Bε

[[Mε(uε)]]n · ∇n⊤∇uε , (18)

where Σε is a generalization of the classical Eshelby energy-momentum tensor [30] given by

Σε = −
1

2
(Mε(uε) · ∇∇uε)I + (∇∇uε)Mε(uε)−∇uε ⊗ div(Mε(uε)) . (19)
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Proof. By making use of the the Reynolds’ transport theorem and taking into account the velocity
field (5), the shape derivative of the functional (12) results in

J̇ χε(uε) = −
(
1

2

∫
Ω

Mε(uε) · ∇∇uε
)·

−
∫
ΓNq

qu̇ε +

∫
ΓNm

m∂nu̇ε +

ns∑
i=1

Qiu̇ε(xi)

= −
∫
Ω

Mε(uε) · ∇∇u′ε +
1

2

∫
∂Bε

[[Mε(uε) · ∇∇uε]]n · n

−
∫
ΓNq

qu̇ε +

∫
ΓNm

m∂nu̇ε +

ns∑
i=1

Qiu̇ε(xi) . (20)

In addition, from the relation between shape and material derivatives [29], we have

J̇ χε(uε) =
1

2

∫
∂Bε

[[Mε(uε) · ∇∇uε]]n · n+

∫
Ω

Mε(uε) · ∇∇(∇uε ·V)

−
∫
Ω

Mε(uε) · ∇∇u̇ε −
∫
ΓNq

qu̇ε +

∫
ΓNm

m∂nu̇ε +

ns∑
i=1

Qiu̇ε(xi) . (21)

Since u̇ε is a variation of uε in the direction of the velocity field V, then u̇ε ∈ Vε [29]. Now, by
taking into account that uε is the solution to the variational problem (13), we have that the last four
terms of the above equation vanish. From integration by parts, we obtain

J̇ χε(uε) =
1

2

∫
∂Bε

[[Mε(uε) · ∇∇uε]]n · n−
∫
∂Bε

[[(∇∇uε)Mε(uε)]]n · n

+

∫
∂Bε

[[∇uε ⊗ divMε(uε)]]n · n−
∫
∂Bε

[[Mε(uε)]]n · ∇n⊤∇uε

+

∫
Ω

div(div(Mε(uε)))∇uε ·V . (22)

Finally, taking into account that uε is the solution to the state equation (16), div(divMε(uε)) = 0,
we have that the last term in the above equation vanishes, which leads to the result

2.3 Asymptotic analysis of the solution

The shape derivative of functional Jχε(uε) is given in terms of an integral over the boundary of
the inclusion ∂Bε (18). Therefore, in order to apply the result of Theorem 1, we need to know the
behavior of the function uε with respect to ε. In particular, once we know this behavior explicitly, we
can identify function f(ε) and perform the limit passage ε → 0 in (4) to obtain the final formula for
the topological derivative TΩ of the shape functional ψ. However, in general this is not an easy task.
In fact, we need to perform an asymptotic analysis of uε with respect to ε. In this section we present
the formal calculation of the expansion of the solution uε associated to the transmission condition on
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the inclusion. For a rigorous justification of the asymptotic expansion of uε, the reader may refer to
[31, 32], for instance. Let us start by proposing an expansion for uε of the form [33]

uε(x) = u(x) + wε(x) + ũε(x) . (23)

After applying the operator Mε we have

Mε(uε(x)) =Mε(u(x)) +Mε(wε(x)) +Mε(ũε(x))

=Mε(u(x̂)) +∇Mε(u(ξ))(x− x̂)

+Mε(wε(x)) +Mε(ũε(x)) , (24)

where ξ is an intermediate point between x and x̂. On the boundary of the inclusion ∂Bε we have

[[Mnn
ε (uε)]]n = 0 ⇒ (Mnn(uε)|Ω\Bε

− γMnn(uε)|Bε
)n = 0 , (25)

and

[[∂τM
τn
ε (uε)]] + [[divMε(uε)]] · n = 0

⇒ (∂τM
τn(uε)|Ω\Bε

− γ∂τMτn
ε (uε)|Bε

)+

(div(M(uε)|Ω\Bε
− γMnn(uε)|Bε

)) · n = 0 , (26)

with Mε(φ) = −h
3

12γεC∇∇φ and M(φ) = −h
3

12C∇∇φ. The above expansion, evaluated on ∂Bε, leads
to

(1− γ)M(u(x̂))n · n− ε(1− γ)(∇M(u(ξ))n)n · n+ [[Mnn
ε (wε(x))]] + [[Mnn

ε (ũε(x))]] = 0 (27)

and

(1− γ)(∂τM(u(x̂))n · τ + divM(u(x̂)) · n)−

ε(1− γ)(∂τ (∇M(u(ξ))n)n · τ + div(∇M(u(ξ))n) · n)+

[[∂τM
τn
ε (wε(x))]] + [[divMε(wε(x)) · n]]+

[[∂τM
τn
ε (ũε(x))]] + [[divMε(ũε(x)) · n]] = 0 . (28)

Thus, we can choose Mε(wε) such that

[[Mnn
ε (wε(x))]] = −(1− γ)M(u(x̂))n · n , (29)

[[∂τM
τn
ε (wε(x))]] + [[divMε(wε(x)) · n]] = −(1− γ)(∂τM(u(x̂))n · τ + divM(u(x̂)) · n) . (30)
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Now, the following exterior problem is considered, and formally obtained with ε→ 0:

FindMε(wε), such that

div(divMε(wε)) = 0 in R2 ,

Mε(wε) → 0 at ∞ ,

[[Mnn
ε (wε)]]

[[∂τM
τn
ε (wε)]] + [[divMε(wε)]] · n

=

=

û1

û2

}
on ∂Bε .

(31)

with

û1 = −(1− γ)M(u(x̂))n · n , (32)

û2 = −(1− γ)(∂τM(u(x̂))n · τ + divM(u(x̂)) · n) . (33)

The above boundary-value problem admits an explicit solution, which will be used later to construct
the expansion for Mε(uε). Now we can construct Mε(ũε) in such a way that it compensates the
discrepancies introduced by the higher-order terms in ε as well as by the boundary-layer Mε(wε) on
the exterior boundary ∂Ω. It means that the remainder Mε(ũε) must be the solution to the following
boundary-value problem:

FindMε(ũε), such that

div(divMε(ũε)) = 0 in Ω ,

Mε(ũε) = −Mε(wε) on ∂Ω ,

[[Mnn
ε (ũε)]]

[[∂τM
τn
ε (ũε)]] + [[divMε(ũε)]] · n

=

=

εg1

εg2

}
on ∂Bε .

(34)

with

g1 = (1− γ)(∇M(u(ξ))n)n · n , (35)

g2 = (1− γ)(∂τ (∇M(u(ξ))n)n · τ + div(∇M(u(ξ))n) · n) . (36)

Observe that Mε(ũε) has the following estimate Mε(ũε) = O(ε2) [33]. Therefore, the expansion for
Mε(uε) (see, for instance, the book by Little 1973 [34]) can be written in a polar coordinate system
(r, θ) centered at the point x̂ (see fig. 4) as:
• For r ≥ ε (outside the inclusion)

Mrr
ε (uε(r, θ)) = φ1

(
1− 1−γ

1+γα
ε2

r2

)
+ φ2

(
1− 1−γ

1+γβ

(
4ν
3+ν

ε2

r2 + 3β ε
4

r4

))
cos 2θ +O(ε2), (37)

Mθθ
ε (uε(r, θ)) = φ1

(
1 + 1−γ

1+γα
ε2

r2

)
− φ2

(
1 + 1−γ

1+γβ

(
4

3+ν
ε2

r2 − 3β ε
4

r4

))
cos 2θ +O(ε2), (38)

Mrθ
ε (uε(r, θ)) = −φ2

(
1− β 1−γ

1+γβ

(
2 ε

2

r2 − 3 ε
4

r4

))
sin 2θ +O(ε2); (39)
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Figure 4: Polar coordinate system (r, θ) centered at the point x̂ ∈ Ω.

• For 0 < r < ε (inside the inclusion)

Mrr
ε (uε(r, θ)) = φ1

2
(1−ν)(1+γα) + φ2

4
(3+ν)(1+γβ) cos 2θ +O(ε2), (40)

Mθθ
ε (uε(r, θ)) = φ1

2
(1−ν)(1+γα) − φ2

4
(3+ν)(1+γβ) cos 2θ +O(ε2), (41)

Mrθ
ε (uε(r, θ)) = −φ2

4
(3+ν)(1+γβ) sin 2θ +O(ε2). (42)

Some terms in the above formulae require explanations. The coefficients φ1 and φ2 are given by

φ1 =
1

2
(m1(u(x̂)) +m2(u(x̂))) , φ2 =

1

2
(m1(u(x̂))−m2(u(x̂))) , (43)

where m1(u(x̂)) and m2(u(x̂)) are the eigenvalues of tensor M(u(x̂)), which can be expressed as

m1,2(u(x̂)) =
1

2

(
trM(u(x̂))±

√
2MD(u(x̂)) ·MD(u(x̂))

)
, (44)

with MD(u(x̂)) standing by the deviatoric part of the momentum tensor M(u(x̂)), namely

MD(u(x̂)) =M(u(x̂))− 1

2
trM(u(x̂))I . (45)

In addition, the constants α and β are given by

α =
1 + ν

1− ν
and β =

1− ν
3 + ν

. (46)

Finally, Mrr
ε (uε), Mθθ

ε (uε) and Mrθ
ε (uε) are the components of tensor Mε(uε) in the polar coordinate

system, namely Mrr
ε (uε) = er · Mε(uε)e

r, Mθθ
ε (uε) = eθ · Mε(uε)e

θ and Mrθ
ε (uε) = Mθr

ε (uε) =

er ·Mε(uε)e
θ, with er and eθ used to denote the canonical basis associated to the polar coordinate

system (r, θ), such that, ||er|| = ||eθ|| = 1 and er · eθ = 0. See fig. 4.
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2.4 Topological derivative evaluation

Now, we can evaluate the integrals in formula (18) to collect the terms in power of ε and recognize
function f(ε). With these results, we can perform the limit passage ε → 0. The integrals in (18) can
be evaluated by using the expansions for Mε(uε) given by (37)-(42). The idea is to introduce a polar
coordinate system (r, θ) with center at x̂ (see fig. 4). Then, we can write uε in this coordinate system
to evaluate the integrals explicitly. In particular, the integrals in (18) lead to

−
∫
∂Bε

[[Σε]]n · n−
∫
∂Bε

[[Mε(uε)]]n · ∇n⊤∇uε = 2πεPγM(u(x̂)) · ∇∇u(x̂) + o(ε) . (47)

Finally, the topological derivative given by (4) can be obtained as follows

TΩ(x̂) = lim
ε→0

1

f ′(ε)
(2πεPγM(u(x̂)) · ∇∇u(x̂) + o(ε)) , (48)

where the polarization tensor Pγ is given by the following fourth order isotropic tensor

Pγ =
1

2

1− γ
1 + γβ

(
4β

1− ν
I+ αβ

1 + 3ν

1− ν2
1− γ
1 + γα

I ⊗ I
)
. (49)

with the parameters α and β given by (46). Now, in order to extract the main term of the above
expansion, we choose

f(ε) = πε2 , (50)

which leads to the final formula for the topological derivative, namely (see also [24])

TΩ(x̂) = PγM(u(x̂)) · ∇∇u(x̂) . (51)

Remark 3. Formally, we can take the limit cases γ → 0 and γ → ∞. For γ → 0, the inclusion leads
to a void and the transmission condition on the boundary of the inclusion degenerates to homogeneous
Neumann boundary condition. In fact, in this case the polarization tensor is given by

P0 =
2

3 + ν
I+

1 + 3ν

2(1− ν)(3 + ν)
I ⊗ I . (52)

In addition, for γ → ∞, the elastic inclusion leads to a rigid one and the polarization tensor is
given by

P∞ = − 2

1− ν
I+

1 + 3ν

2(1− ν2)
I ⊗ I . (53)

3 Numerical results

In this section, we present an optimization algorithm based on the topological derivative and a level-set
domain representation for the compliance topology design of Kirchhoff plates, with volume constraint.
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Finally, some numerical examples are presented in the context of compliance topology optimization
with volume constraint. The sought topology of the structure is the solution of the general optimization
problem stated as

Minimize
Ω⊂R2

FΩ(u) = −Jχ(u) + λ |Ω| , (54)

where |Ω| is the Lebesgue measure of Ω and λ > 0 is a fixed multiplier which imposes a constraint
on the volume of elastic material. It means that the shape functional to be minimized is the strain
energy stored in the structure with a volume constraint. It should be stressed that the design variable
in problem (54) is the topology of the domain Ω. Hence, the use of the exact topological sensitiv-
ity information provided by the topological derivative (51) emerges as a natural alternative in the
development of a numerical optimization algorithm to tackle the problem.

For computational purposes, we consider strong and weak materials representing the elastic part
and the voids, respectively. We decompose Ω into two disjoint parts Ωs and Ωw, representing the
strong and weak materials domains respectively. The topological derivative of the volume constraint
in (54) is trivial. According to (51) and remark 3, the topological derivatives of FΩ(u) are given by:
• For the strong material domain Ωs

T sΩ = − 2

3 + ν
M(u) · ∇∇u− 1 + 3ν

2(1− ν)(3 + ν)
trM(u)tr(∇∇u)− λ . (55)

• For the weak material domain Ωw

T wΩ =
2

1− ν
M(u) · ∇∇u− 1 + 3ν

2(1− ν2)
trM(u)tr(∇∇u) + λ . (56)

Having made the above considerations, the topological derivative-based optimization algorithm
devised in [3] stands out as a particularly well-suited choice to solve problem (54). The procedure
relies on a level-set domain representation [35] and the approximation of the topological optimality
conditions by a fixed point iteration. In particular, the algorithm displays a marked ability to produce
general topological domain changes uncommon to other methodologies based on a level-set representa-
tion and has been successfully applied in [3] to topology optimization in the context of two-dimensional
elasticity and flow through porous media. For completeness, the algorithm is outlined in the following.
For further details we refer to [3].

With the adoption of a level-set domain representation, the strong material is characterized by a
function Ψ ∈ L2(Ω) such that

Ωs = {x ∈ Ω,Ψ(x) < 0} , (57)

whereas the weak material domain is defined by

Ωw = {x ∈ Ω,Ψ(x) > 0} . (58)

Now, let us consider the topological derivative of the shape functional FΩ(u). According to [3], an
obvious sufficient condition of local optimality of problem (54) for the class of perturbations consisting
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of circular inclusions is
TΩ(x) > 0 ∀x ∈ Ω . (59)

To devise a level-set-based algorithm whose aim is to produce a topology that satisfies (59) it is
convenient to define the function

g(x) =

{
−T sΩ(x) if x ∈ Ωs

T wΩ (x) if x ∈ Ωw
. (60)

With the above definition and (57,58) it can be easily established that the sufficient condition (59)
is satisfied if the following equivalence relation between g and the level-set function Ψ holds

∃ τ > 0 s.t g = τ Ψ , (61)

or, equivalently,

θ := arccos

[ ⟨g,Ψ⟩L2(Ω)

∥g∥L2(Ω) ∥Ψ∥L2(Ω)

]
= 0 , (62)

where θ is the angle between the vectors g and Ψ in L2(Ω).
Starting from a given level-set function Ψ0 ∈ L2(Ω) which defines the chosen initial guess for the

optimum topology, the algorithm proposed in [3] produces a sequence (Ψi)i∈N of level-set functions
that provides successive approximations to the sufficient condition for optimality (61). The sequence
satisfies

Ψ0 ∈ L2(Ω) ,

Ψn+1 ∈ co(Ψn, gn) ∀n ∈ N ,
(63)

where co(Ψn, gn) is the convex hull of {Ψn, gn}. In the actual algorithm the initial guess Ψ0 is nor-
malized. With S denoting the unit sphere in L2(Ω), the algorithm is explicitly given by

Ψ0 ∈ S ,

Ψn+1 =
1

sin θn

[
sin((1− κn)θn)Ψn + sin(κnθn)

gn
∥gn∥L2(Ω)

]
∀n ∈ N ,

(64)

where κn ∈ [0, 1] is a step size determined by a line-search in order to decrease the value of the cost
functional FΩ(u) and, by construction of (64)2, we have that Ψn+1∈S ∀n ∈ N. The iterative process
is stopped when for some iteration the obtained decrease in FΩ(u) is smaller than a given numerical
tolerance. If, at this stage, the optimality condition (61,62) is not satisfied to the desired degree of
accuracy, i.e. if θn+1 > ϵθ, where ϵθ is a pre-specified convergence tolerance, then a uniform mesh
refinement of the structure is carried out and the procedure is continued.

In order to explain briefly the significance of the topological derivative in topology optimization we
present some numerical examples. The Discrete Kirchhoff Triangle three node finite element (DKT-9),
which is fully detailed in [36], is adopted for the discretization of the variational problem (7). The
topology is identified by the strong material distribution and the inclusions of weak material are used
to mimic the holes. In the examples we consider as initial guess a unit square plate, with Poisson’s
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ratio ν = 0.3 and the product Eh3 = 1. The contrast is given by γ = 0.001. Furthermore, the thick
lines that appear on the figures are used to denote clamped (u = ∂u/∂n = 0) boundary conditions.
We start with a uniform mesh containing 3200 elements. Then we perform 3 steps of uniform mesh
refinement for the first three examples and 5 steps of uniform mesh refinement for the last example.

3.1 Example 1

In this first example we present a plate submitted to a pair of uniform bending moments, m = 1 and
m = −1 applied on a region of length 0.5 of the middle of the opposite sides, as shown in fig. 5(a).
We set λ = 3.80, corresponding to a volume constraint of 50% of hard material. The final topology is
presented in fig. 5(b).

(a) initial guess (b) final topology

Figure 5: Example 1: plate submitted to a pair of uniform bending moments.

3.2 Example 2

In this example we present a plate submitted to three uniform bending moments, m = 1 applied on
a region of length 0.5 (middle) of the right edge and m = −1 acting on two regions of length 0.25

(top and bottom) of the left edge, as shown in fig. 6(a). We set λ = 3.88, corresponding to a volume
constraint of 50% of hard material. The final topology is presented in fig. 6(b).

(a) initial guess (b) final topology

Figure 6: Example 2: plate submitted to three uniform bending moments.
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3.3 Example 3

In this next example we present a plate submitted to two pairs of uniform bending moments m = 1

and m = −1, as shown in fig. 7(a). The first pair is applied on two regions of length 0.20 of the top
and bottom edges. The second pair is acting on two regions of length 0.20 of the left and right edges.
We set λ = 4.40, corresponding to a volume constraint of 50% of hard material. The final topology is
presented in fig. 7(b).

(a) initial guess (b) final topology

Figure 7: Example 3: plate submitted to two pairs of uniform bending moments.

3.4 Example 4

In this last example the plate is clamped in two adjacent sides and a concentrated load Qi = 1

is applied at the free corner, as illustrated in fig. 8(a). We set λ = 4. The topological derivative
evaluated in the hold-all domain is shown in fig. 8(b). The obtained topology is presented in fig. 8(c).
The convergence history for the shape functional and theta angle are presented in fig. 9.

(a) initial guess (b) topological derivative (c) final topology

Figure 8: Example 4: clamped plate submitted to a concentrated load.
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Figure 9: Example 4: convergence history.

4 Conclusions

The topological derivative of the total potential energy associated to the Kirchhoff plate bending
problem, considering as singular perturbation the insertion of a small circular inclusion, has been
calculated through the approach proposed in [6]. We have formally performed the limit passages
when the contrast γ → 0 and γ → ∞. For γ → 0, the inclusion leads to a void and the transmission
condition on the boundary of the inclusion degenerates to homogeneous Neumann boundary condition.
In addition, for γ →∞, the elastic inclusion leads to a rigid one. The closed forms of the polarization
tensors are identified for both cases. Then, we have devised an optimization algorithm based on the
topological derivatives and a level-set domain representation, as proposed in [3], for the compliance
topology design of Kirchhoff plates, with volume constraint. The topology is identified by the strong
material distribution and the inclusions of weak material are use to mimic the holes. Finally, in order
to explain the significance of the topological derivative in topology optimization, we have presented
some numerical examples in the context of compliance topology optimization with volume constraint,
where the DKT-9 finite element was adopted for the problem discretization.

References

[1] Sokołowski, J. & Żochowski, A., On the topological derivative in shape optimization. SIAM Journal on
Control and Optimization, 37(4), pp. 1251–1272, 1999.

[2] Allaire, G., de Gournay, F., Jouve, F. & Toader, A., Structural optimization using topological and shape
sensitivity via a level set method. Control and Cybernetics, 34(1), pp. 59–80, 2005.

[3] Amstutz, S. & Andrä, H., A new algorithm for topology optimization using a level-set method. Journal
of Computational Physics, 216(2), pp. 573–588, 2006.

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



418 A.A. Novotny and D.E. Campeão

[4] Amstutz, S. & Novotny, A., Topological optimization of structures subject to von Mises stress constraints.
Structural and Multidisciplinary Optimization, 41(3), pp. 407–420, 2010.

[5] Giusti, S., Novotny, A. & Sokołowski, J., Topological derivative for steady-state orthotropic heat diffusion
problem. Structural and Multidisciplinary Optimization, 40(1), pp. 53–64, 2010.

[6] Novotny, A., Feijóo, R., Padra, C. & Taroco, E., Topological sensitivity analysis. Computer Methods in
Applied Mechanics and Engineering, 192(7-8), pp. 803–829, 2003.

[7] Novotny, A., Feijóo, R., Padra, C. & Taroco, E., Topological derivative for linear elastic plate bending
problems. Control and Cybernetics, 34(1), pp. 339–361, 2005.

[8] Novotny, A., Feijóo, R., Taroco, E. & Padra, C., Topological sensitivity analysis for three-dimensional
linear elasticity problem. Computer Methods in Applied Mechanics and Engineering, 196(41-44), pp. 4354–
4364, 2007.

[9] Amstutz, S., Horchani, I. & Masmoudi, M., Crack detection by the topological gradient method. Control
and Cybernetics, 34(1), pp. 81–101, 2005.

[10] Feijóo, G., A new method in inverse scattering based on the topological derivative. Inverse Problems,
20(6), pp. 1819–1840, 2004.

[11] Guzina, B. & Bonnet, M., Small-inclusion asymptotic of misfit functionals for inverse problems in acous-
tics. Inverse Problems, 22(5), pp. 1761–1785, 2006.

[12] Hintermüller, M. & Laurain, A., Electrical impedance tomography: from topology to shape. Control and
Cybernetics, 37(4), pp. 913–933, 2008.

[13] Masmoudi, M., Pommier, J. & Samet, B., The topological asymptotic expansion for the Maxwell equations
and some applications. Inverse Problems, 21(2), pp. 547–564, 2005.

[14] Auroux, D., Masmoudi, M. & Belaid, L., Image restoration and classification by topological asymptotic
expansion. Variational formulations in mechanics: theory and applications, Barcelona, Spain, 2007.

[15] Belaid, L., Jaoua, M., Masmoudi, M. & Siala, L., Application of the topological gradient to image restora-
tion and edge detection. Engineering Analysis with Boundary Element, 32(11), pp. 891–899, 2008.

[16] Hintermüller, M., Fast level set based algorithms using shape and topological sensitivity. Control and
Cybernetics, 34(1), pp. 305–324, 2005.

[17] Hintermüller, M. & Laurain, A., Multiphase image segmentation and modulation recovery based on shape
and topological sensitivity. Journal on Mathematical Imaging and Vision, 35, pp. 1–22, 2009.

[18] Larrabide, I., Feijóo, R., Novotny, A. & Taroco, E., Topological derivative: a tool for image processing.
Computers & Structures, 86(13-14), pp. 1386–1403, 2008.

[19] Amstutz, S., Giusti, S., Novotny, A. & de Souza Neto, E., Topological derivative for multi-scale linear
elasticity models applied to the synthesis of microstructures. International Journal for Numerical Methods
in Engineering, 84, pp. 733–756, 2010.

[20] Goethem, N.V. & Novotny, A., Crack nucleation sensitivity analysis. Mathematical Methods in the Applied
Sciences, 33(16), pp. 197–1994, 2010.

[21] Amstutz, S., Sensitivity analysis with respect to a local perturbation of the material property. Asymptotic
Analysis, 49(1-2), pp. 87–108, 2006.

[22] de Faria, J.R. & Novotny, A., On the second order topologial asymptotic expansion. Structural and
Multidisciplinary Optimization, 39(6), pp. 547–555, 2009.

[23] Nazarov, S. & Sokołowski, J., Asymptotic analysis of shape functionals. Journal de Mathématiques Pures
et Appliquées, 82(2), pp. 125–196, 2003.

[24] Amstutz, S. & Novotny, A., Topological asymptotic analysis of the Kirchhoff plate bending problem.
ESAIM: Control, Optimisation and Calculus of Variations, To appear, 2010.

[25] Amstutz, S., Aspects théoriques et numériques en optimisation de forme topologique. Phd thesis, Institut

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



Topology design of Kirchhoff plates based on topological derivative and a level-set domain representation 419

National des Sciences Appliquées, Toulouse, France, 2003.
[26] Laurain, A., Singularly perturbed domains in shape optimisation. Phd thesis, University Henri Poincaré,

Nancy, France, 2006.
[27] Novotny, A., Análise de sensibilidade topológica. Phd thesis, Laboratório Nacional de Computação Cien-

tífica, Petrópolis, Brazil, 2003.
[28] Delfour, M. & Zolésio, J., Shapes and Geometries. Advances in Design and Control. SIAM: Philadelphia,

2001.
[29] Sokołowski, J. & Zolésio, J., Introduction to shape optimization - shape sensitivity analysis. Springer-

Verlag: New York, 1992.
[30] Eshelby, J., The elastic energy-momentum tensor. Journal of Elasticity, 5(3-4), pp. 321–335, 1975.
[31] Ammari, H. & Kang, H., Reconstruction of small inhomogeneities from boundary measurements. Lectures

Notes in Mathematics vol. 1846, Springer-Verlag: Berlin, 2004.
[32] Ammari, H. & Kang, H., Polarization and moment tensors with applications to inverse problems and

effective medium theory. Applied Mathematical Sciences vol. 162, Springer-Verlag: New York, 2007.
[33] Kozlov, V., Maz’ya, W. & Movchan, A., Asymptotic analysis of fields in multi-structures. Clarendon Press:

Oxford, 1999.
[34] Little, R., Elasticity. Prentice-Hall: New Jersey, 1973.
[35] Osher, S. & Sethian, J., Front propagating with curvature dependent speed: algorithms based on hamilton-

jacobi formulations. Journal of Computational Physics, 78, pp. 12–49, 1988.
[36] Batoz, J.L., An explicit formulation for an efficient triangular plate-bending element. Advances in Applied

Mechanics, 18, pp. 1077–1089, 1982.

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8





Analysis of non-linear hyperelastic constitutive models
under simple shear deformation

L.C.S. Nunes
Laboratory of Opto-Mechanics (LOM/LMTA), Department of Mechanical

Engineering, TEM/PGMEC, Universidade Federal Fluminense – UFF
Rua Passo da Patria 156, 24210-240, Niterói, RJ – Brazil

Abstract

The purpose of this paper is to analyze the hyperelastic behavior, which is characterized by large deformation,
of a rubberlike material under simple shear deformation. In order to do this, some classical constitutive
models available in the literature are used to reproduce the experimental data. The idea is to investigate the
hyperelastic models widely used in finite elements code and to verify the agreement between the theoretical
and experimental data, taking into account simple shear conditions. The experimental procedure is performed
using digital image correlation (DIC) method, which is an optical-numerical approach to estimate full-field
displacements.

Keywords: simple shear, hyperelasticity, full-field method, constitutive models.

1 Introduction

Hyperelastic behavior is commonly observed in some polymers, mainly the long chain polymers, like
as elastomers (or rubbers) that are characterized by flexibility and stability. Polydimethylsiloxane
(PDMS) is a silicone rubber, which has a wide range of applications in mechanical sensors [1, 2],
electronic components [3, 4] and medical devices [5].

For determining mechanical behavior and properties of polymeric materials several mechanical tests
have been developed [6–8]. There are a number of testing machines which give rise to shear stresses
including lap shear, punch shear, torsion and four point loading. Guélon et al. [9] proposed a new
characterization method for rubber, which consists of performing only one heterogeneous mechanical
test. A test method for determining the shear modulus of elastomeric bearing was developed by
Topkaya and Yura [10]. Nunes [11] proposes to analyze small deformations of the adhesive in the
single lap joint specimen and to estimate the shear modulus of Polydimethylsiloxane (PDMS) using
the DIC method.

The polymer PDMS can be classified as a hyperelastic material, in which the strains may be large
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[12, 13]. In order to describe this behavior, a function so-called strain-energy function is taken into
consideration. There are many proposed strain-energy function expressions, some of them, which are
well tried within the constitutive theory of finite elasticity and frequently employed in the literature
[14]. The most widely cited strain-energy formulations are the Mooney-Rivlin and Ogden models
[15–17]. Recently, new hyperelastic models have been proposed [18–21]. Treloar [22] presented a well-
developed experimental work, in which the experimental data have been widely used in many articles.
Mechanical characterization tests of hyperelastic rubber-like materials using optical methods can be
found in recent literatures [23, 24].

The purpose of the present work is to investigate the mechanical behavior of the hyperelastic polymer
under large shear deformations, comparing some constitutive models found in literature. The angular
distortions are estimated by means of an experimental method known as Digital Image Correlation
(DIC). In order to do this, an arrangement based on single lap joint is used to generate a simple shear
deformation [11, 23]. The material parameters, taking into account Mooney-Rivlin, Yeoh, Nunes and
Odgen models and experimental data, are estimated using Levenberg-Marquardt method [25–27].

2 Digital Image Correlation Method

Digital Image Correlation (DIC) is an optical-numerical full-field surface displacement measurement
method [28–30]. It is based on a comparison between two images of a specimen coated by a ran-
dom speckled pattern in the undeformed and in the deformed states. Its special merits encompass
non-contact measurements, simple optic setups, no special preparation of specimens and no special
illumination.

The basic principle of the DIC method is to search for the maximum correlation between small
zones (subsets) of the specimen in the undeformed and deformed states, as illustrated in Fig. 1. From
a given image-matching rule, the displacement field at different positions in the analysis region can
be computed. The simplest image-matching procedure is the cross-correlation, which provides the
in-plane displacement fields u(x,y) and v(x,y) by matching different zones of the two images.

A commonly used correlation coefficient is defined as follows

c (u, v) =

∑m
i=1

∑n
j=1

[
f (xi, yj)− f̄

] [
g
(
x′i, y

′
j

)
− ḡ
]√∑m

i=1

∑n
j=1

[
f (xi, yj)− f̄

]2√∑m
i=1

∑n
j=1

[
g
(
x′i, y

′
j

)
− ḡ
]2 (1)

x′ = x+ u0 +
∂u

∂x
dx+

∂u

∂y
dy

y′ = y + v0 +
∂v

∂x
dx+

∂v

∂y
dy (2)

where f (x, y) is the pixel gray level value (ranging from 0 to 255) at the coordinates (x, y), for the
undeformed or original image; g (x′, y′), is the pixel gray level value at the coordinates (x′, y′) for the
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Figure 1: Schematic of the principle of digital image correlation method.

deformed or target image; f̄ and ḡ are the average gray values for images and, finally, u and v are,
respectively, the displacement components for the subset centers in the x and y directions.

3 Constitutive model of rubber elasticity

A material element dX in the reference configuration can be transformed, into a material element
dx in the current configuration, using the deformation gradient tensor F . The relation between these
elements is given by dX = Fdx [14, 16]. Let us consider the case of simple shear deformation,
illustrated in Fig. 2, which the rectangular Cartesian coordinate of any point of deformed element can
be written as

x1 = X1 + γX2; x2 = X2; x3 = X3 (3)

where γ is the amount of shear. Using the Eqs. (3), the deformation gradient tensor for simple shear,
F , can be expressed as

F =


1 γ 0

0 1 0

0 0 1

 (4)

From Eq. (4), the right Cauchy-Green deformation tensor for simple shear, C, can be written as
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Figure 2: Simple shear deformation.

C = F TF =


1 γ 0

γ γ2 + 1 0

0 0 1

 (5)

The characteristic equation det
(
C − λ2I

)
= 0, considering λ3 = 1, reduces to λ − λ−1 = γ, since

we may take λ−1
2 ≡ λ1 = λ ≥ 1 without loss of generality. Consequently, the principal stretches can

be given by

λ1 =

√
1 +

γ

2

2
+ γ

√
1 +

γ

4

2
and λ2 =

√
1 +

γ

2

2
− γ
√

1 +
γ

4

2
(6)

There are many tensor invariants that can be written in terms of the metric tensor in the undeformed
and deformed, as well as the relative stretches. The principal scalar invariants of the right Cauchy-
Green deformation tensor can be determined as

I1 = trC = γ2 + 3

I2 =
1

2

[
(trC)

2 − trC2
]
= γ2 + 3 (7)

I3 = J = detC = 1 (8)

A suitable strain-energy function for incompressible isotropic hyperelastic materials can be expressed
as a set of independent strain invariant of the right Cauchy-Green tensor C, given by

W =W [I1 (C) , I2 (C) , I3 (C)] (9)

The second Piola-Kirchhoff stress tensor is defined by [14]

S = 2
∂W (C)

∂C
= 2

[(
∂W

∂I1
+ I1

∂W

∂I2

)
I − ∂W

∂I2
C + I3

∂W

∂I3
C−1

]
(10)

The Cauchy stress σ can be expressed in terms of the second Piola-Kirchhoff stress tensor S by the
Piola transformation and it is given by s = J−1FSF T .
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Substituting Eqs. (5) and (3) into (10), the shear stress component can be given by

σ12 = 2

(
∂W

∂I1
+
∂W

∂I2

)
γ (11)

In order to investigate the hyperelastic behavior from experimental data four constitutive models
are taken into consideration. Mooney and Rivlin [14, 16] observed that rubber response was linear
under simple shear loading conditions. With this observation, they proposed a strain energy function
based on the first two invariants and the first order model can be defined by

W (I1, I2) = c10 (I1 − 3) + c01 (I2 − 3) (12)

where c10 and c01 are the material parameters. The shear modulus is defined by µ = 2 (c01 + c10)

Yeoh [14] proposes a model based on classical Mooney-Rivlin model, it can be expressed by

W (I1) = c1 (I1 − 3) + c2 (I1 − 3)
2
+ c3 (I1 − 3)

3 (13)

where c1, c2 and c3 are material constant. Moreover, in this case, the shear modulus is µ = 2c1 +

4c2 (I1 − 3) + 6c3 (I1 − 3)
2

A simple model developed to predict non-linear hyperelastic behavior of rubber-like material under
simple shear deformation was proposed by Nunes [23]. The model is

W (I) =
1

2

[
c1 (I − 3) + c2 (I − 3)

3/4
]

(14)

with constant parameters given by c1 and c2. The invariants are I = I1 = I2.
A very sophisticated development for simulating incompressible materials in the phenomenological

context is due to Odgen [14, 16]. The strain-energy as a function of principal stretches is given by

W (λ1, λ2, λ3) =
N∑
p=1

µp
αp

(
λ
αp

1 + λ
αp

2 + λ
αp

3 − 3
)

(15a)

In the present case,

W (λ) =
N∑
p=1

µp
αp

(
λαp + λ−αp − 2

)
(15b)

where the shear modulus is µ = 1
2

∑N
p=1 µpαp with µpαp > 0.

Substituting Eqs. (12), (13), (14) and (15) into Eq. (11), yields the component of Cauchy stresses
associated with Mooney-Rivlin, Yeoh, Nunes and Odgen, respectively, given by
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σ12 = µγ

σ12 = 2c1γ + 4c2γ
3 + 6c3γ

5

σ12 = 2c1γ +
3

2
c2
√
γ

σ12 =
2

1 + λ2

N∑
p=1

µp
(
λαp−1 − λ−αp−1

)
(16)

4 Experimental tests

In this work, a single lap joint is used to transfer load from one adherend to another by a simple
shearing mechanism [11, 23]. The stiffness of the adherends (steel A36) is much greater than the
adhesives (Polydimethylsiloxane) as can be found in literatures [11, 23]. Therefore, it is suitable to
assume the hypothesis of the adherends do not deform and the adhesives only deform in shear. The
experimental setup and geometry are schematically illustrated in Fig. 3.

(a) (b)

Figure 3: (a) Experimental arrangement and (b) simple lap joints.

The shear test was performed and the geometric shape for the single lap joint, schematically illus-
trated in Fig. 3(b), was considered with the following data: (a) different tensile forces, F ; (b) length
of restraint against transversal motion of 25 mm; segment of length, D = 50 mm; joint lengths, L,
equal to 51 mm; joint width, w = 25.4 mm; adherend and adhesive thickness, t = 1.6 mm and ta =
1.6 mm, respectively. The upper and lower adherends have the same characteristics, i.e., Steel A36
and the material of adhesive was a Silicone rubber (Polydimethylsiloxane).

The tests were performed with an apparatus developed for applying load in a single lap joint, a
CCD camera set perpendicularly to the specimen and a computer for capturing and processing the
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images. The experimental arrangement is presented in Fig. 3(a). The single lap joint, fixed in the
strain apparatus, was covered with painted speckles (random black and white pattern). The geometry
is in agreement with the schematic view illustrated in Fig 2. The CCD camera (Sony XCD-SX910)
used to record the images of the specimen has a resolution of 1376x1024 pixels. In this experimental
configuration, one pixel of the CCD camera corresponds to an area approximately equal to 4.65×4.65
µm2 on the specimen.

The basic idea of the experimental procedure was to take the images of specimen in the undeformed
and deformed states. With these data, it was determined the full-field displacements by means of
DIC program and consequently was estimated the angular distortion [11, 23]. The experiments were
conducted at room temperature considering quasi-static processes.

5 Results and discussion

Figure 4(a) illustrates the stress-strain curve for simple shear test, moreover, Mooney-Rivlin, Yeoh and
Nunes models are presented to describe the experimental behavior. Furthermore, stress and principal
stretch relationship is shown in Fig. 4(b), in this case, the experimental results is confronted with
Odgen model. Clearly, non-linear behavior may be observed. However, it is important to note that
Mooney-Rivlin model is a linear model.

(a) (b)

Figure 4: Simple shear deformation. Comparison between experimental data and model: Mooney-
Rivlin, Yeoh, Nunes and Odgen.

Values for nine parameters associated with constitutive models, present in Eqs. (16), were estimated
using Levenberg-Marquardt method, which is a well-known and powerful iterative method for solving
nonlinear least squares problems of parameter estimation. Parameters of Mooney-Rivlin, Yeoh, Nunes
and Odgen models, previously presented in section 3 are displayed in Table 1.

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



428 L.C.S. Nunes

Table 1: Fitted parameters for different constitutive models.

Fitted parameters

Mooney-Rivlin
µ = 1.91× 105

Yeoh
c1 = 1.48× 105; c2 = −4.35× 104; c3 = 1.39× 104

Nunes
c1 = 5.89× 104; c2 = 6.08× 104

Odgen
µ1 = 4.86× 106; µ2 = 4.86× 106; µ3 = 3.44× 104

α1 = 0.0202; α2 = 0.0206; α3 = 5.201

µ = 1.89× 105

6 Conclusion

The aim here was to compare some constitutive model to describe the simple shear behavior under
large deformation. In order to do that, a simple shear test was performed and the full-field displace-
ments were estimated by means of the Digital Image Correlation method. Based on these results,
values of angular distortion (i.e. shear strain), which are associated with different applied loads, were
determined. In order to find a best model to the experimental data, Mooney-Rivlin, Yeoh, Nunes and
Odgen models were investigated. As could be observed, there was a significant difference between the
experimental data and the classic Mooney-Rivlin model, whereas the Nunes model is much closer.
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Abstract

A recently introduced nonlocal peridynamic theory removes the obstacles present in classical continuum
mechanics that limit the prediction of crack initiation and growth in materials. Furthermore, damage growth
in composites involves complex and progressive failure modes. Current computational tools are incapable of
predicting failure in composite materials mainly due to their mathematical structure. However, the peridy-
namic theory removes these obstacles by taking into account non-local interactions between material points.
This study presents an application of the peridynamic theory for predicting the propagation of a pre-existing
crack in an isotropic plate subjected to velocity boundary conditions, and damage progression from a central
crack in fiber reinforced composite plates subjected to uniaxial tension loading.

Keywords: progressive, failure, composites, nonlocal, peridynamic theory.

1 Introduction

Despite the development of many important concepts to predict material behavior and failure, the
prediction of failure modes and residual strength of materials is a challenge within the framework of
the finite element method (FEM). Furthermore, the previous methods cannot address the nucleation
of damage in a continuous material. The field of fracture mechanics is primarily concerned with the
evolution of pre-existing defects within a body, rather than the nucleation of new defects. Even when
addressing crack growth, the FEM suffers from the inherent limitation that it requires remeshing after
each incremental crack growth. In addition to the need to remesh, existing methods for fracture mod-
eling also suffer from the requirement of an external crack growth criterion. This criterion prescribes
how damage evolves a priori based on local conditions, and guides the analysis as to when and how
damage initiates and propagates. Considering the difficulty in obtaining and generalizing experimen-
tal fracture data, providing such a criterion for damage growth, especially in composite structures,
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clearly presents a major obstacle to fracture modeling using conventional methods. This prevents such
methods from being applicable to problems in which multiple damage growth occurs and interacts in
complex patterns.

The governing equations of the FEM are based on the partial differential equations (PDEs) of
classical continuum mechanics and that the spatial derivatives required by the PDEs do not, by
definition, exist at crack tips or along crack surfaces. Therefore, the basic mathematical structure of
the formulation breaks down whenever a crack appears in a body. Various special techniques have
been developed in fracture mechanics to deal with this limitation. Generally, these techniques involve
redefining a body in such a way as to exclude the crack, then applying conditions at the crack surfaces
as boundary conditions.

In order to overcome these problems, Silling [1] introduced a nonlocal theory that does not require
spatial derivatives—the peridynamic (PD) theory. The main difference between the PD theory and
classical continuum mechanics is that the former is formulated using integral equations as opposed to
derivatives of the displacement components. This feature allows damage initiation and propagation
at multiple sites, with arbitrary paths inside the material, without resorting to special crack growth
criteria. In the PD theory, internal forces are expressed through nonlocal interactions between the
material points within a continuous body, and damage is a part of the constitutive model. Interfaces
between dissimilar materials have their own properties and damage can propagate when and where it
is energetically favorable for it to do so.

This study presents an application of the PD theory to predict the propagation of a pre-existing
crack in an isotropic plate subjected to velocity boundary conditions, and damage progression from a
central crack in fiber reinforced composite plates subjected to uniaxial tension loading.

2 Peridynamic theory

The deformation response of solid structures subjected to external forces can be obtained by assuming
the structure to be a continuous body or a continuum, without paying attention to its atomistic
structure. Hence, it is possible to perform both static and dynamic analyses of large structures within
a reasonable amount of time. The conventional approach that is used to analyze solid structures is
known as “classical continuum mechanics” and has been successfully applied to numerous problems
in the past. Within the classical continuum mechanics framework, it is assumed that the continuous
body is composed of an infinite number of infinitesimal volumes, which are called material points.
These material points interact with each other only if they are within the nearest neighborhood of
each other. These interactions are expressed in terms of contact forces or tractions, T , as shown in
Figure 1.

Using the conservation of linear momentum and relating the traction vectors, T , to the well-known
stress tensor, σ, results in the equation of motion of the material point, x, in classical continuum
mechanics

ρ (x) ü (x, t) = ∇ · σ + b (x, t) , (1)
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Figure 1: Interaction of material points in classical continuum mechanics.

where ρ(x), b(x, t), and ü(x, t) represent the mass density, body force density, and acceleration,
respectively, of the material point located at x. The spatial derivatives in the divergence operation
associated with the stress tensor, σ, do not exist on the discontinuity in the structure. Therefore,
Equation (1) is not valid for problems including discontinuities, such as cracks. Silling [1] replaced the
divergence term in Equation (1) with an integral term, which makes the new form of the equation of
motion applicable whether or not a discontinuity exists in the structure:

ρ (x) ü (x, t) =

∫
H

f (x′ − x,u′ − u) dH + b (x, t) . (2)

In Equation (2), the horizon, H, includes all the material points that the material point x can
interact with inside the body. The interaction force or peridynamic force between material points x
and x′can be expressed as f(x′−x,u′−u), and it is a function of the relative position vector, x′−x,
and relative displacement vector, u′ − u. The peridynamic force is along the same direction of the
relative position of these material points in the deformed configuration, i.e., y′−y = (x′+u′)−(x+u).
For an elastic isotropic material, the peridynamic force takes the form

f = c s
y′ − y
|y′ − y|

, (3)

where c, and s represent the peridynamic material parameter and stretch between material points x
and x′, respectively. The stretch, s is defined as

s =
|y′ − y| − |x′ − x|

|x′ − x|
(4)

The material parameter, c, can be related to the engineering material constants by equating the
strain energy densities of the PD and classical continuum theories at a material point inside a body
due to simple loading, such as uniform expansion. Silling and Askari [2] derived an explicit expression
for parameter c in the form
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c =
18κ

π δ4
, (5)

where κ is the bulk modulus of the material and δ represents the radius of a spherical horizon.
It can also be assumed that two material points, x and x′, cease to interact with each other if

the mechanical stretch between these material points exceeds a critical stretch value, s0, as shown in
Figure 2. This material model represents an elastic material behavior without allowing any permanent
deformation.

Figure 2: Constitutive relation between material points in an elastic material.

Termination of the interaction between material points can be associated with the failure of the
material by modifying the peridynamic force relation given in Equation (3) by introducing the failure
parameter µ(x′ − x, t)

f = µ (x′ − x, t) c s y
′ − y
|y′ − y|

, (6)

where the failure parameter can be defined as

µ (x′ − x, t) =

{
1 if s (x′ − x, t′) < s0 for all 0 < t′ < t

0 otherwise
. (7)

The inexplicit nature of local damage at a material point, x, arising from the introduction of failure
in the constitutive model, is removed by defining the local damage as

φ (x, t) = 1−
∫
H
µ(x′ − x, t)dH∫

H
dH

. (8)

Thus, local damage is the weighted ratio of the number of the broken interactions to the total
number of interactions within the horizon, H. The extent of damage is defined by a value between 0
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and 1, where 0 indicates that a material point has no damage and 1 indicates complete damage at the
material point. Also, a damage value of 0.5 and above indicates possible cracking.

In the case of isotropic materials, the critical stretch, s0, value can be related to the equivalent
energy release rate as derived by Silling and Askari [2]

s0 =

√
5G0

9κ δ
, (9)

where G0 is the critical energy release rate of the material and can be related to the fracture toughness
of the material.

In order to solve Equation (2), a collocation method is adopted and the numerical treatment involves
the discretization of the domain of interest into subdomains. The domain can be discretized into square
subdomains. With this discretization, the volume integration in Equation (2) is approximated, leading
to

ρ
(
x(i)

)
ü
(
x(i), t

)
=

M∑
j=1

f
(
u
(
x(j), t

)
− u

(
x(i), t

)
,x(j) − x(i)

)
V(j) + b

(
x(i), t

)
, (10)

where x(i) is the position vector located at the ith collocation (material) point and M is the number
of subdomains within the horizon of the ith material point. The position vector x(j) represents the
location of the jth collocation point. The volume of the jth subdomain is V(j).

Since peridynamics is a nonlocal theory and its equations of motion utilize integro-differential equa-
tions as opposed to partial differential equations in the case of the classical continuum theory, the
application of boundary conditions is different from that of the classical continuum theory. The trac-
tions or point forces cannot be applied as boundary conditions since their volume integrations result
in a zero value [3]. Therefore, the boundary conditions are applied over the volumes as body forces,
displacements, and velocities. As explained by Macek and Silling [4], the thickness of the region over
which the boundary conditions are applied should be comparable to the size of the horizon.

3 Peridynamic modeling of composite materials

The peridynamic formulation described in the previous section concerns an isotropic material where
there is no directional dependence of the interactions between the material points. However, if anisotropic
materials such as a fiber-reinforced composite structure are considered, the directional dependency
must be included in the peridynamic analysis. Therefore, four different peridynamic material param-
eters are introduced, as shown in Figure 3, to model a fiber-reinforced composite laminate. Note that
a material point of interest can only interact with a material point located either in the same ply or
in the adjacent plies.

Associated with a ply, the material parameter concerning the interaction of material points in the
fiber direction only is denoted with cf . The interaction of material points in all other directions within
a ply is governed by the material parameter, cm. The interaction between material points in adjacent
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Figure 3: Peridynamic bonds for a fiber-reinforced composite laminate.

plies is described by the material parameter cin and cis accounting for transverse normal and shear
deformations between the neighboring plies.

As in the case of isotropic materials, the peridynamic material parameters, cf , cm, cin and cis can
be expressed analytically in terms of the engineering material constants, E1, E2, E3, G12, and ν12, as

cf =
2E1 (E1 − E2)(

E1 − 1
9E2

) (∑N
q=1 ξqi Vq

) and (11a)

cm =
8E1E2(

E1 − 1
9E2

)
π t δ3

(11b)

and

cin =
Em
tV̄

and (11c)

cis =
2Gm
π t

1(
δ2 + t2 ln

(
t2

δ2+t2

)) , (11d)

where Em and Gm are the elastic modulus and shear modulus of the matrix material, respectively,
and V̄ is the volume of a material point. The initial length of the bond in the fiber direction and its
stretch after deformation between material points q and i are denoted by ξqi and sqi, respectively. The
volume of the material point, q that interacts with material point, i is denoted by Vq which can be
approximated as

Vq =
π t δ2

N
, (12)

in which N is the number of material points within its horizon, δ and t is the thickness of the lamina.
The detailed derivations of these expressions are given by Oterkus [3].
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Because of the pair-wise interaction of the material points, four independent material constants of
a lamina reduce to two independent constants.

along with constraints on material constants, G12 and ν12 as

G12 =
ν12E2

1− ν21 ν12
=

E1E2

3
(
E1 − 1

9E2

) and (13a)

ν12 =
1

3
(13b)

The constitutive or the force-stretch relations for the in-plane interactions of two material points,
referred to as fiber and matrix bonds, are shown in Figure 4.

Figure 4: Force-stretch relation for fiber and matrix bonds.

The critical parameters that define the failure of these bonds under tension and compression are
(sft, smt) and (sfc, smc), respectively, and can be determined based on the experimental measurements.
Interlayer damage represents the breakage of (interlayer) bonds between a layer and its adjacent layers
above and below. Hence, it provides the extent of delamination between the adjacent layers. Therefore,
the interlayer bonds are assumed to fail only in tension. The critical stretch value for the interlayer
bonds, sit, can be obtained analytically by equating the energy consumed by an advancing Mode-I
crack to the work required to break all interlayer bonds as

sit =

√
2GIc
t Em

(14)

where GIc and E3 correspond to the Mode-I critical energy release rate and elastic modulus of the
matrix material, respectively, and t is the ply thickness.

The transverse shear bonds can fail if the shear angle of the bonds exceeds the critical shear
angle value, φc. This value can also be obtained analytically by equating the energy consumed by an
advancing Mode-II crack to the work required to break all shear bonds as
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φc =

√
GIIC
tGm

(15)

where GIIc and Gm correspond to the Mode-II critical energy release rate and the transverse shear
modulus of the matrix material, respectively. The derivations of the relationships between the critical
stretch value for the interlayer bonds, sit and the Mode-I critical energy release rate and between the
critical shear angle value, φc and the Mode-II critical energy release rate, respectively, are given by
Oterkus [3].

4 Numerical results

The present approach is demonstrated by considering the propagation of a pre-existing crack in a
plate subjected to velocity boundary conditions, and damage initiation and growth patterns from a
pre-existing crack in two distinct laminate constructions under tension loading.

Plate with a pre-existing crack under velocity boundary conditions. A square plate with a pre-existing
central crack is shown in Figure 5. It has an edge length of L = W = 0.05m and a thickness of
h = L/500m. The plate is made of steel with an elastic modulus of E = 192GPa and a Poisson’s ratio
of ν = 1/3. A velocity boundary condition of V0(t) = 20m/s is applied in the vertical direction along
both of the horizontal edges through a boundary region with a thickness of b = 3∆x. The grid size
in the PD model is ∆x = h and the horizon is specified as δ = 3.015∆x. This particular value of the
grid size was determined based on a convergence study. The pre-existing central crack with an initial
length of 2a = W/5 is included in the PD model by allowing no interaction between the material
points that are defining the crack surfaces. Based on the unconditional convergence requirement as
explained by Silling and Askari [2], the time step is specified as ∆t = 1.3367× 10−8 s.

Figure 5: Square plate with a pre-existing central crack under velocity boundary conditions.
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If the interaction between the material points never ceases, i.e., no bond failure is allowed, the
crack opening displacement is computed as shown in Figure 6. Unlike the elliptical crack opening
displacement of classical continuum mechanics, the PD analysis predicts a cusp-like crack opening
displacement near the crack tip. As explained by Silling [1], the elliptical crack opening displacement
is a mathematical requirement of the unbounded stresses near the crack tips, which are physically
unacceptable. The PD theory successfully captures a more physically meaningful crack opening shape.

Figure 6: Crack opening displacement near the crack tip at the end of 1250 time steps when no failure
is allowed.

When failure of the PD bonds is allowed by using a critical stretch value of s0 = 0.04472, a self-
similar crack growth is observed at the end of 1250 time steps as shown in Figure 7. This growth is
typical for a mode-I type of loading. The position of the crack tip or crack growth is determined based
on the local damage value of any material point that exceeds φ = 0.5 along the x-axis. The growth
of a crack as a function of time is shown in Figure 8, and the crack growth speed can be evaluated as
1650 m/s. This crack speed is less than the Rayleigh wave speed of 2800 m/s, which is considered to
be the upper limit of the crack growth speed for a mode-I type of loading [2].

Figure 7: Damage indicating self-similar crack growth at the end of 1250 time steps under the velocity
boundary condition of V0(t) = 20m/s.
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Figure 8: Crack growth as a function of time.

If the applied velocity boundary condition is increased from V0(t) = 20m/s to V0(t) = 70m/s,
the crack growth characteristics change from self-similar to branching, as shown in Figure 9. It is
worth noting that the only parameter that was different between the two PD analyses while obtaining
Figures 7 and 9 is due to the applied velocity boundary condition. All other parameters remain the
same. The PD theory captures a very complex phenomenon of crack branching without resorting to
any external criteria that triggers branching.

Figure 9: Damage indicating crack branching at the end of 1000 time steps under a velocity boundary
condition of V0(t) = 70m/s.

Laminates with a pre-existing central crack under tension. The failure prediction capability of the
PD theory is demonstrated by introducing a central crack in the two laminate layups of [0◦/90◦/0◦]
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and [0◦/45◦/0◦]. Its elastic moduli in the fiber and transverse directions are E1 = 159.96GPa and
E2 = 8.96GPa, respectively. The length and width of the lamina are specified as L = 15.24mm and
W = 7.62mm, respectively. Ply thickness is specified as t = 0.1651mm. As shown in Figure 10, the
crack is aligned with the y-axis and has a length of 2a = 0.01778m. The laminates are subjected to a
velocity boundary condition of v0 =2.02×10−7 m/s along the edges of the lamina through a volumetric
region with a depth of b = 2.54×10−3 m. The PD model is generated by using a single layer of material
points with a grid size of ∆x = 6.35× 10−4 m. The horizon radius is specified as δ = 3.015∆x. Using
Equation (11), the fiber and matrix bond constants are computed as cf = 5.72 × 1023 N/m

6 and
cm = 1.86 × 1022 N/m

6. The critical stretch parameters specified for the fiber and matrix bonds are
sft = 0.027 and smt = 0.0135, respectively. The critical stretch and angle values for interlayer and
shear bonds can be specified as equal to the critical stretch of the matrix bond, i.e., sin = φc = 0.0135.
The quasi-static solution is obtained by using the adaptive dynamic relaxation technique by using a
time increment of 1 and stable mass density value of 7.005× 1018 kg/m

3 [5].

Figure 10: Loading and geometry of a laminate with a crack under tension loading.

For the [0◦/90◦/0◦] laminate, an “H”-type splitting failure mode is observed for all plies, as shown
in Figure 11. In this case, 0◦ plies are dominant in the loading direction; therefore, 0◦ plies determine
the failure behavior of the laminate. However, in the [0◦/45◦/0◦] laminate, a “Z”-type failure mode is
obtained in all plies due to the presence of a 45◦ ply, as shown in Figure 12. The delamination failure
mode between the plies due to the breakage of shear bonds around crack tip regions, shown in Figures
13 and 14. These damage patterns are consistent with those observed in a study by Bogert et al. [6].

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



442 E. Oterkus and E. Madenci

(a) (b) (c)

Figure 11: Matrix bond damage plots for a laminate of [0◦/90◦/0◦] with a pre-existing crack for
smt = sin = φc: (a) bottom ply, 0◦; (b) center ply, 90◦, and (c) top ply, 0◦.

(a) (b) (c)

Figure 12: Matrix bond damage plots for a laminate of [0◦/45◦/0◦] with a pre-existing crack for
smt = sin = φc: (a) bottom ply, 0◦; (b) center ply, 90◦, and (c) top ply, 0◦.

(a) (b) (c)

Figure 13: Shear bond damage plots for a laminate of [0◦/90◦/0◦] with a pre-existing crack for smt =
sin = φc: (a) bottom ply, 0◦; (b) center ply, 90◦, and (c) top ply, 0◦.
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(a) (b) (c)

Figure 14: Shear bond damage plots for a laminate of [0◦/45◦/0◦] with a pre-existing crack for smt =
sin = φc: (a) bottom ply, 0◦; (b) center ply, 90◦, and (c) top ply, 0◦.

5 Conclusions

Based on the numerical results, the PD approach successfully predicts the damage growth patterns
in fiber-reinforced laminates with a pre-existing crack while considering the distinct properties of the
fiber and matrix, as well as of the interlayer material between the plies. The predictions capture the
correct failure mechanisms of matrix cracking, fiber breakage, and delamination without resorting to
any special treatments, and agree with the experimental observations published in the literature. The
simulations also capture failure modes among each ply, which are usually distinct; they heavily depend
on fiber direction, which is realistically exhibited in the current results. It can be concluded that the
peridynamic theory is a powerful method that can be employed for failure analysis of composite
materials.

References

[1] Silling, S., Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids,
48, pp. 175–209, 2000.

[2] Silling, S.A. & Askari, E., A meshfree method based on the peridynamic model of solid mechanics. Comput
Struct, 83, pp. 1526–1535, 2005.

[3] Oterkus, E., Peridynamic theory for modeling three-dimensional damage growth in metallic and composite
structures. Ph.D. thesis, University of Arizona, 2010.

[4] Macek, R.W. & Silling, S.A., Peridynamics via finite element analysis. Finite Elem Anal Des, 43, pp.
1169–1178, 2007.

[5] Kilic, B., Peridynamic theory for progressive failure prediction in homogeneous and heterogeneous materials.
Ph.D. thesis, University of Arizona, 2008.

[6] Bogert, P.B., Satyanarayana, A. & Chuncu, P.B., Comparison of damage path predictions for compos-
ite laminates by explicit and standard finite element analysis tools. 7th AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference, AIAA 2006-1750: Newport, Rhode Island,

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



444 E. Oterkus and E. Madenci

2006.

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



Hybrid and mixed variational principles for the fully
nonlinear analysis of shells of Reissner-Mindlin type
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Abstract

This paper addresses the development of some alternative hybrid and mixed variational formulations for the
geometrically-exact three-dimensional first-order-shear shell boundary value problem. In the framework of the
complementary-energy-based formulations, a Legendre transformation is used to introduce the complementary
energy density in the variational statements as a function of the cross-sectional resultants only. The corre-
sponding variational principles are shown to feature stationarity within the framework of the boundary-value-
problem. The main features of the principles are highlighted, giving special attention to their relationships
from both theoretical and numerical point of view.

Keywords: nonlinear analysis of shells, mixed-hybrid variational principles, geometrically exact shells.

1 Introduction

Variational principles constitute the core of the development of numerical methods in Solid Mechan-
ics. The utility of such principles is two-fold: first, they provide a very convenient method for the
derivation of the governing equations and natural boundary conditions of the boundary value prob-
lem and, second, they provide the mathematical foundation required to produce consistent numerical
approximations. In this second role, the variational methods have been most useful in Computational
Solid Mechanics.

Many different variational principles can be constructed depending on the equations enforced in
the weak form. Perhaps the most remarkable variational principle is the Principle of Stationary Total
Potential Energy, which states that, among all kinematically admissible displacement fields, those that
satisfy the equilibrium conditions in the domain and at the boundary, lead to a stationary value of
the total potential energy functional.

Throughout the text, italic Latin or Greek lowercase letters (a, b, . . . , α, β, . . .) denote scalar quanti-
ties, bold italic Latin or Greek lowercase letters (a, b, . . . ,α,β, . . .) denote vectors, while bold italic
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Latin or Greek capital letters (A, B, . . .) denote second-order tensors. Summation convention over
repeated indices is adopted, with Greek indices ranging from 1 to 2 and Latin indices from 1 to 3.

2 The geometrically-exact first-order-shear shell model

In this work, we recall the geometrically-exact six-parameter shell formulation presented in Campello
et al [1] (which is one of the existing shell models undergoing large strains and finite rotations, see [1]
for further references).

Although it may be not necessary, our approach defines energetically conjugated cross-sectional
stresses and strains, based on the concept of shell director with a standard Reissner-Mindlin kinemat-
ical assumption. Due to the use of cross-sectional quantities, the derivation of equilibrium equations in
strong and weak forms is considerably simpler, and the linearization of the latter leads naturally to a
symmetric bilinear form for hyperelastic materials and conservative loadings (even far from equilibrium
states). The resulting expressions are much similar to those obtained for geometrically-exact spatial
rods, rendering a very convenient pattern for the simultaneous coding of rod and shell finite elements.
Finite rotations may be treated here by the Euler-Rodrigues formula in a total or updated Lagrangian
way. Two different parameterizations may be considered: (i) the usual Euler rotation vector and (ii)
the Rodrigues vector-like parameters [1]. The first is singularity-free for any rotation increment while
the latter delivers computationally more efficient expressions.

It is assumed that the middle surface of the shell is plane at the initial reference configuration.
Initially curved shells can be regarded as a stress-free deformed state from the plane initial position,
as shown in [2]. Let {er1, er2, er3} be an orthogonal system, with the vectors erα placed on the shell
reference mid-plane and er3 normal to this plane, as shown in Fig. 1. The position of any shell material
point in the reference configuration can be described by

ξ = ζ + ar , (1)

where the vector ζ = ξαe
r
α defines a point on the reference mid-surface and ar is the shell director at

this point, given by ar = ζer3. Here ζ ∈ H = [−hb, ht] is the thickness coordinate, with h = hb + ht

being the shell thickness in the reference configuration (observe that {ξα, ζ} sets a three-dimensional
Cartesian frame).

In the current configuration the position x of any material point can be expressed by the vector
field

x = z + a, (2)

where z = ẑ(ζα) describes the current position of a point in the middle surface and a is the current
director at this point, obtained as a = Qar, with Q as the rotation tensor. Notice that no thickness
change is assumed during the motion and that first order shear deformations are accounted for since a
is not necessarily normal to the current mid-surface. Let now {e1,e2, e3} be a local orthogonal system
on the current configuration, with ei = Qeri , as depicted in Fig. 1.
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Figure 1: Shell description and basic kinematical quantities.

The rotation tensor Q = Q̂ (θ) may be expressed in terms of the Euler rotation vector θ, by means
of the well-known Euler-Rodrigues formula

Q = I +
sin θ

θ
Θ+

1

2

(
sin θ/2

θ/2

)2

Θ2 , (3)

in which θ is the rotation angle given by θ = ∥θ∥. Still in (3) Θ = Skew (θ) is the skew-symmetric
tensor whose axial vector is θ. Here, we will keep the presentation in terms of θ and for simplicity we
will adopt the total Lagrangian description for the rotation.

Having defined z and ζ, the displacements of any point of the reference middle plane can be
computed by

u = z − ζ. (4)

The components of u and θ on a global Cartesian system constitute the 6 degrees-of-freedom of this
shell model.

Two skew-symmetric tensors that describe the specific rotations of the director can be defined as
Kα = Q,αQ

T . One can show that the corresponding axial vectors are κα = axial(Kα) = Γθ,α, with
the tensor Γ given in [1].

From differentiation of (2) with respect to ξ one can evaluate the deformation gradient F . This
leads to the definition of the following material cross-sectional strain vectors

ηrα = QTz,α − erα and κrα = ΓTθ,α . (5)
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These two vectors may be regarded as cross-sectional generalized strains, with z,α = erα + u,α,
where we have introduced the notation (•),α = ∂(•)/∂ξα for derivatives. One may understand that
the components ηrα · erβ of ηrα operate as membrane strains, while ηrα · er3 as transversal shear strains.
Expressions (5) are the back-rotated counterparts of ηα = z,α − eα and κα, respectively.

Let the first Piola-Kirchhoff stress tensor be written as P = τ i⊗ eri . The quantities τ i are nominal
stress vectors, and act on cross-sectional planes whose normal vectors on the reference configuration
are eri . Integration of two first vectors stress vectors along the shell thickness allows the definition of
generalized cross-sectional stresses, i.e.

nα =

∫
H

τα dζ and mα =

∫
H

a× τα dζ . (6)

The third vector is assumed to perform no work in this shell model (see a discussion on the plane
stress issue in [1]).

On the other hand, let ñ and m̃ be the applied external forces and moments respectively, both
per unit area of the middle surface in the reference configuration. The shell local equilibrium can be
stated by Statics in a standard way. The result in the shell domain Ω ⊂ R2 is

nα,α + ñ = o and

mα,α + z,α × nα + m̃ = o .
(7)

On the other hand, the back-rotated cross-sectional resultants are defined by

nrα = QTnα and mr
α = QTmα . (8)

The boundary of the domain Ω is denoted by Γ = ΓD ∪ ΓN , subdivided, as usual, in Dirichlet and
Neumann parts according to the following boundary conditions

u = ū and θ = θ̄ on ΓD

νrαnα = n̄ and νrαmα = m̄ on ΓN ,
(9)

respectively, where νrα = νr · erα are the components of the unitary normal to the boundary. In (9),
ū and θ̄ are respectively the prescribed displacements and rotations on ΓD, as well as, n̄ and m̄ are
respectively the applied external forces and moments per unit reference length on ΓN .

For the sake of convenience, let us define the following assembled vectors

σrα =

[
nrα

mr
α

]
, εrα =

[
ηrα

κrα

]
, q̃ =

[
ñ

µ̃

]
, q̄ =

[
n̄

µ̄

]
and d =

[
u

θ

]
, (10)

where the pseudo-moments µ̃ = ΓT m̃ and µ̄ = ΓT m̄ have been introduced (see the remark in [1] on
this matter). Note that (5) can be recast as

εrα = ε̂rα (d) . (11)

Let us also introduce the following operators
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Λ =

[
Q O

O Q

]
and Hα =

[
Q O

O Γ

]
. (12)

Making use of this generalized vectors and operators, the equilibrium boundary-value problem,
described by (7) and (9), is reduced to the following synthetic form

T eα (d)σrα + q̃ = o in Ω

νrαHσ
r
α − q̄ = o on ΓN

, (13)

where (with Z,α = Skew (z,α))

T eα (d) = ψ
e
α∆

e
αΛ (no sum), with

ψeα =

[
I O O

O ΓTZ,α ΓT

]
and ∆e

α =


I ∂
∂ξα

O

I O

O I ∂
∂ξα

 . (14)

Let us introduce the trial displacement space given by

D =
{
d ∈ H1 (Ω)

∣∣ d = d̄ on ΓD
}
, (15)

where H1 is the Sobolev space of first order. D contains functions that satisfy the Dirichlet boundary
conditions. Let us also introduce the corresponding the test function linear space given by

δD =
{
δd ∈ H1 (Ω) | δd = o on ΓD

}
. (16)

The weak form of the equilibrium boundary-value problem (13) is∫
Ω

[T eα (d)σrα + q̃] · δddΩ+
∫
ΓN

[q̄ − νrαHσrα] · δd dΓ = 0, ∀δd ∈ δD, (17)

which, after the application of the divergence theorem, delivers∫
Ω

[−σrα · T cα (d) δd+ q̃ · δd] dΩ+

∫
ΓN

q̄ · δd dΓ = 0 , ∀δd ∈ δD, (18)

where

T cα (d) = ΛTΨc
α∆

c
α (no sum), with

Ψc
α =

[
I O Z,αΓ

O Γ Γ,α

]
and ∆c

α =


I ∂
∂ξα

O

O I ∂
∂ξα

O I

 . (19)

(18) is a necessary and sufficient condition for (13). The expression of Γ,αcan be found in [1].
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For hyperelastic material behavior, a strain energy density per unit reference area ψ = ψ̂ (εr1, ε
r
2) can

be defined such that

σrα = ∂αψ =
∂ψ

∂εrα
. (20)

Let us assume that ψ is a differentiable and convex function with respect to its arguments. On the
basis of these assumptions, equation (20) establishes a one-to-one correspondence between the stress-
resultant vectors σrα and the generalized cross-sectional strains εrβ . Legendre has shown that this
type of equation can be transformed into a conjugate form by introducing a new function ψ̂∗ (σr1,σ

r
2)

defined by

ψ̂∗ (σr1,σ
r
2) = σ

r
α · εrα − ψ̂ (εr1, ε

r
2) , (21)

which is called complementary strain energy density. Differentiation of this function leads to

εrα = ∂αψ
∗ =

∂ψ∗

∂σrα
. (22)

The strong form of the boundary value problem governing the response of our shell model with
hyperelastic material behavior consists of the following three sets of differential equations to be solved
in Ω

T eα (d)σrα + q̃ = o in Ω

σrα − ∂αψ = o in Ω

εrα − ε̂rα(d) = o in Ω

(23)

representing equilibrium, constitutive and compatibility conditions in the domain, respectively, and,
additionally, a set of prescribed boundary conditions on the boundary Γ = ΓD ∪ ΓN , divided into
Dirichlet (kinematical) and Neumann (statical) conditions, respectively, as follows

d− d̄ = o on ΓD

νrαHσ
r
α − q̄ = o on ΓN

(24)

3 Some multi-field variational principles

We present now some multi-field variational principles that correspond to problem (23) with boundary
conditions (24) (see also [3]).

3.1 Principle of total potential energy

We start with the well-known Principle of Stationary Total Potential Energy for didactic purposes.
The Total Potential Energy is defined by the one-field functional U : D → R given by
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U (d) =

∫
Ω

ψ ◦ ε̂rα (d) dΩ−
∫
Ω

q̃ · d dΩ−
∫
ΓN

q̄ · d dΓ . (25)

In order to (25) be stationary, one gets the necessary condition δU = 0, ∀δd ∈ δD, where

δU =

∫
Ω

[−∂αψ · T cα (d) δd+ q̃ · δd] dΩ+

∫
ΓN

q̄ · δd dΓ . (26)

is the Gâteaux derivative of (25). Introducing the constitutive equation (23)2 in (26), one arrives at
(18), which, after the application of the divergence theorem, delivers (17).

Hence, it can be concluded that a geometrically exact first-order-shear shell model is in equilibrium
if and only if its total potential energy has a stationary value at the solution. This result is known as
the Principle of Stationary Total Potential Energy.

3.2 Three-field principle of Veubeke-Hu-Washizu type

The Principle of Stationary Total Potential Energy can be generalized through the well-known method
of Lagrange multipliers, which allows to introduce the compatibility equation (23)3 and the kine-
matical boundary condition (24)1, assumed now as subsidiary conditions, into the framework of the
variational expression (25). The result is the three-field functional of Veubeke-Hu-Washizu Type,
ΠV HW : H1 (Ω)×H0 (Ω)×H0 (Ω)→ R, given by

ΠV HW (d,σrα, ε
r
α) =

∫
Ω

[−ψ + σrα · (εrα − ε̂rα (d)) + q̃ · d] dΩ+

+

∫
ΓN

q̄ · ddΓ +

∫
ΓD

νrαHσ
r
α ·
(
d− d̄

)
dΓ .

(27)

Equations (23) and both boundary conditions (24) render this functional stationary. The major
advantage of (27) is the fact that it avoids the inversion of the constitutive equation (23)2. On the
other hand it is a mixed functional, with the well-known stability problems in the approximation of
saddle-points.

3.3 Two-field principle of Hellinger-Reissner type

It is interesting to note that, the two-field Principle of Hellinger-Reissner owes its origin to the idea
that, in geometrically non-linear problems, the difficulties with the Complementary Potential Energy
could be circumvented by considering stresses and displacements as primal variables.

The two-field Principle of Hellinger-Reissner Type in our framework can be obtained from (27),
considering the inverse of the constitutive equation given by (21). The result is a two-field functional
ΠHR : H1 (Ω)×H0 (Ω)→ R given by
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Π∗
HR (d,σr) =

∫
Ω

[ψ∗ − σrα · ε̂rα (d) + q̃ · d] dΩ+

+

∫
ΓN

q̄ · d dΓ +

∫
ΓD

νrαHσ
r
α ·
(
d− d̄

)
dΓ .

(28)

The corresponding Euler-Lagrange equations are

T eα (d)σrα + q̃ = o in Ω

∂αψ
∗ − ε̂rα (d) = o in Ω

(29)

and the boundary conditions (24). It is a mixed functional, with the known stability problems in the
approximation of saddle-points.

3.4 Two-field principle of total complementary potential energy

Although in the framework of the two-field Principle of Hellinger-Reissner Type, the equilibrium
equations (29)1 have been obtained as Euler-Lagrange equations, they can be instead considered as
subsidiary conditions to be satisfied a priori. Accordingly, assuming that equilibrium holds, when sub-
jecting (28) to the equilibrium equations by means of appropriate Lagrange multipliers, the following
augmented Lagrangian is obtained

L∗ (d,σrα) = Π∗
HR (d,σrα)−

∫
Ω

[T eα (d)σrα + q̃] · d dΩ+
∫
ΓN

(νrαHσ
r
α − q̄) · d dΓ . (30)

which, after the use of the divergence theorem, delivers the following functional

U∗ (d,σrα) =

∫
Ω

[ψ∗ + σrα · (T cα (d)d− ε̂rα (d))] dΩ−
∫
ΓD

νrαHσ
r
α · d̄ dΓ . (31)

Now we introduce the function space

εd =

{
σrα ∈ H1 (Ω)

∣∣∣∣∣ T eα (d)σrα + q̃ = o in Ω and

νrαHσ
r
α = q̄ on ΓN

}

and the linear space

δε (d) =

{
δσrα ∈ H1 (Ω)

∣∣∣∣∣ T eα (d) δσrα = o in Ω and

νrαHδσrα = o on ΓN

}
,

in order to write U∗ : H1 (Ω)× E (Ω)→ R and to get the Gâteaux derivative of (31), which is
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δU∗ =

∫
Ω

[∂αψ
∗ − ε̂rα (d)] · δσrαdΩ+

∫
ΓD

(
d− d̄

)
· νrαHδσrαdΓ . (32)

Hence, the corresponding Euler-Lagrange equations emanating from δU∗ = 0, ∀δd ∈ H1 (Ω) , ∀δσr ∈
δE (Ω) , are

∂αψ
∗ − ε̂rα (d) = o in Ω

d− d̄ = o on ΓD
(33)

which are clearly the compatibility equations in the domain and at the boundary.

3.5 Hybrid principle of Hellinger-Reissner type

Relaxing the continuity requirements of the displacements along the interelement boundaries (here
indicated by ΓIE) by means of a Lagrange multiplier qΓ, a generalized hybrid form of the functional
(28) can be built. It is a (2+2)-field hybrid-mixed functional of Hellinger-Reissner type indicated by
Π2
HR : H1 (Ω)×H0 (Ω)×H0 (ΓIE)×H0 (ΓIE)→ R and defined as

Π2
HR

(
d,σr,dΓ, qΓ

)
= ΠHR (d,σr) +

∫
ΓD

qΓ ·
(
dΓ − d̄

)
dΓ+

∫
ΓIE

qΓ ·
(
d− dΓ

)
dΓ . (34)

For this functional, the Euler-Lagrange equations are (29) and

q̄ − qΓ = o on ΓN

dΓ − d̄ = o on ΓD

qΓ − νrαHσrα = o on ΓIE

d− dΓ = o on ΓIE

(35)

A hybrid form of the Two-field Principle of Total Complementary Potential Energy (31) is also
possible. Due to the lack of space, it will not be presented. This functional will be used in the derivation
of equilibrated co-rotational finite elements. This is our next goal.
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Abstract

Human gait is controlled, in part, by central pattern generator (CPG), responsible for the production of
rhythmic movements. This CPG can be modeled by means of a oscillators system, which generates patterns
similar to human CPG, becoming possible the human gait simulation. In order to create this system, a
set of coupled van der Pol oscillators was used, simulating the behavior of the hip and knees angles of a
two-dimensional locomotor model. The objective of the work presented here is to analyze the dynamics of
this oscillators system by means of bifurcation diagrams and Poincaré maps. From the analysis and graphs
generated in MATLAB, it was possible to evaluate characteristics of the system, such as: sensitivity to the
initial conditions, presence of strange attractors and other phenomena of chaos. In the course of tests, we
verify that diagrams did not clearly present bifurcation as simple curves, but as a cloud of points. Considering
the complexity of the system, this fact can be explained by two points of view: one is related to the coupling
terms and their relationship, and other one is related to the quasi-periodic response of the system. Both of
them will be presented and analyzed in this work. Based on the results of the study, we conclude that although
the use of oscillators represents an excellent way for generating pattern signals of locomotion, its application
in the control of a bipedal locomotor will only be possible with the correct choice of parameters, which must
be done from the data provided by the dynamical analysis.

Keywords: locomotion, CPG, oscillators, chaos.

1 Introduction

Year after year, from technological advances, based on theoretical and experimental researches, the
man tries to copy or to imitate some systems of the human body. It is the case, for example, of the
central pattern generator (CPG), responsible for the production of rhythmic movements [1], [2], and
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[3]. Figure 1 presents a scheme of the control system of the human locomotion, controlled by the central
nervous system, which the central pattern generator supplies a series of pattern curves for each part of
the locomotor. This information is passed to the muscles by means of a network of motoneurons, and
the conjoined muscular activity performs the locomotion. Sensorial information about the conditions
of the environment or some disturbance are supplied as feedback of the system, providing a fast action
proceeding from the central pattern generator, which adapts the gait to the new situation.

Figure 1: Control system of the human locomotion.

Modelling of a CPG can be made by means of coupled oscillators, and this system generates patterns
similar to human CPG, becoming possible the human gait simulation. There are some significant works
about the locomotion of vertebrates controlled by central pattern generators: [4], and [5].

From a model of two-dimensional locomotor, oscillators with integer relation of frequency can be
used for simulating the behaviour of the hip angle and of the knees angles. Each oscillator has its
own parameters and the link to the other oscillators is made through coupling terms. We intend
to evaluate a system with coupled van der Pol oscillators. Some previous works about CPGs using
nonlinear oscillators, applied in the human gait simulation, can be seen in [6–10].

From the oscillators system, we achieve the dynamical analysis by means of bifurcation diagrams and
Poincaré maps. With graphs generated in MATLAB, it was possible to evaluate some characteristics
of the system, such as: sensitivity to the initial conditions, presence of strange attractors and other
phenomena of the chaos.

2 Human gait

Despite the people not walk in completely identical way, some characteristics in the gait can be
considered universal, and these similar points serve as base for description of patterns of the kinematics,
dynamics and muscular activity in the locomotion.
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In this work, our interest is related to the patterns of the hip and knee angles, more specifically, in
sagittal plane. According [11], Fig. 2 presents the graphs of angular displacement and phase space of
the hip, while Fig. 3 presents the graphs of angular displacement and phase space of the knee.

Figure 2: Angular displacement and phase space of the hip (mean ± deviation).

Figure 3: Angular displacement and phase space of the knee (mean ± deviation).

From the knowledge of these patterns of behaviour, we intend to create a CPG using the system of
coupled oscillators. This system will be applied in a biped locomotor model to simulate the human
gait.

In order to specify this model, we consider some particularities of the human locomotion, such as the
determinants of gait [12], and [13]. The model presented here characterises the three most important
determinants of gait: the compass gait that is performed with stiff legs like an inverted pendulum (the
pathway of the centre of gravity is a series of arcs); the knee flexion of the stance leg, which combined
with pelvic rotation and pelvic tilt achieve minimal vertical displacement of the centre of gravity; and
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the plantar flexion of the stance ankle, where the effects of the arcs of foot and knee rotation smooth
out the abrupt inflexions at the intersection of the arcs of translation of the centre of gravity.

Figure 4 presents the biped model with its angles and lengths, where: ℓs is the length of foot
responsible for the support (toes), ℓp is the length of foot that raises up the ground (sole), ℓt is the
length of tibia, and ℓf is the length of femur. The angle of the hip θ4 and the angles of the knees θ3 and
θ5 will be determined by the CPG system, while the other angles are calculated by the kinematical
analysis of the mechanism. In this work we will not present details of this analysis, which can be seen
in [8].

Figure 4: Biped model with the determinants of gait, angles and lengths.

3 CPG system

Coupled oscillators systems have been extensively used in studies of physiological and biochemical
modelling. Since the years of 1960, many researchers have studied the case of coupling between two
oscillators, because this study is the basis to understand the phenomenon in a great number of coupled
oscillators. One of the types of oscillators that can be used in coupled systems is the auto-excited ones,
which have a stable limit cycle without external forces. The van der Pol oscillator is an example of
this type of oscillator, and it will be used in this work. Then, considering a system of n coupled van
der Pol oscillators, from van der Pol equation:

ẍ− ε
(
1− p (x− x0)2

)
ẋ+Ω2 (x− x0) = 0 ε, p ≥ 0 (1)
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where ϵ, p and Ω correspond to the parameters of the oscillator, and adding coupling terms that relate
the oscillators velocities, we have:

θ̈i − εi
[
1− pi (θi − θio)2

]
θ̇i +Ω2

i (θi − θio)−
n∑
j=1

ci,j

(
θ̇i − θ̇j

)
= 0 i = 1, 2, ..., n (2)

which represents coupling between oscillators with the same frequency, where θ corresponds to the
system degrees of freedom. In the case of coupling between oscillators with integer relation of frequency,
the equation would be:

θ̈h − εh
[
1− ph (θh − θho)2

]
θ̇h +Ω2

h (θh − θho)−
m∑
i=1

ch,i

[
θ̇i (θi − θio)

]
−

n∑
k=1

ch,k

(
θ̇h − θ̇k

)
= 0 (3)

where ch,i[θ̇i (θi − θio)] is responsible for the coupling between oscillators with different frequencies,
while ch,k

(
θ̇h − θ̇k

)
, also seen in Eq. (2), effects the coupling between oscillators with the same

frequency [14].
To generate the angles θ3, θ4 and θ5 as a periodic attractor of a nonlinear net, three coupled van der

Pol oscillators were used. These oscillators are mutually coupled by terms that determine the influence
of one oscillator on the others (Fig. 5).

Figure 5: Structure of coupling oscillators.

Applying Eq. (2) and (3) to the proposed problem, knowing that the frequency of θ3 and θ5 (knee
angles) is double of θ4 (hip angle), we have the following equations:
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θ̈3 − ε3[1− p3 (θ3 − θ3o)2 ] θ̇3 +Ω2
3 (θ3 − θ3o)− c3,4

[
θ̇4 (θ4 − θ4o)

]
− c3,5

(
θ̇3 − θ̇5

)
= 0 (4)

θ̈4 − ε4[1− p4 (θ4 − θ4o)2 ] θ̇4 +Ω2
4 (θ4 − θ4o)− c4,3

[
θ̇3 (θ3 − θ3o)

]
− c4,5

[
θ̇5 (θ5 − θ5o)

]
= 0 (5)

θ̈5 − ε5[1− p5 (θ5 − θ5o)2 ] θ̇5 +Ω2
5 (θ5 − θ5o)− c5,4

[
θ̇4 (θ4 − θ4o)

]
− c5,3

(
θ̇5 − θ̇3

)
= 0 (6)

From Eq. (4)-(6), using the parameters shown in Table 1 together with values supplied by [8], the
graphs were generated in MATLAB as shown in Fig. 6, which present, respectively, the behaviour of
θ3, θ4 and θ5 as a function of time and stable limit cycles of oscillators.

Table 1: Parameters of van der Pol oscillators.

c3,4 c4,3 c3,5 c5,3 c4,5 c5,4 ϵ3 ϵ4 ϵ5

0.001 0.001 0.1 0.1 0.001 0.001 0.01 0.1 0.01

Figure 6: Angles as a function of time, and trajectories in the phase space.

Comparing Fig. 6 with the experimental results presented in Fig. 2 and 3, it is verified that the
coupling system supplies similar results, what confirms the possibility of use of mutually coupled van
der Pol oscillators in the modelling of the CPG.

Figure 7 shows, with a stick figure, the gait with a step length of 0.63 m. Dimensions used in the
model can be seen in Table 2.
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Table 2: Model dimensions.

Thumb Foot Leg (below the knee) Thigh

0.03 m 0.11 m 0.37 m 0.37 m

Figure 7: Stick figure showing the gait with a step length of 0.63 m.

4 Dynamical analysis

The nonlinear dynamical analysis of the system presented here requires the definition of some usual
concepts. Usually, for some values of parameters, the system behaviour is periodic, and for other values
the behaviour is chaotic. A periodic system returns to its state after a finite time t. The trajectory in
the phase space is represented by a closed curve. The chaotic system presents trajectories of non-closed
orbits that are generated by the solution of a deterministic set of ordinary differential equations.

Two conditions must be satisfied to make possible that a system presents chaotic behaviour: the
equations of motion must include a nonlinear term; and the system must have at least three inde-
pendent dynamic variables. The main consequence associated with the chaos is the sensitivity to the
initial conditions. In chaotic systems, a small change in the initial conditions results in a drastic change
in the system behaviour.

Also, in chaotic systems, we observe the bifurcation phenomenon, which represent the stroboscopic
distribution of the system response from slow variation of a parameter. This method was applied here,
which implies to simulate different parameter values that we want to analyze, evaluating the response
in bifurcation diagrams and Poincaré maps.

More details about the Chaos theory and its characteristics can be found in [15–17].
Then, considering different values for the parameters ϵ3, ϵ4 and ϵ5, the tests have been performed

using MATLAB to generate the bifurcation diagrams and Poincaré maps. In principle, keeping values
of ϵ4 = 0.1 and ϵ5 = 0.01, the value of ϵ3 was varied from 0 to 2. Other values of the system have
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been kept. Figure 8 presents the bifurcation diagram showing the behaviour of knee oscillator θ3 with
variation of parameter ϵ3, which represents the damping term related with this oscillator. Also, we
have the strange attractor generated in the analysis of knee oscillator θ3, observed in a Poincaré map.

Figure 8: Bifurcation diagram for θ3 with variation of ϵ3, and strange attractor for θ3.

This diagram does not represent the bifurcation as simple curves, which normally happens in dynam-
ical analysis of a system, but with a cloud of points. Considering the complexity of coupled oscillators
system, this fact can be explained by relation between coupling terms or by quasiperiodic response of
the system.

A great variation between coupling terms, with one of them approaching to zero, makes the system
presents practically a unidirectional coupling, and consequently the response in bifurcation diagram is
represented by a cloud of points, characterizing not only the presence of periodic and chaotic orbits,
but also pseudo-trajectories [18], and [19].

In relation to system behaviour, with small values of damping term, below 0.1, the system presents
a periodic response. With the increase of damping term, the system starts to present a quasiperiodic
response (Fig. 9) and later chaotic response (Fig. 10), when ϵ3 = 2.

More details about transition between quasiperiodic and chaotic response are presented in [20–22].
Sensitivity to the initial conditions can be verified considering two simulations with different condi-

tions, for example, with ϵ3 = 3 (chaotic regime), choosing initial values for the angles: θ3 = 3◦, θ4 =
50◦, θ5 = −3◦, and changing θ3 = 3.001◦, we observed the influence of initial conditions in the system
response (Fig. 11).

Considering the coupling oscillators, the degree of influence between them is defined by the coupling
term. Then, a change of oscillator parameters must influence the behaviour of other oscillators. In the
case of the hip angle, the influence of knee oscillator θ3 on the hip is small, therefore the behaviour
of θ4 does not show many alterations. This occurs due to small value adopted for the coupling term
between the oscillators (c34 = c43 = 0.001). In relation to the knees, the coupling term is greater (c35
= c53 = 0.1), configuring a more significant influence.
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Figure 9: Periodic response: ϵ3 = 0.01, and Quasiperiodic response: ϵ3 = 1.

Figure 10: Chaotic response: ϵ3 = 2.

Figure 11: Sensitivity to the initial conditions in chaotic response.
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Similarly to analysis of ϵ3, the system response can be analyzed by varying the values of ϵ4 (from
0 to 2) and keeping the other values fixed. Figure 12 presents the bifurcation diagram showing the
behaviour of hip oscillator θ4 with variation of parameter ϵ4, which represents the damping term related
with this oscillator. Also, we have the strange attractor generated in the analysis of this oscillator.

Figure 12: Bifurcation diagram for θ4 with variation of ϵ4, and strange attractor for θ4.

As seen previously in the analysis of ϵ3, the influence of hip on the knees is small, then a variation
of ϵ4 does not cause great changes in θ3 and θ5.

Finally, the system response can be analyzed by varying the values of ϵ5 (from 0 to 2) and keeping
the other system values fixed. Figure 13 presents the bifurcation diagram showing the behaviour of
knee oscillator θ5 with variation of the parameter ϵ5, which represents the damping term related with
this oscillator. Also, we have the strange attractor generated in the analysis of this oscillator.

Figure 13: Bifurcation diagram for θ5 with variation of ϵ5, and strange attractor for θ5.
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5 Conclusion

In this work, we present the study of a biped locomotor with a CPG formed by a system of coupled
van der Pol oscillators. A biped locomotor model with three of the six most important determinants
of human gait was used in the analyses. After the modelling of the oscillators system, a dynamical
analysis was performed to verify the performance of the system, in particular, aspects related to
the chaos. From presented results and discussion, we come to the following conclusions: the use of
mutually coupled nonlinear oscillators of van der Pol can represent an excellent way to generate
locomotion pattern signals, allowing its application for the control of a biped by the synchronization
and coordination of the legs, once the choice of parameters is correct, which must be made from
the data supplied by the analysis of bifurcation and chaos. Through the dynamical analysis it was
possible to evidence a weak point of coupling systems. The influence of the knee oscillators on the
hip, and vice versa, is very small, what can harm the functionality of the system. The solution for
this problem seems immediate: to increase the value of the coupling term between the hip and knees.
However, this can make the system unstable. Then, it is necessary a more refined study of the problem,
which will be made in future works, as well as a study of the behaviour of the ankles, and simulation
of the hip and knees in the other anatomical planes, increasing the network of coupled oscillators,
and consequently simulating with more details the human locomotion CPG. This study has great
application in the project of autonomous robots and in the rehabilitation technology, not only in the
project of prosthesis and orthesis, but also in the searching of procedures that help to recuperate
motor functions of human beings.
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Abstract

In large and diverse groups of students, it is often difficult to identify and help the students who are struggling
with the basic concepts they need to progress in the study of solid mechanics. Adaptive Tutorials (ATs) use an
online ‘intelligent’ tutoring system that provides a way of dealing with common sticking points, or ‘threshold
concepts’. These can sometimes be addressed by skilled one-to-one coaching but are usually missed by tradi-
tional ‘book and board’ teaching in large classes. The ATs use online interactive virtual laboratory activities
(simulations), and (a) track each student’s interaction with the simulation to provide tailored feedback; (b)
generate data that teachers can use to identify common conceptual sticking points in large classes; and (c)
provide information for adjusting the simulation, feedback and other learning activities in a course to help stu-
dents through threshold concepts. ATs developed in stages since 2005, used in blended online and face-to-face
teaching in mechanics, have been evaluated and are shown to improve both engagement in learning mechanics
concepts and performance in assessments, particularly among lower performing students.

Keywords: adaptive tutorial, threshold concepts, online teaching, mechanics.

1 Challenges in engineering education

With the demand for new graduates in industry, and an increasing interest in engineering studies,
students enter engineering through more flexible pathways into very large classes where it can be very
difficult for the teacher to pick up on these students’ misconceptions and help them. Individualised
feedback is almost impossible in situations like this.

Mechanics fundamentals provide a solid foundation for most engineering disciplines. Conventionally,
at most engineering schools, the study of mechanics comprises up to 25% and 40% of 1st and 2nd

Year levels respectively. Failure rates of up to 20% to 50% are common in introductory mechanics
courses in engineering. This has been an issue of continuing concern. Poor understanding of basic
engineering mechanics threshold concepts such as Free Body Diagrams, Equation of Equilibriums,
Reaction Forces, Shear Force & Bending Moment calculations could lead to the production of new
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generation of engineers with less conceptual understanding. Several studies [1–4] summarise the causes
of failure and the degree of success achieved due to the strategies implemented by academics in
various engineering universities for addressing this problem. In general, students are keen to correlate
the subject matter with engineering reality and they want opportunities to visualize and explore
the subject matter through experiments or similar exercises which demand a clear understanding of
different components of their engineering program.

If 21st century students need more explanation and understanding of concepts than traditional
teaching in large classes can provide, they could therefore benefit from opportunities to visualise and
interact with abstract concepts from real life examples such as:

1. a bridge for explaining the fundamentals on free-body-diagrams
2. use of equation of equilibrium concepts through an example of a towing truck
3. the shear force and bending moment calculations due to various loading situations on a beam.
Many of these concepts have the characteristics of ‘threshold concepts’ in that they transform

students’ thinking irreversibly [5]. It can therefore be hard for discipline experts to identify student
sticking points without intensive one-to-one coaching, which does not lend itself to systematic recording
and analysis.

2 Adaptive tutorials and the adaptive eLearning platform

Students can learn the basic skills with the development of a coherent approach to computer-assisted
learning and assessment [6]. Participating in hands-on or interactive activities can improve the stu-
dents’ motivational levels in learning [7–9]. Moreover, research suggests that students benefit from an
interactive learning environment in which they can have some control of their learning experiences [10].
Computer-based games that have been developed for the students in Statics and Mechanics of Mate-
rials courses [11] were successful in both improving student performances and dramatically increasing
engagement and motivation levels.

Although there are a number of initiatives by Universities around the world to use online educational
tools, the ability to provide instant, intelligent (relevant and appropriate) feedback that is adapted to
the learner’s knowledge level, is reserved to high end systems that utilize artificial intelligence, and
which have had limited uptake [12].

On-line tutorial activities can be set up as a virtual laboratory where students can explore the
interaction between variables in a safe and accessible environment. Getting students to experiment
with real world cases is much too costly and dangerous. In contrast, an online tutorial can be re-used
and customised for specific contexts with minimal cost and effort. Also, patterns of many student
interactions with the virtual laboratory can be recorded systematically in detail.

Adaptive Tutorials (ATs) provide a way of dealing with common sticking points, or ‘threshold con-
cepts’ that prevent students progressing in the study of mechanics. These can sometimes be addressed
by skilled one-to-one coaching but are usually missed by traditional ‘book and board’ teaching in large
classes. The ATs (Figure 1) use online interactive virtual laboratory activities (simulations), to: (a)
track each student’s interaction with the simulation, and provide tailored feedback; (b) generate data
that teachers can use to identify common conceptual sticking points in large classes; and (c) provide
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information for adjusting the simulation, feedback and other learning activities in a course to help
students through threshold concepts.

Figure 1: Adaptive tutorials on shear force and bending moment.

From a pedagogical point of view, ATs are similar to teaching laboratory activities and are analo-
gous to the concept of Tutorial Simulations as described by [13]. They can be described as a hybrid
between instructivist and constructivist educational theories, trying to strike a balance between guided
and discovery learning – along the lines of the pragmatic approach to constructivism advocated by
Perkins [14]. ATs are typically guided, featuring a detailed explanation that leads students through
the interaction, while offering adaptive, remedial feedback in response to learners’ misconceptions.
ATs are also interactive, enabling students to investigate a phenomenon, or a relationship between
parameters of a problem in a hands-on manner, thereby encouraging discovery learning.

3 Analysis tools that support teaching research

Adaptive Tutorials are not “launch and forget” projects. Once ATs are developed, teachers’ use the
AT-Analyser, which creates a visual trace of student performance (Figure 2) to scrutinise their stu-
dents’ interactions during the ATs, and to adapt the AT content as needed based on their students’
demonstrated misconceptions. Tutorials can then be easily updated to address any misconceptions.

The ATs, equipped with a rich, highly visual set of interactive tools, as shown in Figure 3, provide
intelligent remediation and instant feedback thereby promoting guided user exploration and discovery.
With the implementation of AeLP tools, the academic is also able to monitor the progress of students
using an analyser tool (Figure 2) available within the AeLP platform.

This creates a powerful educational experimentation environment where hypotheses about students’
learning can be evaluated, adapted and then shared and published. Teachers thus become ‘action
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Figure 2: The adaptive tutorial analyser uses a solution trace graph to visually analyse students’
solution-traces through the problem state-space.

researchers’, confirming or disproving their hypotheses about the best way to help their students learn
[15, 16].

4 Implementation and assessment

The aim of using the Adaptive Tutorials was to engage students in learning activities that help them
attain the particular objectives set for the course, which are assessed through a number of methods.
The delivery methods and teaching strategies for assessment and feedback were adapted to suit the
level of courses and the learning styles of the students.

Teaching the foundation undergraduate courses across all disciplines within the School of Mechan-
ical and Manufacturing Engineering at the University of New South Wales (UNSW) required the
implementation of innovative teaching strategies into those courses in a staged manner, based on a
pragmatic constructivist approach [14]. The assessments are made for the large classes in 1st and
2nd year courses at UNSW: Engineering Mechanics 1 (>275 students) and Solid Mechanics 1 (>300
students) courses. Because many of the students in 1st and 2nd year undergraduate students struggle
with basic concepts in mechanics courses, the author has developed, used and evaluated ways of using
online Adaptive Tutorials (Figure 3) to help students in Engineering Mechanics and Mechanics of
Solids courses [17].

The ATs are intended to supplement and clarify the fundamental concepts in each course. Through
the staged implementation of such tutorials, it can be demonstrated that such tools can help students
learn, improve performance in assessments and they add to overall student satisfaction with the
courses. The concept map (Figure 4) demonstrates the feasibility of adopting such ATs where the
basic concepts feed into higher level concepts in solid mechanics courses.

To examine the usefulness of the tool in improved learning in Mechanics of Solids, two types of
evidence were gathered:

1. survey data from students to gauge their engagement in learning with the ATs
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Figure 3: Snapshots of adaptive tutorials implemented at UNSW based on the targeted threshold
concepts.

2. assessment results compared longitudinally through the years when the ATs were introduced,
across 1st year engineering mechanics and later mechanics of solids classes.

This enables a comparison of guided vs. discovery based learning tasks, and also of performance
across different cohorts of students with and without access to the Adaptive Tutorials.

5 Student feedback and response

A snapshot of the student evaluation questionnaire adopted within the ATs [17] clearly demonstrates
that the students’ like to see many more of such Adaptive Tutorials in a course (Figure 5):

Student feedback was collected via a questionnaire that featured within each AT as well as through
a formal institutional evaluation. The survey indicated that students were generally very happy with
the ATs and with the quality and challenge they provide. It was also indicated that the assessment
methods were appropriate given the course aims. Students’ comments include:
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Figure 4: Concept map of the courses where AT activities can be beneficial.

1. “Allow more of this kind of interactive lessons to better understand all our lesson. Hope to have more of
this kind of online interactive lessons”

2. “Excellent tutorial. The tutorial has really furthered my knowledge of this topic. I would really like to see
more of these tutorials. This tutorial has taught me the basic concepts and ideas I will need to undertake
questions of a similar nature in the text book. Very helpful”

3. “awesome i understand the sign conventions regarding the angles now. thanks.”
4. “This tutorial was clear and helped me understand the concepts of Mohr’s circle to a much better degree

than before. I highly recommend it.”
5. “Very good representation. Very helpful for my studies and understanding of Mohr Circles”
6. “It would have been better had i listen to you and completed this before my block test “
7. “Good for continued learning and to help with understanding – ie. getting more feedback then possible

with general hand in assignments “
8. “This tutorial is great, I wish to see more course use something like this or at least put this kind of method

in almost every chapter “
Student feedbacks such as;

“Fantastic program I was really struggling with the force analysis, however this program has
instilled confidence for understanding real-life application of engineering and mechanics”

“I highly recommend this tutorial. It has a very appealing practical approach yet at the same time
helps me in improving my conceptual understanding of the topic at hand especially regarding the
shear force and bending moment. The free body diagram on the side is also very helpful. Two
thumbs up!”
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Figure 5: Questionnaire responses collected from the pilot study shows students engagement and
interest in having more Adaptive Tutorials.

bears testimony to the success of this approach. The implementation of such ATs resulted a smooth
and enjoyable learning process which goes beyond the book and board which engaged and stimulated
the students to learn and achieve.

6 Effectiveness in teaching and performance

Results support the benefits of ATs for learning as well as for giving teachers control of the learning
process. The improved performance of the students in Engineering Mechanics 1 and Mechanics of
Solids 1 courses in 1st and 2nd year Mechanical Engineering is presented in Figure 6 (a & b).

These data indicate that the adopted teaching strategies are most effective in assisting at-risk
students (as top students are already knowledgeable of the topic), which is demonstrated by the
reduction in failure rates.

Since the first iteration of the revised mechanics of solids 1 course in 2007, student numbers
have almost doubled, student satisfaction rate has increased (Figure 7) and student performance has
improved (Figure 6 b). This is due to the effective staged implementation of aforementioned teaching
strategies.
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(a) Engineering Mechanics 1 (b) Mechanics of Solids 1

Figure 6: Improved pass percentage in mechanics courses.

Figure 7: Increase in student numbers and improved student satisfaction in Mechanics of Solids 1.

Further evidence of the adopted teaching methodology in the foundation courses includes the very
satisfying improvement in student performances in all the 3rd year undergraduate engineering courses
that have Mechanics of Solids 1 as a pre-requisite (Figure 8).

Results support the benefits of Adaptive Tutorials for learning as well as for giving teachers control
of the learning process. Significant reduction in failure rates (Figures 6 a & b), improved student
satisfaction with the courses (Figure 7) and further improved performance in all the 3rd year under-
graduate engineering courses (Figure 8) that have Engineering Mechanics and Mechanics of Solids 1
as a pre-requisite are the good evidences of the teaching effectiveness.

Through the staged implementation of ATs within the courses, the gathered evidence using student
evaluation questionnaire [17] within the ATs that such tools help students learn, improve performance
in assessments and add to students’ satisfaction with courses. Students have found it as “Excellent
. . . has really furthered my knowledge of this topic. I would really like to see more of these tutorials. This
tutorial has taught me the basic concepts and ideas I will need to undertake questions of a similar nature in the
text book. “Very helpful”.
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Figure 8: Improved student performances in 3rd year UG courses that have Mechanics of Solids 1 as
the pre-requisite.

7 Impact and conclusion

This study has shown that Adaptive Tutorials are an effective tool in helping students with thresh-
old concepts in Engineering Mechanics, and that the ATs improve their performance in later Solid
Mechanics studies. The study also shows how the technology can support the identification of key
threshold concepts that can cause problems if not addressed, especially in large classes.

Staged implementation of innovative teaching strategies using ATs in blended online and face-to-
face teaching have had sustained impacts over the last 5 years. The continual improvement of courses in
response to the targeted evaluation and feedback using the novel tools (explained above) are evidenced
through the improved student engagement, greater student satisfaction, improved pass rate and further
performance improvement in the courses that have mechanics courses as prerequisite.
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Abstract

Motivated by understanding the structural behavior of flexible pipes under compressive loads, this paper
presents results of an elementary experimental investigation on the static structural behavior of helical bars
supported on rigid cylindrical surfaces. An experimental apparatus was specially designed and built for that
purpose. Such a device allows one to apply a compressive load in the tangent direction of the helix, driven by
a controlled step-motor actuator. Load cells, strain-gages and a high speed camera were used to investigate
a possible instability behavior. Some preliminary considerations are given, based on comparisons with an
analytical model by Stump and Van der Heijden.

Keywords: structural behavior, helical bars, experimental investigation.

1 Introduction

Flexible pipes used in offshore oil production are complex structures composed by a number of con-
centric layers made of distinct structural elements and materials. One of the most important layers,
which provides axial structural strength to the tube, is formed by two helical armors, wound around
the core of the pipe and made by a large number of helical high strength steel wires. Such kind of
structure has been widely and thoroughly studied under a variety of loading conditions; Witz and Tan
[1, 2]. An example of a still non comprehended behavior is the one related to ‘bird-caging’ formation,
due to a combination of compressive axial loads and internal pressurization; see, e.g., Custódio [3].
Figure 1 shows a typical flexible pipe and an example of a bird-caging failure. A comprehensive picture
and modeling of this type of failure, even of its triggering mechanism, depends on the understanding
of the structural behavior of the helical wires, starting with elementary aspects.

An experimental apparatus was specially designed and built for that purpose. Such a device allows
one to apply a compressive load in the tangent direction of the helix, driven by a controlled step-
motor actuator. The apparatus is formed by a set of metallic rings, superimposed one over the other,
such as generate a very rigid cylindrical support. Each ring is equipped with an adjustable system of
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Figure 1: Typical flexible pipe (Source: Google Images – http://www.flexirisertest.com/images/
l_home_f_2.jpg - 01/19/2009) and after instability failure (bird-caging). Source: Custódio [3].

rollers which provide constraints to the pre-conformed helical bar in the radial direction (normal to
the helix) or in the transversal direction (bi-normal to the helix) and impose boundary conditions to
their extremities. Load cells, strain-gages and a high speed camera (Figure 6) were used to investigate
a possible instability behavior.

The experimental set up was first applied to straight bars, for verification purposes. A set of wires
with circular and rectangular cross-sections were investigated. The classical Euler buckling was recov-
ered.

Then, experiments with helical bars were carried out. Pitch angle and free-span length were taken
as parameters. A set of ten samples for each pitch angle and type of bar was taken. The phenomenon
of instability in helical bars is rather complex. In flexible pipes ‘radial instability’ is defined when the
bar moves normally to the helix (in the cylinder radius direction), whereas ‘lateral instability’ when
the bar moves in the helix bi-normal direction (tangentially to the cylinder surface). However, for
helical bars, the phenomenon of instability could not be induced, in any test condition.

The influence of friction as well as the influences of the initial imperfection was accompanied during
the tests and their importance in the final results are observed. The experimental results were analyzed
and some preliminary considerations are given, based on an analytical model by Stump and Van der
Heijden [4].

The paper is organized as follows. Section 2 introduces the experimental apparatus and methodology.
Section 3 shows some studied cases, section 4 brings comparisons with analytical model results and
section 5 draws some conclusions.

2 The apparatus and experimental methodology

To design and build the experimental apparatus the technical literature was examined. Timoshenko
and Gere [5], Atanackovic [6], Love [7] are some classical references consulted. The compendiums of
Singer, Arbocz and Weller [8, 9] are important references concerning experimental works.
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The apparatus is formed by a set of metallic rings, superimposed one over the other, such as to
generate a very rigid cylindrical support. Each ring, with 140 mm as external diameter, is equipped
with an adjustable system of rollers which provide constraints to the straight bar and to the pre-
conformed helical bar in the radial direction or in the lateral direction and to impose fixed boundary
conditions to their extremities. The other components are: a steel structure to support the rings, an
adjustable load cell device, a slider head assembled in guides, a ball screw system driven by a controlled
step-motor actuator to apply the load, a template ring with three distinct laying angles. Figure 2
shows the experimental apparatus. The adjustable rollers allow to create the boundary conditions for
each situation and to define the degree of freedom of the bars. Load cells, LVDTs, strain-gages, a
linear measurement laser device and a high speed camera (Figure 6) were used. The main geometrical
characteristics and material properties are given in Table 1.

Table 1: Main parameters and materials (BC: Boundary Condition).

Samples Straight Helical
Cross-section dimension [mm] Diameter = 5 9 × 3 Diameter = 5 9 × 3

Material (steel) SAE 1070 SAE 1070 SAE 1070 SAE 1070

Pitch angle [degree] 0 0 30 30

35 35

40 40

Internal radius [mm] 70 70

Length [mm] free-span Vertical distance
between BC

1 1355 1355 1365 1365

2 1230 1230 1050 1050

3 975 975 720 720

4 810 810 380 380

5 555 555

The bars were fixed at both extremities. The free-span length is adjustable by a series of rollers
positioned at both extremities; Figure 3, Figure 4 and Table 1. Straight bars were tested for five
distinct free-span lengths values. Those with circular cross sections had their azimuthal positions
changed, by rotating them in four steps of 90◦. Those with rectangular cross-section were tested at
two distinct positions, flipping the widest face that is tangent to the cylindrical support. Helical bars
were tested for four distinct free lengths.
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Figure 2: Experimental apparatus.

Figure 3: Rollers and free length.

Figure 4: Rollers adjustment in experiments with the straight bars. Left: free to move radially; right:
free to move laterally. The rollers to the extremities were adjusted to restrain both radial and lateral
displacements.
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For the straight bars, the rollers close to the extremities were adjusted such as to restrain both
radial and lateral displacements. The inner distance between these two sets of rollers thus defines the
free length of the bar. Between those sets, the bar is allowed to move either in the radial or in the
lateral direction by adjusting the rollers accordingly. Figure 4 shows the setups corresponding to both
situations.

The procedure is similar in the case of helical bars. The experiments were carried out under radial
or lateral freedom, with the rollers aligned helically. Figure 5 shows the rollers assemblies for each
situation described.

The constant vertical velocity at the slider head used during the experiments was chosen following
the maximum velocity offered by the controlled step-motor (0.00143 m/s with step-motor at 1500
rpm). This allowed imposing a quasi constant load at the upper extremity. The load variation was
measured by a load cell (Figure 3 – right) at the bottom of the bar and the displacement of the slider
head by a LVDT rigidly connected to it and to the external structure; see, e.g., Figure 7. Some helical
bars were also instrumented with strain gages. A linear measurement laser device followed the radial
displacement of the helical bar.

Figure 5: Rollers adjustment in the experiments with helical bars. Left: free to move radially; right:
free to move laterally.

Figure 6: High speed camera.
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All experiments were carried out respecting the linear regime. The experimental procedure is item-
ized in Table 2. The experimental methodology included first trials, during which the set up was
adjusted and calibrated. The acquisition system was calibrated at the beginning of each test.

Table 2: Experimental procedure.

Experimental procedure
Step

1 adjust the bar

2 adjust the rollers

3 install the load cell

4 connect the accessories to the acquisition system

5 turn on the acquisition system

6 turn on the step motor

7 measurements

3 Case studies

3.1 Straight bars

The set of experiments with straight bars, free to move radially or laterally, aimed at obtaining
additional information on the apparatus behavior, including the influence of friction and assembly
imperfections. Euler instability loads were experimentally determined and the influence of real bound-
ary conditions was addressed. An amount of 4060 experiments were carried out, providing a huge
database.

The Euler load, achieved for a free-span length of 1355mm, is illustrated in Figure 7. In this example,
the critical load calculated using classic Euler theory is 138,53N. This particular test gave 138,60N. In
other cases, the influence of initial imperfections and friction provided Euler critical loads smaller than
the calculated ones. Pre-existent curvature is an example of such an initial imperfection observed.

An experimental-theoretical comparative procedure (reference [10], chapter 2) was implemented,
aiming at assessing the actual boundary conditions with respect to an idealized clamping. For the
circular bars, a deviation less than 3.5% from an ideal clamping was obtained for slenderness (L/D)
values above 200. For the rectangular cross section bars, buckling around the minimum moment of
inertia, the same figure (4%) corresponds to slenderness (L/t) values larger than 250.

In Figure 7a it is possible to observe a residual load at the end of the experiment due to friction
effects. In Figure 7b, the sharp peak corresponds to compressive load at the instant of instability.
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(a)

(b)

(c)

Figure 7: Straight bar with circular cross section; free length = 1355mm – (a) - time signals [s] of
compressive load [N] (in brown color) and vertical displacement at the slider head [mm] (in blue). (b)
- signal showing the critical load. (c) - bar after buckling.

3.2 Helical bars

The tests with helical conformed bars lying on rigid cylindrical surfaces were carried out with the
compressive load applied tangent to the helix.

Bars with circular and rectangular cross-sections were tested. Two distinct values of laying angle,
typical of flexible pipes, were adopted: 30◦ and 35◦. The laying angle is measured with respect to the
axis of the rigid cylindrical support. Four values of free span were taken, measured along the cylindrical
support axis, as shown in Table 2. The experiments aim at observing the specimens behavior free to
buckle radially or laterally. Friction effects were also assessed. Figure 8 shows an example of the loading
process. Region A shows the influence of friction during loading. Beyond this region, the bar starts
moving towards the instability.

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



484 M.A. Rabelo, C.P. Pesce and A.L.C. Fujarra

(a) (b)

Figure 8: Helical bar with rectangular cross section free to move radially– laying angle 30◦ – H =
1365mm. H is the free vertical length, measured along the cylindrical support axis. (a) - time signals
[s] of compressive load [N] (in red color) and vertical displacement at the slider head [mm] (in blue);
(b) load [N] vs. vertical displacement measured at the slider head.

Geometrical limitations of the apparatus precluded the instability phenomenon to appear. The main
limitation was the free distance available for the slider head.

The graphic in Figure 9, illustrates the structural behavior of a rectangular cross-section bar with
two different free-span lengths. It is possible to observe friction effects occurring from 0N to 5N. To
be remarked is the large residual load.

Another interesting behavior was observed during the tests with rectangular cross-sections bar,
combining bending and torsion. This may be seen in Figure 9a by observing the radial displacement
given in blue color, measured by the laser device (see Figure 9b). This curve actually gives the distance
measured from a specific point of the bar (at mid free span) to the laser bead. Notice that the minimum
distance corresponds to the maximum radial displacement of the bar. Observing Figure 10d, the slope
of the radial displacement has a clear change at circa 5N, followed by an inflection at 10N, where a
pronounced twist of the bar could be visually observed, reaching a sharp ‘peak’ around 13N. Beyond
this point torsion inverts and the bar returns radially, up to the point the actuator stops. During
the unloading process an inverse behavior may be observed. Figure 10 a, b and c complements the
described behavior. Such a combined flexural-torsional behavior was not observed in the case of circular
cross-section, due to symmetry.

4 Some comparisons with analytical model results

Figure 11a shows Stump and Van der Heijden [4] analytical results for a circular cross wire of wound
cable. P is the compressive load applied along the tangent of the wire. L is the free-span length,
measured along the wire. The slenderness is L/a = 10, where a is the helix radius. The normalized
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(a)

(b)

Figure 9: (a)Helical bar with rectangular cross section free to move radially– laying angle 30◦– H =
735mm. Nine distinct tests. Signals of compressive load [N] (in brown color), and vertical displacement
(red) at the slider head [mm] and distance of a point of the bar at mid span measured from the laser
bead (blue)[mm]. (b) the laser device position.
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(a) (b)

(c) (d)

Figure 10: Same experiment showed in Fig. 9. For a single test: (a) - compressive load [N] vs. vertical
displacement (brown) and radial distance of bar from laser bead [mm]. For nine distinct tests: (b)
–load vs. vertical displacement; (c) radial distance from the laser bead vs. vertical displacement; (d)
– load vs radial distance from the laser bead.

compressive load is plotted as a function of the displacement measured along the helix axis, for five
distinct values of the laying angle b, including the asymptotic post-critical curve for a straight bar.
Bifurcation becomes less evident the larger is the laying angle. As matter of fact for laying angles
of order 0.1rad (5.7◦) or larger, the sudden change in the slope, typical of pitchfork bifurcations,
is not observed anymore. A first comparison of the experimental results is presented in Figure 11b.
The experimental data are in the beginning of the Stump and Van der Heijden analysis range. The
red straight line shows Stump and Van der Heijden [4] results for b = 23◦. The experimental results
correspond to six tests with a circular cross section bar with L/a = 11.3 and a distinct value of a
large laying angle, b = 30◦. A qualitatively correct trend may be seen. Moreover, no typical pitchfork
behavior is observed, as expected.
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Figure 11: (a) Stump and Van der Heijden analytical results at very small displacements [4] β = 0.4
(23◦) (red line); (b) experimental data β = 0.5 (30◦).

5 Conclusions

Motivated by understanding the behavior of helical structural components of flexible pipes, an elemen-
tary experimental investigation was carried out. An experimental apparatus was specially designed
and built for testing helical bars supported on rigid cylindrical surfaces. Such a device allows one to
apply a compressive load in the tangent direction of the helix, driven by a controlled step-motor actu-
ator. Load cells, strain-gages and a high speed camera were also used to investigate possible instability
behaviors.
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A detailed description of the experimental setup and instrumentation was given. Standard exper-
iments with straight bars of circular and rectangular cross sections were ascertained the suitability
of the apparatus. Helical bars of circular and rectangular cross sections with laying angles typical
of tensile armor layers of flexible pipes were then tested. For circular cross section helical bars, a
classic large displacements behavior was observed. For rectangular cross section bars an interesting
flexural-torsional behavior, at large displacements, was depicted.

Some preliminary comparisons of the circular cross section bars experiments with an analytical
model by Stump and Van der Heijden [4], showed a compatible trend. Moreover, as could be expected,
for the large laying angle values of the tested helical bars, no typical bifurcation pattern was observed.
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Abstract

In a previous paper a simplified procedure for analysis of dam-reservoir interaction was presented, considering
only the fundamental mode of vibration, followed by solution of a frequency equation and subsequent con-
struction of a numerical equivalent model, using mass elements along the monolith’s upstream face.This work
extends this research line, exploring the highlights of the proposed method, such as: variation in the seismic
excitation source, influence of the hydrodynamic pressure model and stress evaluation at an arbitrary time
instant. Finally, an application example will be present along with the major advantages and limitations of
the proposed procedure.

Keywords: dams, reservoir, fluid-structure interaction, semi-analytical, time domain.

1 Introduction

Dynamic analysis of dams subjected to reservoir interaction effects is a matter of great interest in
seismically active regions. Great effort has been devoted to this problem, with contributions gener-
ally classified in three distinct categories: (i) Closed analytical formulations, (ii) Simplified analytical
procedures and (iii) Numerical procedures such as the finite element and boundary element methods.
A classic work by Lee and Tsai [1] describes an exact time domain solution for constant section pris-
matic beams using a linear combination of in-vacuum mode shapes. A recent paper by Koohkan et al.
[2] extends this study to prismatic beams with variable cross sections using differential quadratures
coupled with a finite difference scheme. This contrast illustrates that closed form solutions are limited
to specific cases and lack the generality of complex dam geometries. Numerical solutions involving
both domains (fluid and structure) are generally expensive with respect to computer processing time.
Additionally, they are limited to specific softwares designed for analysis of coupled problems. Real-
istic approaches include tridimensional geometries. However, this problem can be greatly simplified
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for gravity dams, using bidimensional models. Nevertheless, there are numerous possibilities for the
designed monolith’s dimensions, making a fully analytical approach virtually impossible, or applied
only to a few specific cases. An alternative emerges with the use of intermediate solutions (semi-
analytical), using the accuracy of analytical solutions combined with the broad scope of numerical
methods.

A previous study [3] presents a simplified alternative for solution of this problem (Figure 1), with
the aid of an analytical model (A) combined with an in-vacuum finite element modal analysis of
the dam’s geometry (B). Similar procedure has been recently described by Miquel and Bouaanani
[4]. In the former case, generalized parameters of the fundamental vibration mode are identified (B)
and latter applied on the solution of a frequency equation (C), providing the fundamental period of
vibration including reservoir interaction effects.

Figure 1: Semi-analytical procedure solution scheme (frequency equation).

The major output of the proposed procedure is the fundamental coupled frequency (ω), which is
dependent of the adopted analytical model, with S1−S4 related to boundary regions, ü (y, t) defining
boundary S1 acceleration, and ϕ (y) standing for the normalized mode shape at a given coordinate.
Generalized fluid mass (A.1) is defined by Equation (1).

M̃fluid =

∫ H

0

P (0, y, ω)

A
ϕ (y) dy (1)

where Ā and H are related, respectively, to: an arbitrary amplitude with respect to the provided
generalized coordinate X (t) and the reservoir depth (or acoustic cavity vertical dimension). Equation
(1) is added to the in-vacuum generalized mass term (inertial coupling), providing both undamped
(Eq. 2) and damped (Eq. 3) equations of motion.
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(
M̃ + M̃fluid

)
Ẍ (t) + K̃X (t) = F̃ (t) (2)

(
M̃ + M̃fluid

)
Ẍ (t) + C̃Ẋ (t) + K̃X (t) = F̃ (t) (3)

Previous expressions are valid for a generalized coordinate X (t) and consider in-vacuum parameters
inaltered by interaction effects (mode shape and generalized rigidity are assumed identical to in-
vacuum values, for example).

This procedure reveals an effective strategy, replacing the reservoir by equivalent effects on the fluid-
structure interface. Thus, the problem can be simplified to the solution of a single dynamic equilibrium
equation. Clearly, the proposed solution is valid only for the fundamental mode of the dam-reservoir
system, with all parameters consistent with the in-vacuum structural mode shape. This presents a
major drawback and will be explored in the next items.

2 Hydrodynamic pressure models

Equation (1) indicates a direct relationship between generalized added mass and dynamic fluid pres-
sures. Therefore, boundary conditions shown on Figure 1 (Step A) as well as the cavity governing
equation are responsible for the amount of additional mass of the equivalent system.

Boundary conditions for a cavity with undisturbed boundary at the limits of an infinite reservoir,
reflective bottom and surface wave effects neglected are given, respectively, by:

S2→ lim
x→∞

p (x, y, t) = 0 (4)

S3→ ∂p(x, y, t)

∂y

∣∣∣∣
y=0

= 0 (5)

S4→ p(x,H, t) = 0 (6)

Additional parameters involve the consideration of fluid compressibility and the characteristics of
the vibrating boundary, which can be taken as rigid or flexible. Therefore, four hydrodynamic pressure
models are possible, which are summarized on Figure 2 [5].

In Figure 2 case abbreviations are related to: (I) incompressible, (C) compressible, (R) rigid and
(F) flexible. The general case is given by (CF), whose solution is provided by Equation (7). Remaining
cases are achieved by reduction of the latter equation to incompressible fluid (c→∞), rigid boundary
(ϕ = 1), or both.

P (x, y, ω) =
2ρfA

H

∞∑
n=1

1√
α̂n

∫ H

0

ϕ (y) cos (κny) dy
[
e−

√
α̂n x

]
cos (κny) (7)

where:
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Figure 2: Hydrodynamic pressure models [5].

α̂n = (κn)
2 − ω2

c2
(8)

κn =
(2n− 1)π

2Ly
(9)

and ρf indicates fluid density.
It is important to notice that cases (IF) and (IR) are independent of ω and Equation (1) is evaluated

directly, disregarding step C (Figure 1). This leads to an incompressible fluid model with flexible or
rigid vibrating boundaries.

3 Equivalent actions in a fluid-structure system subjected to ground motion

When studying a ground motion response it is convenient to analyze the problem in terms of ground
(ug) and relative (ur) components, which together represent the total dynamic response of the struc-
ture. These concepts are clarified by Figure 3, which illustrates an undamped Single Degree of Freedom
system (SDF).

The dynamic equilibrium equation is achieved directly. Therefore:

müt (t) +Kur (t) = 0 (10)

From Figure 3a results a total acceleration defined by: üt (t) = üg (t) + ür (t). Thus, substituting
this latter expression on (10):

mür (t) +Kur (t) = −müg (t) = pef (t) (11)
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Figure 3: Seismic excitation of a SDF uncoupled system (a) and equivalent model (b).

where the right side of (11) stands for the effective force (pef ) related to the ground motion (Figure
3b). Therefore, relative displacements (ur) resulting from ground motion are equivalent to a fixed
based system subjected to an external force given by pef = −müg (t).

For systems with distributed parameters equivalent forces are achieved in a similar way with appli-
cation of the Virtual Work Principle. Thus:

F̃ (t) = −üg (t)
∫ H

0

µ (y)ϕ (y) dy = −üg (t) L̃ (12)

where L̃ stands for the seismic excitation factor, which indicates the mode shape ϕ (y) contribution
for a given ground motion. Therefore, the dynamic equation for an undamped distributed parameter
system is given by:

M̃Ẍ (t) + K̃X (t) = −üg (t) L̃ (13)

Previous expressions are valid for an uncoupled structure. When the problem involves both domains
(fluid and structure) special considerations must be made, because the translational and relative
motions induce different dynamic pressure fields (illustrated on Figure 2, for example). Thus, it is
common to find in literature the division in rigid body motion and mode shape conformal pressure
[6]. A simple interpretation of this phenomenon may be established by setting two different inertial
forces: frür (t) and fgüg (t), proportional, respectively, to relative (ür) and ground (üg) accelerations.
Therefore, the dynamic equation for an undamped SDF is defined by:

müt (t) +Kur (t) = −frür (t)− fgüg (t) (14)

Substituting üt (t) = üg (t) + ür (t) in this latter expression results in:

[m+ fr] ür (t) +Kur (t) = −üg (t) [m+ fg] (15)

The analysis of (15) reveals the presence of fluid inertial forces on both sides of the equation. It is
important to notice that the left side mass (fr) is different from the right side term (fg), since the
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former is related to the relative motion of the system, while the second is associated with transla-
tional motion. Additionally, it is observed that fluid inertial effects are still present when the ground
acceleration is set to zero (in the case of a fixed base coupled system vibration, for example). Figure
4 clarifies these concepts with a force schema of the equivalent coupled model.

Figure 4: Seismic excitation of a SDF coupled system (a) and equivalent model (b).

The same reasoning can be employed in a system with distributed parameters. The identification
of inertial terms is easily achieved with the scheme shown on Figure 4. In this case, the equation of
undamped motion in terms of a generalized coordinate X (t) is given by:

(
M̃ + M̃fluid

)
Ẍ (t) + K̃X (t) = −üg (t)

[
L̃+ Ñ

]
(16)

The latter expression reveals the reservoir influence in both the system’s mass, defined by (1) and
illustrated on Figure 5b, as well as the seismic excitation factor, which now includes an additional
term, Ñ . In the latter case the problem resembles the movement of a dam-reservoir-foundation block,
with intensity given by the magnitude of ground acceleration (Figure 5a). Thus, the term Ñ indi-
cates inertial effects of the reservoir in contact with a uniformly accelerated rigid wall, which can be
adequately represented by case (IR), shown on Figure 2. Therefore, by analogy with (12):

Ñ =

∫ H

0

fg (y) ϕ (y) dy (17)

where:

fg (y) =
P (0, y)

A
=

2ρf
H

∞∑
n=1

(−1)n+1

κn2
cos (κn y) → IR (18)
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Figure 5: Fluid interaction translational (a) and relative (b) inertial components.

4 Dynamic response evaluation and equivalent static analysis

Dynamic response evaluation of (13) or (16) for an arbitrary ground motion is performed using a
numerical integration routine (although for simple functions an analytical evaluation is possible).
In this work a fourth order Runge-Kutta procedure developed in Fortran 90 language was applied.
Immediate results of relative displacements are obtained and then employed in a stress analysis of the
corresponding monolith.

It is important to introduce the concept of equivalent lateral forces (q), whose effects produce
deformations similar to those induced by the ground motion [7, 8]. From classical theory of structural
dynamics results expression (19), related to an analysis without the influence of the reservoir. Thus:

qe (y, t) = ms (y)ϕ (y)

[
ω2 L̃

M̃
D (t)

]
(19)

where ms (y) defines the mass distribution along the dam’s height and D (t) indicates the relative
displacement of a SDF with in-vacuum frequency ω. The term in brackets is defined as pseudo-
acceleration, since it corresponds to the acceleration that effectively produces deformations in the
structure, being distinct from the total acceleration on damped systems (and identical in the case of
undamped models). The latter expression allows an equivalent static analysis (using beam theory or
by applying static loads on a numerical model, for example) of the dam geometry subjected to the
maximum absolute value of D (Dmx, obtained using a spectral analysis).

For analysis with hydrodynamic effects included results the following expression [9]:

qr (y, t) = {ms (y)ϕ (y) +mf (y)}

[
ω2 L̃r

M̃r

D (t)

]
(20)

where L̃r = L̃+Ñ and M̃r = M̃+M̃fluid indicate, respectively, the earthquake participation factor and
generalized mass including reservoir interaction effects. And D (t) stands for the relative displacement
of a SDF with coupled frequency ω. An additional term is given by mf (y), which is related to the
inertial fluid effect load distributed along the dam’s height, defined by:
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mf (y) =
P (0, y)

A
(21)

Expressions (19) and (20) are defined by terms established on previous sections and can be applied
on the construction of equivalent lateral forces and subsequent solution of a static problem.

5 Application example

A typical dam geometry illustrated in Figure 6a was evaluated using the proposed procedure. Analyses
involve both the dynamic displacement response as well as stress field at an arbitrary time instant.
Three seismic records with distinct characteristics were used and results compared to those obtained
from a coupled numerical model shown on Figure 6b. Structural parameters include transverse elastic
modulus E = 25 · 109 Pa and mass density ρs = 2400kg/m3. For the acoustic fluid model a mass
density ρf = 1000kg/m3 and fluid sonic velocity c = 1500 m/s were considered in the analyses.

Numerical model was built using ANSYS v. 11 with a structural mesh of 4 nodes plane strain
elements. Foundation is neglected in the analyses and base nodes are constrained in both directions.
Four nodes plane acoustic elements were used in fluid mesh. Reservoir geometry is built using a
L/H = 3 ratio, with null pressure conditions at reservoir limit x = L and fluid surface y = H.

Figure 6: Analytical (a) and finite element (b) models.

Major analysis steps and results are presented in the next items.

5.1 Finite element auxiliar fundamental mode analysis

According to Figure 1 schema three structural parameters related to the fundamental mode are
obtained, shown in Table 1. In this case fundamental frequency is given by ω = 26.846 rad/s.

An interpolation function is established for horizontal displacement on the upstream nodes of the
dam geometry, resulting in the following expression:
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Table 1: Generalized parameters – fundamental mode uncoupled analysis.

Generalized Mass
(

Ns2

m

)
Generalized Stiffness

(
N
m

)
Earthquake Participation Factor

(
Ns2

m

)
M̃ K̃ L̃

1.0638 · 106 7.6669 · 108 2.1049 · 106

ϕ (y) = −0.7663
( y
H

)4
+ 1.5247

( y
H

)3
− 0.1043

( y
H

)2
+ 0.3482

( y
H

)
− 0.0003 (22)

5.2 Frequency equation solution

The general form of frequency equation is given by expression (23), which is solved using fundamental
mode auxiliar parameters given by Table 1.

K̃ − ω2

[
M̃ +

∫ H

0

P (0, y, ω)

A
ϕ (y) dy

]
= 0 (23)

The term P (0, y, ω) depends on considerations taken on the adopted fluid model, with schema
shown on Figure 2. Table 2 illustrates results of the latter expression for CF and IF cases.

Table 2: Frequency equation results (fundamental coupled frequency).

Compressible and Flexible (CF) Incompressible and Flexible (IF)

Number of terms in summation (n) ω (rad/s) Number of terms in summation (n) ω (rad/s)

3 22.108 3 23.222

5 22.008 5 23.083

10 21.966 10 23.025

Generalized fluid mass (M̃fluid) is readilly obtained with rearrengement of (23). Thus, for the CF
case with n = 10 results:

ω2 =
K̃

M̃ + M̃fluid

∴ M̃fluid
∼= 0.5203 · 106Ns2/m (24)
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5.3 Modal analysis reference results for the coupled model

Modal analysis results of the numerical model shown in Figure 6b are presented on Table 3, including
vibration modes and corresponding frequencies. Fundamental mode frequency achieved by means of
the frequency equation (previous item, case CF) is in agreement with the value indicated on this table,
with a relative error of about 1%.

Table 3: Coupled numerical model analysis results.

mode number ω (rad/s) mode shape

1 22.274

2 30.014

3 38.734

5.4 Semi-analytical dynamic equilibrium equation

Generalized parameters of Table 1 and expressions (1) and (17) are substituted on (16), resulting in
the semi-analytical dynamic equilibrium equation for the coupled structure. Thus:

1.58 · 106Ẍ (t) + 7.67 · 108X (t) = −üg (t) 3.17 · 106 → coupled (25)

where X (t) stands for the upstream displacement of a position at the dam’s crest.
This latter expression enables relative displacement and equivalent lateral load evaluation for a

given ground motion üg (t).

5.5 Dynamic response for distinct seismic sources

Three distinct seismic records and their frequency spectra are shown on Figures 7, 8 and 9. The
corresponding data is associated to real events, such as Imperial Valley (1940, El Centro station, north-
south component), Hollister (1974, City Hall station) and Loma Prieta (1989, Emeryville station)
earthquakes.

Figures 7b, 8b and 9b reveal a similar aspect: dominant amplitudes at lower frequencies.This charac-
teristic justifies greater participation of initial modes at the system’s dynamic response. Comparative
curves between numerical displacements of the coupled model and evaluation of expression (25) in a
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(a) (b)

Figure 7: Imperial Valley ground motion (a) and frequency spectrum (b).

(a) (b)

Figure 8: Hollister ground motion (a) and frequency spectrum (b).

(a) (b)

Figure 9: Loma Prieta ground motion (a) and frequency spectrum (b)
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numerical integration routine are shown in Figure 10, for the Imperial Valley earthquake. Excellent
results are observed for initial time instants, with cumulative errors occurring under time window
increments (as shown on Figure 10b).

(a) (b)

Figure 10: Imperial Valley event relative displacement response. Time window (a). Complete record
(b).

Figure 10b also indicates maximum absolute displacement results on both solutions. For the pro-
posed procedure a maximum value of ug = 0.063m occurs at t = 15.07s. For the coupled model a
maximum ug = 0.075m is provided at t = 21.74s. The proposed solution provides approximately
84% of the corresponding maximum displacement on the coupled solution. These differences are due
to cumulative errors produced during the event time window, related to differences between semi-
analytical and numerical frequencies, and are important on evaluation of equivalent loads.

Relative displacement results for Hollister and Loma Prieta events are shown, respectively, on Fig-
ures 11 and 12. As in the previous event, results are excellent for initial time instants, with cumulative
errors at greater time windows. Short duration events are related to best results, such as the 15 seconds
Hollister earthquake, for example.

5.6 Evaluation of maximum relative displacement response and stress analysis

Maximum relative displacement and stress results of the coupled model are achieved immediately
using ANSYS. In the case of the proposed procedure a time domain analysis becomes unnecessary,
since the use of displacement spectra emerges as an alternative, illustrated on Figure 13 for the
three distinct seismic events. These plots were achieved using SeismoSignal v. 3.3.0 software for an
undamped SDF system. Values of interest are signed on this illustration for the coupled fundamental
period of vibration T = 0.286s (22 rad/s).

As mentioned earlier, equivalent displacements are obtained using Equation (20) along the upstream
face of the dam. Thus, the dynamic analysis of a coupled problem is reduced to an equivalent static
analysis of the structural geometry. Table 4 presents stress results using the proposed procedure and
the finite element coupled model.
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(a) (b)

Figure 11: Hollister event relative displacement response. Time window (a). Complete record (b).

(a) (b)

Figure 12: Loma Prieta event relative displacement response. Time window (a). Complete record (b).

(a) (b) (c)

Figure 13: Imperial Valley (a), Hollister (b) and Loma Prieta (c) events displacement spectrums.
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Table 4: Principal stress results (finite element method and proposed procedure).

Maximum principal stress results (Kpa)

Event
Finite element

method
(coupled)

Proposed
procedure
(static load)

Stress results at elevation 35.5m

Imperial Valley

Hollister

Loma Prieta

6 Concluding remarks

A semi-analytical procedure was presented for concrete gravity dams response evaluation under earth-
quake actions. The process basis is simple and begins with an in-vacuum modal analysis of the dam’s
geometry in a conventional finite element software. Latter, a dynamic equilibrium equation of the fun-
damental mode is constructed using a generalized coordinate approach and evaluated using a numerical
integration routine. Plots shown on Figures 10a, 11a and 12a reveal an excellent approximation at
initial time instants when compared to a fully coupled solution. On the other hand, cumulative errors
lead to significant differences between responses for greater time windows. In general, absolute ampli-
tudes are similar in both methods. Therefore, the use of response spectra is proven as valuable tool
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for stress field evaluation, as shown in Figure 13. An equivalent lateral load is built according to
the displacement spectra and then applied to a static finite element analysis of the dam’s geometry.
Comparison results between the proposed procedure and a fully coupled solution are shown on Table
4, with great resemblance in both cases. Clearly, result quality is a direct function of the relative dif-
ferences between displacements of the coupled model and those obtained with the proposed method.
In Hollister and Loma Prieta events, for example, the semi-analytical approach results were excellent.
However, in the Imperial Valley earthquake results were only satisfactory.

Two points deserve special emphasis in the proposed procedure. The first one is evaluation of
stress distribution in finite element codes involving only one domain: the structure. In this case, the
study of a relatively complex problem is possible on softwares without fluid-structure capabilities.
This technique provides a universal method of dam-reservoir interaction analysis in project offices
where a basic finite element package is available. The second one is construction of reference semi-
analytical equations that provide a validation resource for solutions obtained from a fully coupled
analysis. Although the approximation occurs only at initial instants, frequency corrections can be
applied by modifying generalized parameters towards a better approximation between semi-analytical
and numerical frequencies. Thus, a tool is developed to assist convergence and validation tests in
numerical coupled models. The main limitation arises due to contribution of fundamental mode only.
However, previous results shown that the approximation is satisfactory, enabling preliminary analysis
of this type of structure.
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Abstract

In this contribution, a procedure has been presented for the reliability assessment of composite plates against
conical-nosed projectiles penetration. For this purpose, using formulations available in the literature, expres-
sions for ballistic-limit of composite targets were derived and then employing Monte Carlo Simulation (MCS)
technique 100,000 possible values of ballistic-limit was simulated using the statistical properties of its depen-
dent variables and parameters. Statistical analysis of simulated ballistic-limit velocities was then carried out
and an appropriate probability distribution for ballistic-limit was established. With the correlated probabilis-
tic information of ballistic-limit and striking velocity, reliability analysis was carried out using First Order
Reliability Method (FORM) to obtain that thickness of selected composite plates which can provide reliable
ballistic protection against given shape and velocity-range of projectiles. Effect of striking velocity on the
reliability of given thickness of laminated composite targets was also studied.

Keywords: laminated composites, FRP, projectiles, Monte Carlo simulation, FORM.

1 Introduction

One of the popular applications of composite laminates, such as Fiber Reinforced Plastic (FRP) plates,
is to provide ballistic protection against striking missiles and projectiles. The reliability assessment
of such laminates is concerned with the estimation of its probability of survival against given pro-
jectiles impact. In the present study, a composite laminate is assumed as failed if projectile of given
velocity completely penetrates (i.e. perforates) its thickness. This is due to the fact that, in many
real life applications, when laminates are used for ballistic protection they serve their purpose if they
are not perforated by the striking missile or projectile. In technical terms, composite laminates can
effectively provide ballistic protection if ballistic-limit of the laminate is above the striking velocity
of the projectile. The ballistic-limit of composite laminates primarily depends on the laminate and
striking-projectile’s geometric and material properties. However, these properties have some inherent
uncertainties which make the estimation of ballistic-limit of composite laminates uncertain and thus
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require its reliability analysis against possible projectiles attack.
In the last decade substantial work has been carried out to identify the deformation mechanisms

which occur during dynamic penetration and perforation of FRP laminates by striking projectiles
[1–7]. Wen [1] predicted the penetration and perforation of monolithic fibre-reinforced plastic (FRP)
laminates struck normally by projectiles with different nose shapes over a wide range of impact velocity.
The approach was based on the assumption that the deformation is localized and that the mean
pressure offered by the laminate targets to resist the projectiles can be decomposed into two parts. One
part is a cohesive quasi-static resistive pressure due to the elastic-plastic deformation of the laminate
materials. The other is a dynamic resistive pressure arising from velocity effects. He obtained the
expressions for predicting the depth of penetration (DOP) in the FRP laminate targets and the ballistic
limits in the case of perforation. It was shown that the model predictions are in good correlation with
available experimental data. Tarim et al. [2] experimentally studied the ballistic performance of some
polymer-based composites. They carried out ballistic testing using a variety of commonly available
firearms and resulting properties were obtained using mechanical and ultrasonic methods. The results
were compared with previous studies. The potential benefit for using such materials on an armored
saloon car was also highlighted. Naik and Shrirao [3] investigated the ballistic impact behavior of
two-dimensional woven fabric composites. Ballistic impact behavior of plain weave E-glass/epoxy and
twill weave T300 carbon/epoxy composites was compared. Different damage and energy absorbing
mechanisms during ballistic impact were identified. Analytical formulation was presented for each
energy absorbing mechanism. Babu et al. [4] experimentally studied the behavior of unidirectional
glass epoxy laminated composites as a function of fiber orientation angle, lamination configuration
and projectile nose geometry. The energy absorbed by each type of target and the corresponding
ballistic limit were determined. A theoretical model was also developed to theoretically predict the
ballistic limit. He et al. [5] theoretically studied the penetration and perforation of fiber-reinforced
plastic (FRP) laminates struck normally by conical-nosed projectiles over a wide range of velocities.
The formulations were based on the assumption that the deformation is localized and that the pressure
offered by the laminate targets to resist the projectiles is velocity dependent. They assumed that this
pressure can be divided into two parts: a quasi-static part due to the elastic-plastic deformation of the
laminate materials and a dynamic part due to penetration velocity. Equations were obtained for the
depth of penetration, residual velocity, and ballistic limit. Transient response was solved numerically
in terms of time-histories of displacement/penetration, velocity and deceleration. They observed that
their theoretical predictions are in good agreement with available experimental results. Naik and
Doshi [6] studied ballistic impact behavior of typical woven fabric E-glass/epoxy thick composites.
Specifically they determined energy absorbed by different mechanisms, ballistic limit velocity and
contact duration. The studies were carried out using the analytical method presented for the prediction
of ballistic impact behavior of thick composites in their earlier published research. The analytical
method was based on wave theory and energy balance between the projectile and the target. The
inputs required for the analytical method were: diameter, mass and velocity of the projectile; thickness
and material properties of the target. Analytical predictions were compared with typical experimental
results. A good match between analytical predictions and experimental results was observed. Effect of
incident ballistic impact velocity on contact duration and residual velocity; effect of projectile diameter
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and mass on ballistic limit velocity; and effect of target thickness on ballistic limit velocity and contact
duration were also studied. It was observed that shear plugging was the major energy absorbing
mechanism. Gower et al. [7] investigated the ballistic response of laminated composite panels through
direct impacts of two non-deforming projectiles (7.5 mm diameter hardened steel 1200 cylindrical-
conical and 9 mm hemispherical nosed) selected to enhance different failure mechanisms including
penetration and delamination. They also carried out experimental and numerical studies to determine
the ballistic response of laminated Kevlar 29 and 129 composite panels, commonly used in protective
body armors. These panels were impacted at velocities between 130 and 250 m/s, which were below the
penetration limit of the panels. Their numerical simulations of the impact tests accurately predicted
the back face signature (BFS; described as the maximum dynamic displacement of the armor during
impact), one of the important performance indicators for assessing personal protection, and dynamic
response for the conical projectile impacts. The BFS for the hemispherical projectiles was slightly low.
The numerical analysis, however, accurately predicted the initial velocity of the panel back face for
the hemispherical projectiles and the time to reach maximum BFS for the conical projectiles.

A detailed review of literature shows that although considerable work is available on mechanics
of projectile penetration into laminated composite targets, but the studies on reliability assessment
of such laminated targets against projectile impacts is very limited. Further, the available reliability
studies e.g. [8–11] are on such targets which are made up of conventional materials such as concrete,
steel, aluminum etc. Keeping this scope in view, in the present study, a procedure has been presented
for the reliability assessment of composite laminates against conical-nosed projectiles penetration.
Using the presented procedure reliability analysis was carried out to obtain that thickness of selected
composite plates which can provide reliable ballistic protection against given shape and velocity-range
of projectiles. Effect of striking velocity on the reliability of given thickness of laminated composite
targets was also studied.

2 Failure surface and reliability

Reliability of laminated composite target is nothing but its chances to survive under a possible pro-
jectile impact. In deterministic sense, if ballistic limit of a composite target is small compared to
projectile striking velocity the target may be considered as safe or reliable. However, this safety is not
an absolute safety but a “probable safety” as all material and geometric properties have some inherent
variability, which makes determination of absolute safety almost impossible. The efforts are generally
made to design a target with a desired reliability (βD) against a given range of projectile impact. In
the past, Choudhary et al. [8], Siddqui et al. [9, 10] and Siddiqui [11] carried out reliability assessment
of different types of targets under missiles, projectiles or jet aircraft impacts. In the present study, the
failure surface G(x) is defined as the difference between the composite plate’s ballistic limit Vb and
the projectile striking velocity Vs i.e.

G(x) = Vb − Vs (1)
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Where G(x) > 0 indicates the safe condition, G(x) < 0 the failure condition and G(x) = 0 the limit
state.

3 Statistics of striking velocity

For the purposes of the current investigation striking velocity in terms of nominal value was directly
selected for the reliability analysis. The nominal striking velocity is assumed to be 250 m/s with bias
factor 1.1 and COV equal to 20%. The randomness of the striking velocity is described using Extreme
Type I distribution. The probability distribution function (PDF) and the cumulative distribution
function (CDF) for Extreme Type I distributed random variables are given by:

PDF : f(x) = α exp
{
−e−α(x−u)

}
exp {−α(x− u)} (2)

CDF : F (x) = exp
{
−e−α(x−u)

}
for −∞ ≤ x ≤ ∞ (3)

where u and α are distribution parameters. If the mean and standard deviation are known, values of
the distribution parameters can be estimated using (Nowak and Collins [12])

α ≈ 1.282

σx
(4)

u ≈ µx − 0.45σx (5)

where µx and σx represent mean and standard deviation respectively.

4 Simulation of ballistic-limit velocity

In the present study the ballistic limit of three different composite targets has been simulated using
the equations proposed by He et al. [5]. He et al. [5] derived equations for ballistic limit with the
assumption that when a projectile penetrates laminated composite material it experience a normal
pressure (σn), which can be decomposed into two parts, one part is the cohesive quasi-static resistive
pressure (σs) and the other is the dynamic resistive pressure (σd) arising from velocity effects, viz. σn
= σs + σd. Under the above idealizations, when a conical projectile with cone angle θ, nose length
Ln and mass m impacts normally an FRP laminate of thickness T (Figure 1) with an initial striking
velocity Vs, yields following implicit expression for ballistic limit Vb [5]

Vb = A/B. ln(1 +B/A.Vb) +
πBTL2

n tan(θ/2)[(µ+ tan(θ/2)]

m
(6)

Where, µ is the coefficient of friction, and A = σe;B = β1
√
ρtσe sin(θ/2). Here σe is the quasi-static

linear elastic limit in through-thickness compression, ρt is density of FRP laminate, and β1 is an
empirical constant.
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Figure 1: Problem formulation.

5 Reliability estimation and desired reliability index

In the present study, First Order Reliability Method (FORM) was used for the reliability calculations.
In this approach, the reliability is measured in terms of a reliability index, β, which is defined as the
shortest distance to the failure surface from the origin in reduced-coordinate system, and it is related
to the probability of failure or probability of limit state violation for any limit state as

β = −Φ− 1(Pf ), (7)

Where Pf is the failure probability and Φ−1 is the inverse of standard normal distribution function.
The above value of reliability index β is compared with desired reliability index βD to make sure
that targets are as reliable as desired.The optimum value of desired reliability index βD depends on
many factors such as the expected cost of failure, consequences of failure, cost of manufacturing, cost
of upgrading (cost of increasing safety) etc. In the present study βD = 3.0 was considered. This is a
typical desired value generally selected for a number of Engineering Structures (Choudhary et al. [8],
Siddiqui et al. [9, 10] and Siddiqui [11]).

6 Numerical study and discussion of results

In the present study, three targets identified as Target 1, 2 and 3 were impacted by the same projectile.
The statistical properties of the projectile and these three targets are given in Table 1. Using Eqn. (6)
and the statistical properties of its dependent variables, considered random due to their uncertainty,
and employing Monte Carlo simulation technique, 100,000 values of ballistic limit of three different
targets were simulated. The randomness involved in the simulated ballistic limits of three targets is
shown in Figure 2.

Notice that nominal values of coefficient of friction and laminate thickness were assumed. All other
nominal values were taken from the reference of He et al. [5]. A constant value of laminate thickness was
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Table 1: Statistical data used for the simulation of ballistic limit and subsequent reliability analysis.

Target/Projectile Random variables Distribution Nominal
value

Bias
factor

COV

Target 1:
Carbon/epoxy (Target
size: 101.6 mm ×
101.6 mm)

Density of FRP laminate, ρt Normal 1550
kg/m3 1.02 0.10

Elastic limit of FRP laminate, σe Lognormal 211 MPa 1.05 0.15

Laminate thickness, T Lognormal 15 mm 1.05 0.05

Target 2:
E-glass/polyester
(Target size: 200 mm
× 200 mm)

Density of FRP laminate, ρt Normal 1650
kg/m3 1.02 0.10

Elastic limit of FRP laminate, σe Lognormal 225 MPa 1.05 0.15

Laminate thickness, T Lognormal 15 mm 1.05 0.05

Target 3: Kevlar
29/polyester (Target
size: Circular disks of
40 mm diameter)

Density of FRP laminate, ρt Normal 1231
kg/m3 1.02 0.10

Elastic limit of FRP laminate, σe Lognormal 145 MPa 1.05 0.15

Laminate thickness, T Lognormal 15 mm 1.05 0.05

Projectile: Conical
shaped 25.1 mm in
length

Coefficient of friction, µ Lognormal 0.001 1.03 0.15

Projectile cone angle, θ Normal 900 1.02 0.05

Projectile mass, m Lognormal 3.21 g 1.06 0.05

Projectile shank diameter, d Normal 4.76 mm 1.05 0.05

Striking velocity, Vs Extreme type 1 350 m/s 1.00 0.10

(a) (b) (c)

Figure 2: Simulated ballistic-limit velocity for (a) carbon/epoxy (b) E-glass/ polyester and (c) Kevlar
29/polyester targets impacted by a 90◦ cone angle, 3.21 g mass and 4.76 mm shank diameter conical
projectile (Min. = 195.9 m/s, Max. = 654.7 m/s Mean = 349.4 m/s).
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assumed in order to compare the reliability of different types of targets in protecting the projectiles
of selected range of impact velocity. In order to establish the probability distribution of simulated
ballistic-limit velocity, the bar charts were plotted also plotted and shown in Figure 3. These Charts
infer that it is reasonable to assume the distribution of ballistic limit velocity as normal. In order
to further develop the confidence on probability distribution of ballistic limit velocity, the simulated
values of ballistic limit and their corresponding probability are plotted on probability paper in Figure
4. It is worth mentioning that in Figure 3, the scale of the y-axis is not uniform. The y-axis values
are probabilities and, as such, go from zero to one. The distance between the tick marks on the y-axis
matches the distance between the quantiles of a normal distribution. The quantiles are close together

(a) (b) (c)

Figure 3: Histogram of simulated ballistic-limit velocity for (a) carbon/epoxy (b) E-glass/ polyester
and (c) Kevlar 29/polyester targets impacted by a 900 cone angle, 3.21 g mass and 4.76 mm shank
diameter conical projectile.

(a) (b) (c)

Figure 4: Normal probability plots for simulated ballistic-limit velocity for (a) carbon/epoxy (b) E-
glass/ polyester and (c) Kevlar 29/polyester targets impacted by a 900 cone angle, 3.21 g mass and
4.76 mm shank diameter conical projectile
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near the median (probability = 0.5) and stretch out symmetrically moving away from the median.
As all the points fall near the line, it is reasonable to assume the distribution of simulated ballistic-
limit velocity as normal. The empirical cumulative distribution function (CDF) was also drawn for
simulated ballistic limits of each target and shown in Figure 5. The shape of the CDF also supports
the above outcome that ballistic limit follows a normal distribution.

(a) (b) (c)

Figure 5: Empirical CDF drawn for simulated ballistic-limit of carbon/epoxy target.

Table 2 presents the results of reliability analysis. It is worth mentioning that the desirable range
shown in the last column of Table 2 was chosen to cover a range which is generally desired to insure
safety of engineering structures of importance (Siddiqui et al. [10], Siddiqui [11], Khan et al. [13]).
However, in practice these values for any structure are decided on the basis of extensive calibration
studies; the consideration of cost issues and the consequences of failure etc. The results show that
for target thickness of 15 mm, none of the selected composite targets are able to provide ballistic
protection with a desired level of reliability if these targets were hit by a nominal striking velocity
of 250 m/s. Although reliability indices of targets 1 and 2 are closer to the desired reliability index,
but Kevlar 29/polyester is far less than (about 72%) the desired reliability value. But, considering
economy and other manufacturing benefits of Kevlar it is necessary to estimate the required thickness
of Kevlar29 target to achieve the desired reliability. Figure 6 is plotted to obtain that thickness of

Table 2: Results of the analysis

Estimated Parameters Target 1 Target 2 Target 3 Desirable

Carbon/epoxy E-glass/polyester Kevlar29/polyester range

Probability of failure, Pf 1.0× 10−2 0.51× 10−2 20.0× 10−2 10−3-10−5

Reliability index, β 2.31 2.57 0.84 3-4

% Difference (from βD = 3.0) 23% 14.3% 72% –
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composite targets which can provide ballistic protection with the desired magnitude of reliability. This
curve clearly illustrates that in order to obtain ballistic protection with desired reliability index of the
magnitude 3.0, Carbon and E-glass thicknesses must be around 17.5 mm, however, for Kevlar 29 the
required thickness is 25 mm. Figure 7 shows that if the target thickness is only 15 mm then targets
made up of carbon and E-glass can provide reliable ballistic protection up to the striking velocity of
225 m/s. However, Kevlar 29 can provide reliable ballistic protection only up to 175 m/s.

Figure 6: Effect of laminate thickness on ballistic reliability of target.

Figure 7: Effect of striking velocity on ballistic reliability of target.
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7 Conclusion

In the present study, a procedure has been presented for the reliability assessment of composite plates
against conical-nosed projectiles penetration. Using the proposed procedure, reliability of three targets
made up of three different composites viz. Carbon/epoxy; E-glass/polyester; and Kevlar29/polyester
was studied against a normal impact of conical-nosed projectiles. The results show that for target
thickness of 15 mm, above composite targets are not able to provide reliable ballistic protection
against impact of a conical-nosed projectile having nominal striking velocity of 250 m/s. For a reliable
ballistic protection, Carbon and E-glass target thicknesses must be around 17.5 mm, however, for
Kevlar 29 the required thickness is 25 mm. It was also found that if the target thickness is only 15 mm
the targets made up of carbon and E-glass can provide reliable ballistic protection up to the striking
velocity of 225 m/s. The Kevlar29 target, however, can provide reliable ballistic protection up to 175
m/s only.
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Abstract

The principal objective of this work is to study the collapse effect of pipes with internal corrosion defect,
which is repaired with composite materials, under uniform external pressure. In this analysis, a pipe with
large longitudinal defect, compared with the diameter, is considered. In this way, the boundary effects can be
neglected. The goal is to estimate the required composite repair thickness for the pipe with internal defect
recovers the original mechanical behavior. In order to do this, it is investigated the dependence of critical
pressure on the defect geometry, i.e., depth and angular defects. Moreover, the normalized elastic buckling
pressure is analytically estimated and this is compared with results obtained by means of finite elements.

Keywords: collapse, defect, pipe, repair.

1 Introduction

Recently, there has been growing interest in structural integrity of pipe. A large number of the pipes
are made of metals, like carbon steel, and they are used extensively in the petrochemical, refinery,
and pipeline industries [1]. The reason for this is simply economic. It is widely available, inexpensive,
and maintainable. However, this type of material is susceptible to flaws such as cracks, pitting, local
wall thinning, which can be generate by corrosion, erosion, and environmental exposure to various
substances [2–4].

The marine environment is very aggressive to any type of material, in addition, the flow over the
years contributes against pipe integrity. The transport of oil by pipes, despite being one of the safest
modes, accidents have been caused by leaks or ruptures, and in some cases impact the environment
for a long period.

Every day more is required to protect the environment. The environmental agencies, prosecutors
and the Agência Nacional de Petróleo are stricter in fines and program for adjustment of conduct, to
maintain this activity within an acceptable standard of safety worldwide.
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Recently, pipeline integrity is frequently target of many studies [2, 5–8]. Some of them are based on
analysing collapse behavior of pipelines with defects [9–11]. The use of composite materials, mostly
carbon fiber, in order to repair structural defects in pipelines has also been widely studied in recent
years [12–16].

The aim of this study is to analyze the pipelines collapse behavior with internal defect repaired with
composite material, which is subjected to external pressure uniformly distributed. In this context, it
intends to estimate the thickness of an ideal for duct repair faulty repaired has a behavior similar to
a product without defect.

2 Description

Consider a pipeline with internal defect repaired with composite material, as illustrated in “Fig.
1”. Initially it is assumed that the length of the defect on the axial direction of the pipe is large
compared with the diameter, thus the edge effects are neglected. Moreover, the region with defect has
circumferential symmetry.

Figure 1: Schematic of a pipe with internal defect repaired with composite material.

In this case, the pipe with defect repaired has the following characteristics: thickness of pipe without
defect, ie. (steel thickness), ta, thickness of composite material (repair), tc, defect depth, d, the defect
angle 2β. Moreover, the structure will be subjected to a uniformly distributed external pressure, p,
after that, it will be analyzed the influence of the repair thickness over the critical collapse pressure.
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3 Analytical model for internal defect pipeline repaired

The differential equation governing radial deflection curve of a thin bar w, described by Timoshenko
and Gere [17], is defined as

∂2w

∂θ2
+ w = −MR2

EI
(1)

where M is the bending moment and R the average radius of curvature.
As the present analysis involves two different materials, namely steel and composite material, for

simplicity, it is considered the equivalent stiffness, which can be given by

EIeq = EaIa + EcIc (2)

where EaIa and EcIc are the equivalent stiffness of steel and composite, respectively.
In the region with defect, i.e., −β < θ < β:

Eeq1 =
Ea

(1− ν2a)
(ta − d)3

12
+

Ec
(1− ν2c )

t3c
12

(3)

In the region free from defect, i.e., β < θ < 2π − β

Eeq2 =
Ea

(1− ν2a)
t3a
12

+
Ec

(1− ν2c )
t3c
12

(4)

where νa and νc are the Poisson coefficients of steel and composite material (repair).
According to Hoo Fat and Xue [9], the bending moment can be expressed by

M = pRw (5)

Substituting Eq. (5) and (1), considering Eq. (3) and (4), then:{
∂2w
∂θ2 + k21 = 0, para − β ≤ θ ≤ β
∂2w
∂θ2 + k22 = 0, para − β ≤ θ ≤ 2π − β

(6)

where the collapse parameters are given by

k21 = 1 + 3η
Cat

3
a

Ca(ta − d)3 + Cct3c
(7)

k22 = 1 + 3η
Cat

3
a

Cat3a + Cct3c
(8)

with Ca = Ea

12(1−ν2
a)

e Cc = Ec

12(1−ν2
c )

The analysis will be done using the normalized pressure given by η = p
pe

, where the elastic collapse
pressure for a uniform tube is given by
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pe =
Eat

3
a

4R3 (1− ν2a)
(9)

The parameters used in the equations above are: thickness ta,c, Young modulus, Ea,c, Poisson’s
ratio, νa,c, pipe radius R. The indices are related to steel and composite material respectively.

Solving Eq. (6), the following general solution is found

w =

{
A sin k1θ +B cos k1θ, para − β ≤ θ ≤ β
C sin k1θ +D cos k1θ, para β ≤ θ ≤ 2π − β

(10)

To determine the constants presented in Eq. (10), let us consider the case where the collapse solution
presents symmetry as per Hoo Fat and Xue [9], taking the following boundary conditions,

dw

dθ
= 0, at θ = 0, π, w|θ=β

+

= w|θ=β
−

and
dw

dθ

∣∣∣∣θ=β+

=
dw

dθ

∣∣∣∣θ=β−

(11)

Using the boundary conditions presented in Eq. (11), it is possible find the next equation,

−k1 tan k1β = k2 tan k2(π − β) (12)

4 Results and discussion

The purpose of this section is to analyze the permissible external pressure in a pipe with internal defect
repaired with composite material, varying the defect geometry and repair thickness. The purpose is
to observe what should be the thickness required to repair the pipe with defect back to the original
collapse properties, i.e., on a pipe without defect this parameter is the elastic collapse pressure. For
this analysis, the geometrical and material properties described in Tab. 1 were used.

Table 1: Material properties and geometric parameters.

Parameters ASTM A106 steel Resin epoxi with carbon fiber

Young modulus (GPa) Ea = 210 Ea = 49*

Poisson ratio νa = 0.3 νc = 0.43*

Thickness (mm) ta = 18.29 Variable

Nominal diameter (mm) R= 228.6 Variable
∗ It was considered just the circumferential properties [13]

Solving Eq. (12), considering the values presented in Tab. 1, it was obtained the following results
illustrated in Figs. 2 and 3. In this case, for each depth of normalized defect (d/ta ranging from 0.1
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to 0.9) is verified the variation of normalized pressure (i.e., pressure over elastic collapse pressure)
according to defect angle (β = 20, 30, 45 e 60◦) and the normalized repair thickness (tc/ta ranging
from 0 to 1).

(a) (b)

(c) (d)

(e) (f)

Figure 2: Normalized collapse pressure in function of defect geometry (angle and depth) and repair
thickness.
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In Figure 2, it is possible to see that in the case where the thickness of the defect is equal to or less
than 60% of pipe thickness, the normalized pressure varies slowly to the value of the repair thickness
equal to 50% of pipe thickness. Starting from this point, normalized pressure presents a considerable
increase.

Considering the result shown in Fig. 2 (a) for a defect depth equal to 10% of pipe thickness, it is
known that the thickness needed to repair the pipe with defect back to its collapse original features is
70% of pipe thickness. Another important observation is that there are not large variations associated
to defect angle.

As defect depth is increased, it can be observed that the effect of the angle of the defect begin to
be highlighted. Also, repair thickness needed is increased.

(a) (b)

(c)

Figure 3: Normalized collapse pressure in function of defect geometry (angle and depth) and repair
thickness.

The results illustrated in Fig. 3 present new interesting effects. With depth values equal and over
70% of repair thickness, it can be observed a large dependence on defect angle and repair thickness.
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In Figures 4, 5, 6 and 7, it will be showed the FEA results comparing with the analytical results.
It was assessed by a commercially available finite element code using the same properties of the Tab.
1. Of course it had its differences (analytical x FEA) because of non-linear analysis was used as mesh
and contact as well. The purpose was approach as close as possible both models (analytical x FEA).

To FEA model, Fig. 1 should be adopted on its half, the side with defect was permitted just
displacements on x-axis while on non-defect side was applied fixed support. The repair thickness was
applied as contact to the half tube profile, which was the target. Pressure was applied on outer surface
and the results were assessed by Linear Buckling connected after Structural block.

Figure 4: Comparison between FEA x Analytical results for d/ta=0.1.

Figure 5: Comparison between FEA x Analytical results for d/ta=0.5.
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Figure 6: Comparison between FEA x Analytical results for d/ta=0.7.

Figure 7: Comparison between FEA x Analytical results for d/ta=0.9.

In Figure 4 as the range varies only between 0 and 1 it turns harder to assess a good approach
between results.

As illustrated in Figs. 5, 6 and 7, it should be noted that the analytical and numerical results is
closer than the presented in Fig. 4. This is due a bigger range of normalized pressure.
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5 Conclusions

The purpose of the present work was investigate the repair thickness behavior from a pipe with
internal defect when subjected to uniform external pressure. It was assessed the critical pressure,
which is compared with the elastic collapse pressure in pipelines without any defect. In addition, it
was verified the geometry dependence of the defect, i.e., thickness and angle defect. Taking into account
the approximations, it can be considered a very good agreement between the analytical predictions
and numerical results using finite element method. With this analysis it is possible to estimate the
repair thickness necessary to repair a pipe with defect to have the same behavior as a tube without
defect, avoiding oversizing, and consequently, excessive waste of material.
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Abstract

This research proposes a methodology for the optimal design of actively controlled structures, aiming to
suppress vibrations induced by external disturbances. Design is conducted simultaneously for the structural
topology and actuator locations. A topology optimization problem is formulated for three material phases (two
solid materials and void) with two design variables groups. A non-piezoelectric elastic isotropic material forms
the structural only part of the design, while a piezoelectric material composes the active part. To avoid the
difficulties of treating structural and control design variables in the same optimization framework, this work
proposes a nested solution approach, where the actuator locations and controller syntheses are considered as
separately. The main optimization loop designs the structural variables, i.e., it is decided where there should
be solid material and where there should be voids. The actuators are placed by an inner design loop within the
structural problem, by a control law optimization that defines where the material should have piezoelectric
properties. Numerical examples show that the approach used in this paper can produce a clear structural
topology with effective actuators placement.

Keywords: simultaneous design, structural optimization, vibration control, piezoelectricity.

1 Introduction

The increasing demand for lightweight and adaptable structures to important applications spotlights
the need of advanced structural optimization and control design methods. Smart structures, by the
distribution of integrated sensors and actuators, have a great capacity for self-monitoring and self-
control via a control system. Thereby, the system can detect induced vibration modes and generate
control forces to reduce structural vibration. One can mention many applications for such smart
structures, especially in the aerospace industry, but also in flexible robotic manipulators and light
weight surface vehicles.

The development of efficient methods for design of smart structures is still a very promising field of
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research, despite great achievements during the past two decades. The wide application field supports
these researches and developments.

As part of structural design, the topology optimization method contributes effectively in the design
of lighter structures, reducing transportation costs. Furthermore, the reduction of raw materials also
becomes important for environmental sustainability issues.

These structures, however, are usually light in weight and presents low internal damping [1]. These
characteristics favor the appearance of large amplitude vibrations, which are especially undesirable
in the operation of precision machinery. Therefore, the use of an active vibration control system by
automatic modification of its structural response is important. This control system requires actuators
that generate control forces, such as, piezoelectric ceramic actuators.

The piezoelectric phenomenon is a form of electro-mechanical coupling in which some crystals and
polymers generate an electrical charge when pressed (mechanical strain), and vice versa. The use of
piezoelectric ceramics as mechanical force generator in control systems and in mechanical actuators is
already well known. In general, these applications use pieces of specific size and standard shape; pre-
set placement of piezoelectric ceramics in topology optimization is another problem. An alternative to
these design constraints is using a methodology that optimally distributes the piezoelectric material
to maximize the performance of the ceramics.

The fields of structural optimization and optimal control had significant progress during the last
decades. Each discipline has developed several theoretical and computational methods for their own
goals. Overall, the structural design precedes the control design, i.e., structural engineers define a
layout in order to withstand the static and dynamic loads, and after that, the control engineers
specify the control system using the pre-defined structure. In the field of structural design, topology
optimization has emerged as an effective tool, where the goal usually is to minimize the costs under
some requirements of resistance and/or dynamic or maximizing the global structure stiffness, both
by the optimal distribution of material. In relation to the control project, several theories have been
proposed to reduce vibration in structures, among which the optimum control theory.

Since the early 1990s, contrary to common practice, several theoretical works point that simultane-
ous design of structural optimization and control can reduce costs and increase performance, relative
to the project in sequence.

Canfield and Meirovitch [2] dealt with the design of a structure and its control system as a problem
of multi-objective optimization. Pareto optimal designs generated for a simple beam demonstrated
the benefits of solving the problem of integrated structural optimization and control. A composite
objective function consisting of structural and control parts was developed by Ou and Kikuchi [3],
which is optimized by the method of topology optimization for steady state response. An independent
modal space control algorithm (IMSC) is performed on the structure in order to reduce the transient
response magnitude and, finally, the ideal placement for actuators is discussed. Wang et al. [1] treated
the structural design variables and the matrix of feedback gains as independent design variables. Liu
and Begg [4, 5] discussed the optimal control, sensitivity analysis and optimization of an integrated
intelligent truss structure. Five algorithms for simultaneous design have been presented and applied
to a multidisciplinary optimization in which both the structural layout and the control parameters are
involved. Zhu et al. [6] investigated the simultaneous optimization for structural topology, piezoelectric
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actuator locations and control parameters of a plate actively controlled by a H2 control law. Using a
nested solution approach, they could treat the structural and control variables separately. Finally, the
control variables were projected on a sub-optimization solving the Ricatti equations. An integrated
optimization for smart trusses using genetic algorithms is carried out by Xu et al. [7]. In this work,
several constraints were considered: stresses, displacements, natural frequencies and voltage on piezo-
electric actuators. Finally, Raja and Narayanan [8] considered the optimization of a multidisciplinary
tensegrity structure using genetic algorithms. A nested strategy was also used, in which the robust
control norms H2 and H∞ were considered as objective function of the control system.

A number of works concern about the placement of actuators and sensors. In general, some use
a control performance index as objective function, while others use concepts of observability and
controllability. Recently, Kumar and Narayanan [9] considered the optimal location of sensor-actuator
pairs placed on piezoelectric flexible beam using a controller based on a linear quadratic regulator
(LQR). The LQR performance index was used as the objective function of the optimization problem,
which was solved using genetic algorithms. In a unique work, Carbonari et al. [10] studied the design,
by topology optimization method, of piezoelectric actuators consisting of a flexible structure actuated
by piezoelectric ceramics. In this kind of project formulation, the position of piezoelectric ceramic is
usually held fixed in the design domain and only the flexible structure is designed by distributing some
non-piezoelectric material. However, this work presents a formulation that allowed the simultaneous
distribution of non-piezoelectric and piezoelectric material in the design domain in order to obtain
some specifics actuation movements, achieving excellent results.

In view of what was presented, this paper aims to develop a new methodology for simultaneous design
of structural topology and control for reduction of vibration using piezoelectric actuators. It proposes
a procedure that uses the topology optimization method, and finds the optimal actuators placement
according to the optimal distribution of piezoelectric material, and automatically derives the optimal
control. Moreover, unlike Carbonari et al. [10], considers the three-dimensional structure, what enables
the practical application of electrical potential difference across the piezoelectric material. This paper
considers the topology optimization of thin three-dimensional structures in the simultaneous project.
The piezoelectric ceramic actuators are activated on the normal faces of the thinner dimension, which
is the direction of polarization of piezoelectric ceramics.

2 Simultaneous design of structural topology and control

Several authors [11, 12] argue that the structural optimization and control combined can get better
results than traditional sequential method. It is common to different works that the first paper inves-
tigating the integrated design for a structure and control system was conducted by Hale et al. [13], in
which an optimization problem is developed to handle spatial structures where both structural param-
eters and active control forces are determined in order to minimize a specific cost function. Miller and
Shim [14] worked with objective functions in order to reduce structural mass and strain, kinematics
and control energy. Salama et al. [11] established a precedent followed by many others. They elimi-
nated the variables of structural control considering permanent gains (constants) and selecting specific
weight matrices (identity) for the quadratic performance index. Milman et al. [12] introduced the con-
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cept of combined objective function, and provided the necessary conditions for the optimal design of
Pareto. Some recent works on simultaneous design has been cited in the introduction.

2.1 Objective function and constraints

Generally, the simultaneous design of structural optimization and control can be put as a nonlinear
programming problem in which certain cost function, often multi-objective, is minimized with respect
to structural (ρe) and control (ρc) parameters in the form

min
ρe,ρc

f (ρe, ρc) . (1)

The original integrated optimization can be replaced by a nested structural optimization with the
control optimization as a sub-process [6]. Thus, one can write:

min
ρe

f1 (ρe) , (2)

where

f1 (ρe) = min
ρc

f2 (ρe, ρc) , (3)

refers to the control optimization using a certain control law. As shown in the above equations, the
first optimization, Eq. (2), is the structural optimization for structural design variables, while the
sub-optimization, Eq. (3), is the optimization of control over the control variables. Therefore, when
the structural variables are changed, the sub-process is called and new control variables are calculated.

Since the structural and control optimization are treated separately in this nested approach, the
various techniques for structural and control design can be combined and implemented without dif-
ficulties [6]. But it is important to note that the original optimization represented by Eq. (1), and
the new optimization represented by Eq. (2) and (3), may converge to different optimal solutions;
this happens because obtaining identical solutions depends strongly on the details of the strategies of
searching, initial values of design variables, characteristics of the objective function, etc.

In this work the structural optimization can be defined as the minimization of the compliance,
depending of structural design variables that define where, on the structure, should be put solid
material (elastic isotropic or piezoelectric material) and where should be put voids. The control opti-
mization will be based on minimizing the performance index of an LQR optimal control, depending of
design variables that define the control regions where should have elastic isotropic material and where
should be taken piezoelectric material (actuators). Furthermore, the control optimization is able to
define the gain matrix G of LQR optimal control system. In order to solve the optimization problems
this work uses the sequential linear programming (SLP).
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2.2 Material model for simultaneous design with optimum placement of piezoelectric material

The material model for topology optimization proposed in this paper includes two solid, elastic
isotropic material and piezoelectric material, and void. Therefore, the material model that defines
the elastic properties, piezoelectric coupling properties and density is given by:

E = ρp11

((
1− ρp22

)
E1 + ρp22 E2

)
,

γ = ρp11

((
1− ρp22

)
γ1 + ρp22 γ2

)
,

d = ρp11 ρ
p3
2 d2,

(4)

where E, γ and d define the effective properties of the interpolated material. E1 and E2 are the elastic
properties of non-piezoelectric and piezoelectric material respectively, as well as, γ refers to densities;
d2 defines the properties of electro-mechanical coupling for the piezoelectric material, being null for
non-piezoelectric material. ρ1 and ρ2 are the pseudo-density defined in each finite element and will
be directly related to the design variables of structural and control respectively. It is observed by
examining Eq. (4) that: common elastic isotropic material is obtained when ρ1 = 1 and ρ2 = 0,
piezoelectric material is obtained when ρ1 = 1 and ρ2 = 1, and void is obtained when ρ1 = ρ2 =
0. p1, p2 and p3 are the penalty coefficients that try to recover the presence or absence of material,
piezoelectric or non-piezoelectric material and finally, the coupling properties, respectively.

This material model distributes elastic isotropic material and piezoelectric material optimally. As
consequence, automatically sets the placement of piezoelectric actuators contributing to the optimiza-
tion of the control system. A material model similar to that, have already been presented in Bendsøe
and Sigmund [15] and also in Carbonari et al. [10], but was not used in designing control system.

3 Structural design

As previously mentioned, the structural objective function that it is used in this work is the mini-
mization of mechanical compliance (maximizing the global stiffness), which can be written as

f1 (ρ1, ρ2) = Je = fTu, (5)

where fT is a vector of static loads and u is the vector of global displacements of the structure
generated by this loading. Although the compliance function depends on the design variable ρ2 which
defines where should have piezoelectric material, the design of structural optimization provides only
the minimization of compliance on the variable ρ1, which defines the presence or absence of solid
material (piezoelectric or non-piezoelectric.) Thus, one can write

min
ρ1

Je (ρ1, ρ2)

subject to

 0 < ρ1i ≤ 1 (i = 1, 2, 3, ..., n1)

V1 =
∫
Ω
ρ1idΩ∫
Ω
dΩ
≤ V max

1

(6)
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where ρ1 is a vector of structural design variables, ρ1i is the ith element component and n1 is the number
of structural design variables (equal to the number of finite elements.) The second restriction limits
the total volume of material (piezoelectric or common) to a volume fraction V max

1 pre-established.

4 System control design

The objective function for the control system used in this work is the minimizing of the performance
index of an LQR optimal control [9], given by:

f2 (ρ1, ρ2) = Jc =
1

2

∫ ∞

0

(
xTQx+ jTRj

)
dt, (7)

where x is a vector of state variables, the vector of modal coordinates in this case, j is a vector of
control forces, Q is a semi-positive definite matrix of weights for the state variables and R is a positive
definite matrix of weights for the control forces. Therefore, the optimization of control can be written
as:

min
ρ2

Jc (ρ1, ρ2)

subject to

 0 < ρ2i ≤ 1 (i = 1, 2, 3, ..., n2)

V2 =
∫
Ω
ρ2idΩ∫
Ω
dΩ
≤ V max

2

, (8)

where ρ2 is the vector of design variables of control, ρ2i is the ith component of the vector referring
to the element i, and n2 is the number of design variables for control (equal to the number of finite
elements). The second restriction limits the total volume of piezoelectric material to a volume fraction
V max
2 pre-established.

5 Sensitiviy analysis

First order optimization algorithms, such as the sequential linear programming, require sensitivities
(derivatives) of objective and constraints with respect to design variables. In this case it was possible
to derive analytical sensitivities.

5.1 Sensitivity of the material model

The sensitivities of the material model, described in the section 2.2, in relation to the design variables
ρ1 and ρ2 are easily calculated, as follows:

∂E

∂ρ1
= p1ρp1−1

1

((
1− ρp22

)
E1 + ρp22 E2

)
,

∂E

∂ρ2
= p2ρp11 ρ

p2−1
2 (E2 −E1) , (9)

∂γ

∂ρ1
= p1ρp1−1

1

((
1− ρp22

)
γ1 + ρp22 γ2

)
,

∂γ

∂ρ2
= p2ρp11 ρ

p2−1
2 (γ2 − γ1) , (10)
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∂d

∂ρ1
= p1ρp1−1

1 ρp32 d2,
∂d

∂ρ2
= p3ρp11 ρ

p3−1
2 d2. (11)

5.2 Sensitivity of compliance

Compliance is defined as the work done by the external forces, given by Eq. (5). For simplicity sake
derivation is show for a generic density ρ. By the adjoint method can be concluded that the compliance
sensitivity in relation to a pseudo-density ρ can be written as:

∂W

∂ρ
= −ũT ∂K

∂ρ
u, (12)

where ũ ∈ Rn is any arbitrary constant real vector, K is the stiffness matrix and u is the displacement
vector. This equation is in the form of an equilibrium equation and for flexibility one can get directly
ũ = u. Remembering that the stiffness matrix of a piezoelectric material can be written as

K =

[
Kuu (c) Kuj (e)

Kju (e) −Kjj (κ)

]
, (13)

and that the compliance is related only to mechanical degrees of freedom, Eq. (12) can be rewritten
as

∂W

∂ρ
= −uT ∂Kuu (c)

∂ρ
u. (14)

Therefore, the compliance derivatives are easily calculated. It is important to note that these deriva-
tives are “localized”, i.e., only requires information at the element level, however, there is a hidden
global effect because the displacement vector depends on the pseudo-densities of all elements [15].

Finally, observing Eq. (9) when applied to Eq. (14), one can note the sensitivity of compliance with
respect to design variables ρ1 will always be negative, i.e., the addition of material, piezoelectric or
not, decreases the compliance (increases stiffness). Moreover, the sign of sensitivity to design variables
ρ2 depends on the difference between the values of the matrices of elastic properties of both materials
(isotropic elastic and piezoelectric).

5.3 Sensitivity of performance index of the control system

Since the behavior of the control system depends heavily on the structural design variables and the
feedback logic, a systematic sensitivity analysis is essential for the development of a well-behaved
algorithm for solving a problem of this complexity. The sensitivities of the first order, for the control
optimization part are given below.

According to Liu and Beeg [5], the first order sensitivity of the quadratic performance index J with
respect to a design variable ρ is given by
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∂J

∂ρ
=
∂J

∂A
⊗ ∂A

∂ρ
+
∂J

∂B
⊗ ∂B

∂ρ
+
∂J

∂S
⊗ ∂S

∂ρ
, (15)

where “⊗” means the sum of all products of two entries for each matrix and

∂J

∂A
= PL, (16)

∂J

∂B
= −PLSTGT , (17)

∂J

∂S
= −GTBTPL+GTRGSL. (18)

The sensitivities in relation to design variables can be obtained after by the Leibnitz’s chain rule.
Thus, one can obtain:

∂A

∂ρ
=

 0 0

−diag
[
∂ω2

i

∂ρ

]
−2diag

[
ξi
∂ωi

∂ρ

]  , (19)

∂B

∂ρ
=

[
0

ΦT

∂ρ B0 +ΦT ∂B0

∂ρ

]
. (20)

as S was defined as a unitary matrix, it can be written

∂S

∂ρ
= 0, (21)

And so the third term in Eq. (15) can be neglected. Finally, since the matrix B0 is directly related to
region of the electro-mechanical (Kju) in the stiffness matrix, the sensitivity of B0 can be written as:

∂Kuj (d)

∂ρ
=

∫
Ωe

BT
u

∂d

∂ρ
BjdΩe, (22)

where ∂d/∂ρ is given by Eq. (11).

6 Summary of the proposed methodology

For clarity sake, the methodology proposed in this paper can be summarized in 11 steps:
1. Data entry (optimization and FEM);
2. Assemble elements neighborhood table for the sensitivity filters;
3. Start SLP loop;
4. Solve a static problem for the external loads;
5. Calculate the sensitivities of the structural problem and apply the filter to this data;
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6. Solve the compliance minimization problem for the structural pseudo-density;
7. Solve a modal problem for the desired number of modes;
8. Calculate the sensitivities of the control problem and apply the filter to this data;
9. Solve the problem of minimizing LQR control system index;

10. Check the convergence:
• If converged, go to step 11;
• Else, recalculates the move limits and return to step 3 with the new pseudo-densities;

11. Exit and plot.

7 Results

In order to verify the performance of the proposed simultaneous design presented in this paper, this
section shows some results. The material properties of the elastic isotropic material (aluminum) and
piezoelectric material (PZT5A) are presented in Table 1. A cantilever beam is analyzed (Figure 1).
Besides clamping one end of the beam, it is considered that the degrees of freedom in z-direction are
restricted, allowing movements only in the xy plane. There is no topology change in z-direction since
the structure presents just one layer of finite elements [16]. The beam measures 800 x 100 x 10 [mm3]
and is discretized by 3200 eight node brick finite element (160 x 20 x 1).

Figure 1: Cantilever beam.

The parameters used in design optimization are the same for all simulation cases analyzed. Volume
constraints are 50% and 5% for total volume fraction and piezoelectric volume fraction, respectively;
the initial values of the pseudo-densities ρ1 and ρ2 are uniform for all elements and equal to 0.40 and
0.04, respectively, in this way, the optimization problem starts just below the feasible limit.

The value of the static vertical load on the tip of the beam is set equal to 1000 [N], which is applied
in four nodes. The weighting matrix of the quadratic performance index of the control system Q and
R are respectively set equal to 1e+12 and 1e+0.

This model is used in three design cases, to verify the influence of the number of vibration modes
considered in the control system. In the first one, the control system is set to control the first two
vibration modes. In the second, it is considered four modes and in the last one, it is considered the
first six vibration modes. The results are shown below.

The results considering the first two vibration modes for the control system can be seen in Figure 2.
The final topologies for the distribution of solid material (elastic isotropic or piezoelectric), distribution
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Table 1: Material properties.

PZT5A

elastic constants (1010 N.m−2)

cE11 12.1

cE12 7.54

cE13 7.52

cE33 11.1

cE44 2.11

cE66 2.26

piezoelectric constants (C.m−2)

e31 -5.4

e33 15.8

e51 12.3

dielectric constants

ϵS11/ϵ0 916

ϵS33/ϵ0 830

Density 7750 kg.m−3

Aluminum

Young’s modulus 71x109 N.m−2

Density 2700 kg.m−3

Poisson’s ratio 0.33

(a) (b)

Figure 2: a) Optimal topologies and b) Tip displacement considering two vibration modes.
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of piezoelectric material (actuators) and the post-processed image can be seen in Figure 2a. To check
the structural response time, it was considered an initial modal displacement equal to (η1 = η2 = 1e-3
[m]). The beam tip displacement is plotted in Figure 2b; the solid and dashed lines show the response
with and without control respectively.

In Figures 3a and 3b one can see the results considering four modes in the vibration control sys-
tem. The optimal topologies for the distribution of solid material, piezoelectric material and the
post-processed image, for this second case, can be seen in Figure 3a. The tip displacement response
considering an initial modal displacement (η1 = η2 = η3 = η4 = 1e-3 [m]) can be seen in Figure 3b.

(a) (b)

Figure 3: a) Optimal topologies and b) Tip displacement considering four vibration modes.

The results for optimal topology and temporal response to a control system considering six vibration
modes can be seen in Figures 4a and 4b. Figure 4a shows the optimal topologies for the distribution
of solid material, piezoelectric material and the post-processed image considering six vibration modes.
Figure 4b displays the respective tip displacement time response considering an initial modal displace-
ment (η1 = η2 = η3 = η4 = η5 = η6 = 1e-3 [m]).

It can be seen there are some differences among the topology results presented in Figures 2, 3
and 4. From these results, it can be concluded that the number of vibration modes used in the
control system considerably changes the distribution of piezoelectric material (actuator location). In
a subsequent study would be interesting to consider different weights for each eigenfuction since it is
well known that the first modes are more influential. From the temporary responses can be noted that
the control system can eliminate possible vibrations very efficiently.
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(a) (b)

Figure 4: a) Optimal topologies and b) Tip displacement considering six vibration modes.

8 Conclusion

This work presents a new methodology of simultaneous structural and control design. The optimization
is based in a nested approach that separates the two design procedures inside a SLP loop. Preliminary
results for plane deformations and variable number of vibration modes are presented. Using this
methodology, the structural topology, actuators placement and the control system are designed. This
approach has great potential for application in the design of smart structures.
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Abstract

The study of mechanical behavior and of the constitutive relations is very important in scope of Structural
Engineering. Many materials used as structural components, in diverse areas of engineering, are not isotropic,
for example, the fiber-reinforced polymer materials. Searching a contribution for application of these materials,
this paper deals with a theoretical study on anisotropy and on its influence in the stress distribution and
displacements in plane laminate beams. Fiber-reinforcement beams are body with a mechanical behavior that
is dependent on the direction of its fibers. Due to simplifications in analysis, fiber-reinforcement beams are
generally treated as linear orthotropic, with the material directions ideally coincident with the longitudinal and
transverse directions of a coordinate system associated with a structural member. When such coincidence does
not occur in the practical cases, the effects the mechanical properties require a transformation of coordinates
of the elastic coefficients to adjust them to the adopted model for structural analysis. Thus, additional terms
appear in the constitutive relationship transforming fiber-reinforcement beams as an anisotropic body. By
introducing these coefficients on the elastic model, a study of the stresses in beams was developed by applying
an analytical method and a commercial program of finite elements. Numerical examples confirm that the fiber
orientation, even for small angles, has a large influence on the mechanical behavior of fiber-reinforcement
beams. The obtained results reveal that there is a non-symmetrical normal stress distribution in these beams.

Keywords: fiber-reinforcement beams, fiber orientation, Airy’s function, elastic coefficients, coefficients of
mutual influence.
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1 Introduction

As structural elements, anisotropic solids are applied in some areas of modern technology. In general,
an anisotropic material presents no elastic symmetry and its mechanical properties are different in
arbitrary directions. Thus, the study of these solids become more complex than the study of other
solids that possess other types of elastic symmetry, as for example, isotropic solids. Some works that
evidence this complexity can be cited, as for example, Green and Zerna [1], Nair and Reissner [2],
Kilic et al. [3], Mascia and Vanalli [4] and Mascia et al. [5].

In fact, the study of the anisotropy implies in the knowledge of the constitutive law that consequently
governs the elastic behavior of the material and in determining the components of the constituent
tensor Sijkl. In an elastic model, completely anisotropic, this constitutive tensor possesses 81 unknown
constants. Using convenient simplifications, this number can be reduced for 9 constants, which is called
orthotropic model, or for 3 constants, called isotropic model.

Treating particularly about anisotropic beams, it appears other deformations besides the ones pre-
sented in isotropic beams, as for example, in steel beams. These deformations are associated to the
certain constants of elasticity called of the mutual influence coefficients that quantify the participation
of normal stresses in shear strains or shear stresses in normal strains.

During many years the studies in this area have been focused on the analysis of the behavior of the
stresses and strains of anisotropic beams. As for example the application of the polynomial forms of the
stress function of Airy, where Lekhnitskii et al. [6] studied the displacements and the stresses in some
examples of anisotropic beams subjected to the different conditions of loadings and restrains. When
particularized for isotropic beams, these solutions become similar those of Timoshenko and Goodier [7].
Hashin [8], also using of the stress function of Airy, developed a systematic way of develop polynomial
solutions for anisotropic plane beams.

Murakami et al. [9], investigated the effect of the constitutive coupling, and the effect caused for the
participation of the coefficients of mutual influence on stresses and strains of a cantilever anisotropic
beam. In this way, the authors also studied the influence of the relation between the height of the
cross section (h) and the span of the beam (l) on the behavior of anisotropic beams considering the
theory of beam of Euler-Bernoulli and the theory of Timoshenko too.

In this context, considering the anisotropic formalism of Lekhnitskii [10], the goal of this paper is
to analyze the influence of the anisotropy in the mechanical behavior of laminate beams, considered
anisotropic and homogeneous. In order to carry out this, it is used the equations developed for Lekhnit-
skii et al., as well as, the method developed for Hashin. The obtained solutions are compared, by means
of diagrams, with solutions for isotropic beams considering the theories of beam of Bernoulli-Euler,
and also, with numerical solutions for orthotropic beams.

2 Description of problem

According to Lekhnitskii [10], all materials can be divided in homogeneous and not homogeneous, and
on the other hand, in isotropic and anisotropic. Most of structural materials show some degrees of
anisotropy. Materials, as laminate composites, are anisotropic due to the manufacture process.
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Lekhnitskii [10] classifies as isotropic the solid whose properties of elasticity are constant for any
directions established from one determined point, or either, the transformations of coordinates are
invariant for all. An anisotropic solid, in general, shows different properties of elasticity for different
directions associates to a given point. The directions in which the elasticity properties are constant
are called elastically equivalent directions or principal directions of elasticity.

Apart from this if the structure of an anisotropic body presents some type of symmetry, its properties
of elasticity also show it. The elastic symmetry expresses the fact that in each point of the solid exists
equivalent symmetrical directions with respect the elastic properties. If the symmetry of the elastic
properties of an anisotropic body exists, the equations of Hooke’s Law can be simplified, also occurring
many simplifications in the constituent tensors Sijkl or in reduced form Sij .

Dealing particularly with laminate beams, constituted by laminae of materials strengthened for
fibers, the stress and strain analyses become more or less complex whether considering the coincidence
or not between the geometric axis of the beam and the principal axes of elasticity of the laminae,
that compose the structure. Thus, the constitutive tensor for the plane case, in case of having this
coincidence, is simplified, as an orthotropic material with four independent terms.

Sij =


S11 S12 0

S12 S22 0

0 0 S66

 (1)

However, the simplifications presented in the orthotropic tensor disappear when the coincidence
between the geometric axis of the beam and the principal axes of the laminae are not considered,
especially related to the directions of strengthened fibers, appearing then, other elements in the con-
stitutive tensor, which becomes anisotropic. In a general point of view, the angles that relate reinforce-
ment fibers of the laminae and the geometric axes of the analyzed structure establish the anisotropic
behavior of the laminate beams (Figure 1).

Thus, considering the angle θ among the fibers of reinforcement of the laminae and the geometric
axes of the beam, the constitutive tensor can be written by:

S̄11 S̄12 S̄16

S̄12 S̄22 S̄26

S̄16 S̄26 S̄66

 = [T ]
T ·


S11 S12 0

S12 S22 0

0 0 S66

 · [T ] (2)

where the constants S̄16 and S̄26 are present in anisotropic materials and are dependent of the coeffi-
cients of mutual influence and T is the matrix of transformation.

The anisotropic constitutive relations, or stress (σ or τ ) and strain (ϵ or γ ) relationship, that are
involved in the analysis of a laminate beam, where it does not have coincidence between the local axes
of the laminae and the geometric axis of the beam, for a plane case, are present in Equation 3 as:

εx =
_
S
11
σx +

_
S
12
σy +

_
S
16
τxy; εy =

_
S
12
σx +

_
S
22
σy +

_
S
26
τxy; γxy =

_
S
16
σx +

_
S
26
σy +

_
S
66
τxy (3)
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Figure 1: Laminate beam related to the geometric and local (of the fibers) systems.

Thus, it is evident that beams constituted by orthotropic materials can become anisotropic from
these considerations, and that with the use of the transformation matrices, Equation 3, it is possible to
obtain all the constants that are necessary for the development of the anisotropic constitutive relations,
including the coefficients of mutual influence (ηxy,x and ηxy,y), which are of difficult experimental
determination.

To illustrate the transformations of the mentioned elastic properties, it is prepared, as follows,
diagrams that show the variations of the values of the elastic constants, in function of the angle
of inclination of reinforcement fibers, of the laminae considered orthotropic. For this analysis, it is
considered that the laminae are strengthened with carbon fibers and possess the following elastic
properties: Ex = 140,00 GPa; Ey = 14,00 GPa; Gxy =5,00 GPa and νxy = 0,2. Thus, using Equation
2 and considering that: S̄26 =

ηxy,y

Ey
; S̄16 =

ηxy,x

Ex
; S̄11 = 1

Ex
; S̄22 = 1

Ey
and S̄12 = −νxy

Ex
, the following

diagrams with the values for the variations of the elastic constants in relation to the angles of carbon
fibers can be obtained:

Figure 2: Values of the coefficients of mutual influence, Poisson’s ratio, the longitudinal elastic moduli
of and the shear modulus.
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3 Elastic verification of Homogenization Method for anisotropic plates

It is well known from standard text books [11] that a usual way to calculate composite material
structures is the use of homogenization process. This process is based on the determination of the
anisotropic or orthotropic properties of reinforced materials considering matrix and reinforcement
working together. In this article, a simple finite element code [12] that allows the insertion the several
fibers in the bi-dimensional media considered homogeneous is applied. In this example a specimen
of fiber reinforced plate (see Figure 3) is analyzed using the code. The space between bars and the
cross section diameter of bars is also highlighted in Figure 3. The indicated constant displacements
are applied separately. Applying the displacement in x direction one calculates the average stress
(reaction) in x direction and the average displacement in the y direction, and it is possible to calculate
Ex and νxy. Analogously for y direction one calculates Ey and νyx. Table 1 presents these material
properties.

Figure 3: Two-directions off-axis elastic reinforced plates in the global axes of structure.

Thus, with the use of the bi-dimensional code is possible to calcule elastic properties of tensile plates
with general anisotropy. When applied displacements in the global directions of plates of Figure 3,
with the materials considering isolated have the properties showed in Table 1, is possible to obtain
the anisotropic properties showed in tables 2 and 3:

For the analytical determination the coefficients of mutual influence (ηxy,x and ηxy,y), which are of
difficult experimental determination is necessary to measure the distortions in the tensile plate after
the application of the displacements, Figure 4.
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Table 1: Elastic properties of fibers and matrix.

Material Elastic Properies (Local directions of material)

E1 (MPa) E2 (MPa) ν G12 (MPa)

Fiber of 10mm 210.000,0 210.000,0 0,3 80.000,0

Fiber of 8mm 150.000,0 150.000,0 0,3 62.500,0

Cementitious Matrix 20.000,0 20.000,0 0,2 8.333,0

Table 2: Elastic properties obtained from the anisotropic plates of Figure 3.

Material Elastic Properties (Global directions)

Ex (MPa) Ey (MPa) Gxy (MPa)

Composite plate 24.855,65 22.648,91 9.465,21

(a) (b)

Figure 4: Displacements applied in x direction (a) and Displacements applied in y direction (b).

Where,

ηxy,x =
γxy
εx

=
0, 309x10−2

1, 0x10−2
= 0, 309 ⇒ −0, 309 and ηxy,y =

γxy
εy

=
0, 128x10−2

1, 0x10−2
= 0, 128 ⇒ −0, 128
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Table 3: Elastic coefficients obtained from anisotropic plate of Figure 3.

Material Elastic Coefficients (global directions)

ηxy,x ηxy,y νxy νyx

Composite plate -0,309 -0,128 0,313 0,285

4 Displacements and stresses in anisotropic beams

It is analyzed in the these sections the displacements and the stresses in anisotropic laminate beams,
subjected to uniformly distributed load, by means of the equations developed for Lekhnitskii et al. [6]
and also using of the method developed for Hashin [8].

5 Displacements in anisotropic cantilever beams in accordance with Lekhnitskii et al. [6]

The displacements of laminate cantilever beams are analyzed, considered homogeneous (method of the
homogeneity) and anisotropic, through the solutions obtained for Lekhnitskii et al. [6] for the analysis
of anisotropic beams, as Figure 4:

Figure 5: Cantilever beam subjected to uniformly distributed load.

This analysis is performed by means of comparative diagrams between the solutions of displace-
ments for an anisotropic beam, according to Equation 4, and solutions obtained for isotropic beams,
submitted and not submitted the influence of the shear, and also, with numerical solutions for deriving
orthotropic beams of one commercial program of finite elements with linear approximation. According
to Lekhnitskii et al. [6], the displacements (y – direction) for cantilever anisotropic beams, Figure 5,
can be given by Equation 4:

v =
q

24ExI
(x4 − 6l2x2 + 5l4) +

qh2

80I

(
−3νxy

Ex
+ 4 · 1

Gxy
− 32

3
·
η2xy,x
Ex

)(
l2 − x2

)
(4)
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In Equation 4, Ex is the longitudinal elastic modulus, Gxy is the shear modulus, νxy is Poisson’s
ratio and ηxy,x is the coefficient of mutual influence of 1st kind that quantifies the influence of shear
stresses in normal deformations. For the isotropic beams, when it is considered influence of the shear,
the same equations of displacements of the anisotropic beams are used, however, omitting the terms
where the coefficients of mutual influence of 1st kind (ηxy,x) are present. In case of not considering
the influence of the shear, the first term of Equation 4 is used only.

Taking into account the presented elastic constants a strengthened polymeric lamina with carbon
fibers into account, it is necessary to adopt a value for the angle of inclination of fibers, and thus,
to determine the values of these constants for the geometric system of reference of the beam. Hence,
an angle of inclination (θ) of +15◦ was adopted and considering Equation 2. The results of elastic
constants are Ex = 53,00 GPa , Ey = 13,40 Gpa , Gxy = 5,92 Gpa, νxy = 0,47 and ηxy,x = -2.28.

In this way, having the presented data, it is possible to prepare the comparative diagrams of dis-
placements (y – direction) of the laminate beams (LEK) with the isotropic ones, considering the
influence of the shear (Timoshenko’s theory - ISO1) or not (Euler-Bernoulli’s theory - ISO2) and with
the orthotropic ones whose solutions are numerical (ANSYS [13] – COM). For the laminate beam
whose relation h/l = 1/10 and h/l = 1/5, it has the following diagrams:

Figure 6: Displacement of a laminate cantilever beam, relations: (h/l = 1/10) and (h/l = 1/5), of two
isotropic ones, considering the shear (ISO1) and not considering (ISO2), and of an orthotropic one.

After presenting the comparative diagrams of the displacements, it can be observed that, pro-
portional to the increase of the relation (h/l), it exists an increase in the differences among the
displacements of the cantilever beams analyzed here. Taking the influence of the shear into account,
the isotropic beams present the lesser displacements. The laminate beams considered anisotropic (evi-
dencing the presence of the coefficient of mutual influence ηxy,x) also possess lesser displacements than
the isotropic beams (theory of Bernoulli-Euler) or the orthotropic ones.

Pointing out still that in the numerical response function of the orthotropic beam it was reckoned
the influence of the modulus of elasticity Ey (lesser that the Ex) in the solution, what does not occur
with the analytical expressions of displacements, for the plane case of the isotropic elasticity.
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5.1 Stresses in anisotropic cantilever beams – Analytical Method of Hashin [8]

Here, the distributions of normal and shear stresses in laminate cantilever beams by means of an
analytical method are analyzed, based on the stress function of Airy (ϕ), considered for Hashin [8] for
the analysis of plane anisotropic beams, as Figure 7:

Figure 7: Cantilever beam, subjected to the uniformly distributed loads.

Thus, it is necessary to consider the formulation of anisotropic plane problem. According to Hashin
[8], it can be written by:

S22ϕ,1111−2S26ϕ,1112 +(2S12 + S66)ϕ,1122−2S16ϕ,1222 +S11ϕ,2222 = 0 (5)

that models the anisotropic plane problem. As an application of it, as an example, the study of
stresses in laminate beams, where are considered anisotropic and homogeneous. It is important to
notice that the solution of Equation 5 can be given by the stress function of Airy (ϕ). In this way,
Hashin presented an analytical method that allows the construction of a stress function polynomial
that satisfies Equation 6:

ϕ (x, y) =
m=M∑
m=0

n=N∑
n=0

Cmnx
myn (6)

where Cmn are constants to be determined by the resolution of a linear system of equations.
Introducing Equation 6 in Equation 5 and equating the coefficients xmyn of equal powers, Hashin

develops relations, among the Cmn coefficients, that are used for assembling of the system of equations:

S2222(m+ 2)(m+ 1)m(m− 1)Cm+2,n−2 − 4S2212(m+ 1)m(m− 1)(n− 1)Cm+1,n−1

+2 (S1122 + 2S1212)m(m− 1)n(n− 1)Cmn − 4S1112(m− 1)(n+ 1)n(n− 1)Cm−1,n+1

+S1111(n+ 2)(n+ 1)n(n− 1)Cm−2,n+2 = 0

(7)

where m ≥ 2 and n ≥ 2. If in any problem, the biggest power of variable x in Equation 6 is M, then
the biggest power of the variable y is given by N =M + 3.

The number of necessary equations for each specific problem, from the relations of Equation 7 and of
the boundary conditions, can be obtained through the arithmetical series: S = 1/2 (M + 1) (M + 8).
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From this, it is possible to find the coefficients Cmn and determined, then, the stress function that is
the solution of the problem of stresses. Following this methodology of Hashin’s method it is applied for
the study of stresses in laminate beams. The obtained results of stresses are compared with solutions
for isotropic beams too, considering the influence of the shear, and later, without this consideration,
and also with numerical solutions for orthotropic beams. Indeed, for the cantilever beam of Figure
7 it has the following boundary conditions: ϕ (x,−h) = 0; ϕ (x, h) = q

2 (l − x)
2; ϕ (x,−h) ,2 = 0 and

ϕ (x, h) ,2 = 0.
The biggest power of x in the boundary conditions is M = 2. Thus, N =M + 3 = 5, and the stress

function becomes:

ϕ (x, y) =
m=2∑
m=0

n=5∑
n=0

Cmnx
myn =

= C00 + C01y + C02y
2 + C03y

3 + C04y
4 + C05y

5 + C10x+ C11xy + C12xy
2 + C13xy

3 + C14xy
4+

+C20x
2 + C21x

2y + C22x
2y2 + C23x

2y3

(8)

The number of necessary equations for the determination of the Cmn coefficients is given by S = 15.
Inserting the stress function in the boundary conditions and equating the coefficients x of equal

powers it has 12 equations. The three remaining equations come from the relations of Equation 7,
respecting thus the inequality m + n ≤ 5. From the 15 equations it is possible to solve a system to
find the 15 unknown coefficients Cmn. Substituting the coefficients, the stress function becomes:

ϕ (x, y) =

−q (h+ y)
2

(
10α2

04 (2h− y) (l − x)
2 − 2α2

13 (h− y)
2
y + α04 (h− y)2 ·

· (5α13 (l − 2x) + 2α22y)

)
80 · α2

04 · h3
(9)

where the constants αij are substituted by the usual constants of engineering:

α04 = S1111 = S11 =
1

Ex
; α22 = S1122 + 2 · S1212 =

−νxy
Ex

+
1

2 ·Gxy
; α13 = 4 · S1112 =

ηxy,x
2 · Ex

By using Airy’s function, it has the following stresses:

σx =
∂2ϕ (x, y)

∂y2
=

q

[(
3Exy + 4Gxy

(
−12y · η2xy,x + 5l · ηxy,x − 10x · ηxy,x−
−3 · νxy · ηxy,x · y

))
h2

]
40h3Gxy

+

+

q

[
5y

(
2Gxy

(
3l2 − 6xl − 6 · ηxy,x · yl + 3x2 + 8 · η2xy,x · y2+
+2 · νxy · y2 + 12 · ηxy,x · x · y

)
− Exy2

)]
40h3Gxy

(10)
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τxy =
∂2ϕ (x, y)

∂y∂x
=
q (3l−3x−4·ηxy,x·y)

(
y2−h2

)
4h3

(11)

In the comparative diagrams, presented as follows, it is considered the same type of composite
laminae. With a load of 10 kN/m applied in the beams. For the beams whose relation h/l = 1/10, it
has the following diagrams of normal and shear stresses in the cross section:

Figure 8: Normal and shear stresses in the laminate cantilever beam, relation (h/l = 1/10), in two
isotropic ones, considering the shear (ISO1) and not considering (ISO2), and in an orthotropic one.

For the beams whose relation h/l = 1/5, it has the diagrams:

Figure 9: Normal and shear stresses in the laminate cantilever beam, relation (h/l = 1/5), in two
isotropic ones, considering the shear (ISO1) and not considering (ISO2), and in an orthotropic one.
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It is observed that an increase of the relation (h/l) results an increase in the differences between
the isotropic and orthotropic elastic behavior of the beams. It also notices that the behavior of the
stresses in the laminate beams is not symmetrical.

6 Conclusions

This paper presented both some general concepts on anisotropy and an analysis of the influence of
the anisotropy on distributions of stresses and displacements in fiber-reinforcement laminate beams.

In the analysis of the displacements it was verified that the laminate beams presented greater
difference of behavior in relation to the isotropic beams, especially when it is not taken the shear
effect into consideration, for the two relations (h/l). With respect to the displacements of the isotropic
beams, it is noticed that the consideration of the shear effect in these beams (Timoshenko’s theory)
leads to the different results of the presented for the isotropic beams where this consideration is not
made (Euler-Bernoulli’s theory), mainly for the beams of lesser span. Therefore, depending on the
orientation of fibers in the laminae of the analyzed beam, the determination of the displacements of
the beam, admitting the theory of Euler-Bernoulli, can originate results very different of whom that
will really occur.

Considering the participation of the cross section height – beam span relation (h/l) in the behavior
of the distributions of displacements and of stresses, it is observed that an increase in this relation
produces greater differences in relation to the isotropic beams considered in this work. This is due to
the fact that beams with lesser spans, the contribution of the shear in the displacements is bigger,
bringing up then as consequence, a bigger participation of the anisotropy, associated with the mutual
influence coefficients that relate shear with normal deformation.

In general, the stress functions have shown efficient to solve of problems of the mechanics of solids
considering the analytical development only. However, it is necessary to point out, that the methods
of solutions based on the stress functions are approached due to the polynomial form of the stress
function cannot be admitted as an accurate solution.
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Abstract

Accurate numerical simulations depend on appropriated constitutive models to represent the mechanical behav-
ior of nonlinear materials. The material parameters of these models are usually obtained by means of parametric
identification procedures using data acquired from experimental tests. In case of localized heterogeneous dis-
placement fields, commonly found in specimens submitted to finite strains, contact measurement techniques
are no longer appropriate. This limitation leads to the use of non-contact measurements, like the Digital
Image Correlation (DIC) method. This method has shown a good performance in material characterization
procedures due its capability to measure the entire displacement field over the specimen. In the present study,
a procedure for material parameter identification of an elastoplastic model is tested. The experimental data
was obtained from axial loading tests on a thermoplastic specimen. In the identification process, an initial
guess of the material parameters is used as input data in a couple of numerical simulations of the experi-
mental tests. The numerical solution of the reaction force and the displacement of points previously defined
over the specimen surface compose the output data used in the cost function of the minimization problem.
The displacements measured by the DIC method of the same points used in the numerical simulations are
included in the cost function, which is calculated as the sum of squared differences between the experimental
and numerical data of force and displacements. Loading and unloading cycles as well as monotonic loading
with necking formation are performed at room temperature in order to obtain the beginning of the plastic
region and the plastic evolution.

Keywords: Digital Image Correlation, parameter identification, material properties.

1 Introduction

The numerical simulation of structural components needs suitable constitutive models and appro-
priated material parameters to describe its mechanical behavior. In order to determine the material
parameters, experimental tests are performed in specimens and the experimental conditions are numer-
ically reproduced in a simulation.
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The mixed numerical-experimental procedure has been used in inverse modeling in several areas
and it is widely applied in parameter identification procedures. Several experimental procedures can
be set up to analyze the material mechanical behavior. Tensile tests are commonly used due to its
simplicity. In Mahnken [1] a material characterization is presented for an axisymmetric tensile bar
of ferritic steel. A sensitivity analysis is performed and the gradient-based descent methods are used
for the minimization of a least-square function. Other example of a possible approach for the inverse
problem is found in Gavrus et al. [2] to characterize a thermal-viscoplastic model for Aluminum by
means of a torsion test.

The presence of finite and localized strain in nonlinear materials, like metals, rubbers and plastics,
turns the identification of material parameters a non trivial task. Experimental uniaxial tests provides
non-useful or insufficient information about the mechanical behavior of the material, especially for
nonlinear polymeric materials. In Frank and Brockman [3], the authors notice the formation of a
traveling neck in glassy polymers materials under tension, differently of the metallic materials that
have a localized necking phenomenon. Second the author, this particular behavior of the necking can
mask the mechanical behavior of the real stress-strain curve.

The identification of the elastic limit, to determine the transition between elastic and plastic regions
of the material, can be made by successive loading/unloading operations in the specimen, like shown
in Fig. 1. The elastic limit is achieved when a permanent deformation is observed [4]. In Yoshida [5]
the author performed four types of experimental tests and proposed a viscoplastic constitutive model
for metallic materials.

Figure 1: Elastic limit determination [4]

Nonhomogeneous deformation fields, as in the necking region, are capable to add extra information
regarding of material behavior, as presented in Oomens et al. [6]. In this case, to correctly identify
the constitutive parameters is useful to know the displacement field in a region within a triaxial stress
states. Measurement techniques such as clip-gauges or extensometers have some limitations since
they need physical contact, which complicate their use in the presence of finite and localized strains.
Furthermore, non-contact techniques, like optical methods, can provide the needed displacement field
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over a region of interest (ROI).
The optical method of digital image correlation (DIC) was extensively studied by Sutton et al. [7],

Lu and Cary [8] and Pan et al. [9], showing a great acceptability in academic and industrial fields.
This optical technique is capable to track predefined points on the specimen surface in a digital image
sequence, obtained using video cameras in experimental tests. The DIC method has been applied into
different engineering problems. In Roux et al. [10] the DIC method is presented as an alternative to
capture the crack progressing in a cyclic tensile test. Parameters identification procedures using the
DIC method have been performed to characterize different constitutive models involving elasticity,
plasticity and viscosity. Avril et al. [11] uses the DIC method in a tensile test for notched steel bars
in order to identify the material parameters of an elasto-visco-plastic constitutive model. In Kajberg
and Lindkvist [12] the plastic behavior of thin sheets of two types of hot-rolled steel are analyzed
using two models: piecewise linear plasticity model and a parabolic hardening model. The material
parameters are adjusted to achieve a minimum in a objective function by means of a inverse modelling
including finite element analysis. The inverse problem including the optical measurement method also
demonstrated good results in different experimental tests, as observed in Sutton et al. [13] and Milani
et al. [14]. In these works the authors performed a parameters identification of a Johnson-Cook model,
respectively, for tensile and compressive tests. In Wang and Cuitiño [15] and Jin et al. [16], the authors
use the DIC method to capture localized and heterogeneous strain fields in order to characterize
polymeric foams in compressive tests.

In Meuwissen et al. [17] the author proposes the use of non-standard aluminum specimens, where
the force obtained from the testing machine and the displacements measured optically at the clamps
region are used as boundary conditions of its numerical simulation. Then, the objective function
is constructed only with the displacements measured numerically and experimentally at the necking
region. This study shown the flexibility provided by the use of measurement optical methods associated
to numerical simulation of non-standard geometries of specimens. The DIC method is important to
the identification of the material parameters, considering that it can provide essential information
about the three-dimensional displacement field over the specimen surface [18], i.e., it can capture the
formation and propagation of the necking during the tensile test.

Recently, the material characterization with optical methods has demonstrated interest in the med-
ical community, especially in characterization of biological tissues. It is due to the fact that the optical
method allows to test different geometries in experimental tests in vivo. Gambarotta et al. [19] studied
the mechanical characterization in vivo of human skin to simulate a reconstructive surgery with the
finite element method. In Gundiah et al. [20] is used a neo-Hookean isotropic model to characterize
elastin networks of porcine arteries. The experimental data was captured from biaxial test in order to
analyze the structural integrity of blood vessels in cycles simulating a pulsatile motion.

In view of the advantages of including a measurement optical method to a parameter identification
procedure, the main objective of the present work is to study a methodology to characterize polymeric
materials under finite strains using a optical method and modified standard specimens. The optical
method provides extra information concerning the material mechanical behavior during test, mainly
in the necking region where the nonhomogeneous fields are noticed.
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2 Experimental procedure

2.1 Specimen definition

The identification of the mechanical behavior of nonlinear materials under finite strain can be a
complicate task since they usually present a high level of localized strains. The polymers are known
by their complex mechanical behavior under finite strains, which provides high levels of heterogeneous
strain characterized by increasing stiffness due to internal molecular orientation.

The specimens used in this work were manufactured with the glassy polymer Polyvinyl Chloride
(PVC). This material presents a complex mechanical behavior and its stress-strain curve have been
subject of discussion in [3]. Many studies on the mechanical behavior of glassy polymers were published
showing an apparent stress drop in the real stress-strain curve right after yield. In [21] the author show
experimental curves for some glassy polymers exhibiting yielding followed by intrinsic strain softening
and subsequent orientation hardening. This mechanical behavior is presented in Fig. 2. Unlike the
widely accepted softening behavior (stress drop), [3] attribute this behavior to the formation of a
traveling neck that masks the actual stress response, claiming that the true stress for most polymers
in the glassy regime does not actually decrease after yield.

Figure 2: Generalized tensile stress-strain curve for polymeric materials [22]

The geometry of the specimen used in the present study is presented in Fig. 3, in which it was
insert a notch at the central region in order to initiate the necking phenomenon in the ROI. This
region is focused by the cameras and a clip-gauge is used to obtain its longitudinal displacement.
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Figure 3: Test sample

2.2 DIC method

The DIC method tracks predefined points on the specimen surface in a sequence of digital images
obtained by video cameras during an experimental test [7]. The method essentially finds the position
of points, called markers, in a sequence of images, correlating the gray values of the neighbor pixels. The
correlation is made within small squared areas of (2M +1)x(2M +1) pixels around the marker, called
subsets, where the geometric center of each subset is a marker. A wide set of correlating coefficients
may be found in the literature [9]. In this study is used the Zero-Normalized Sum Square Differences
(ZNSSD) correlation criterion [23]:

CZNSSD =

M∑
i=−M

M∑
i=−M

 f(x, y)− fm√
M∑

i=−M

M∑
i=−M

(f(x, y)− fm)
2

− g(x′, y′)− gm√
M∑

i=−M

M∑
i=−M

(g(x′, y′)− gm)
2


2

(1)

where
x′ = x+ ū = x+ u+ ux△x+ uy△y + uxy△x△y + uxx△x2 + uyy△y2,

y′ = y + v̄ = y + v + vx△x+ vy△y + vxy△x△y + vxx△x2 + vyy△y2,
(2)

f(x, y) is the gray value of the reference image at the pixel position (x, y), g(x, y) is the gray value
of the target image at the pixel position (x′, y′), fm and gm are respectively the means gray value of
the reference and deformed subset, u and v are respectively the x− and y−directional displacement
components of the reference subset center, ux, uy, vx, vy are the first-order displacement gradients and
uxx, uxy, uyy, vxx, vxy, vyy are the second-order displacement gradients. Equation 2, by means of the
displacement gradients, allows to find the center of a deformed subset. Figure 4 shows the reference
image with a reference subset of the marker P (x0, y0) and its respective target subset (deformed)
around the marker P ′(x′0, y

′
0) in the deformed image.

Two modifications proposed in Pan et al. [23] to deal with deficiencies of this method was imple-
mented: a scanning strategy guided by the correlation coefficients of computed points to ensure the
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convergence of consecutive points and the use of binary masks to modify the valid subset area in order
to allow the computation of the markers displacement located near or at the boundaries of specimen.
The mask is used in the subsets that may contain unwanted or foreign pixels from background image
or other regions.

Figure 4: Reference subset and deformed/target subset [9].

To properly apply the method, a random speckle pattern is painted with an airbrush on the surface of
the specimen, alternating black and white paint. The characteristics and randomness of this pattern
has important influence on the accuracy of the correlation. According to Chu et al. [24], it should
supply the information needed to correlate the subsets through the test.

2.3 Experimental tests

Two types of tensile tests were performed at room temperature, both in an universal testing machine
equipped with a load cell and a clip-gauge that provide, respectively, the reaction force and longitudinal
displacement along time. A monotonic loading test was conducted with a constant displacement rate
of 2 mm/min, the same as the cyclic loading/unloading test. The cyclic test was included in this work
in order to identify the transition between the elastic and plastic regions. The Displacement x Time,
Load x Time and Load x Displacement curves recorded during both tests are shown in Fig. 5.

The optical information coming from DIC consists on the displacement field of a chosen ROI of the
specimen surface along time. Figure 6 shows the image acquisition system in front of the specimen
during the monotonic test, while Fig. 7 shows the three components X, Y and Z of the displacement
at a deformed instant of time of the same test.
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Figure 5: Uniaxial testing machine curves: a) and b) Monotonic test; c) and d) Cyclic test

Figure 6: Cameras arrangement during the test
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Figure 7: Displacement field: a) markers arrangement over the undeformed specimen; b) markers
arrangement over the deformed specimen; c) total displacement of the deformed specimen

3 Numerical procedure

3.1 Geometry

A different 3D model of the specimen was generated for each performed test in order to have a perfect
representation of the instrumented ROI of the specimen. The geometric models were generated from
pictures captured by the cameras and measurements of the specimen. It was made in order to reduce
the difference between the physical models and the mathematical representations, caused by the
imprecisions on manufacturing process of the specimens. Only the region inside the clip gauge was
used in the modeling and a symmetry condition in XZ plane was created in both cases, using only a
half of the model. Additionally, vertices were added to the specimen surface with the same coordinates
of the markers from DIC. Figure 8 shows the geometric models.

3.2 Finite Element model

The discretization in finite elements was made using the package ANSYS Workbench 12.1 [25]. The
mesh generated for the monotonic and cyclic tests are shown in Fig. 9. For each test, the longitudinal
displacement experimentally obtained from the clip-gauge is applied at one of the extremes of the
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discretized specimen, while the longitudinal displacements at the other extreme are fixed.

Figure 8: CAD model of the test specimens used for the monotonic and cyclic tests

Figure 9: Finite element models for the monotonic and for the cyclic tests

In order to simulate the mechanical behavior of the material, the multi-linear elastoplastic model
presented in Fig. 10 was chosen. This constitutive model was used due to its simplicity and capability
to reproduce nonlinear elastoplastic behaviors, despite of its limitation to reproduce only stress-strain
curves with positive tangent slopes. The material model has 2 parameters for the elastic part: elastic
modulus E, Poisson ratio ν; and 6 parameters for the multi-linear plastic part: the yield stress (σy),
a stress increment (∆), three tangent modulus (ϕ, H and I, where the last represent the orientation
hardening of the molecules) and the hardening plastic strain (εp). The results of the numerical analysis
provide the Reactionforce x Time curve and Displacement x Time curves of X, Y and Z directions
for each marker.

Since the true stress-strain curve of the PVC shows negative tangent slopes with a significant
softening region (Fig. 2), this material model may not be able to reproduce the real mechanical
behavior of the specimen. On other hand, if the true stress-strain curve of the PVC actually is in
accordance to the assumption of [3], it is expected that the model will be able to achieve reasonable
good solutions.
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Figure 10: Constitutive model

4 Optimization process

The optimization procedure is used to seek a set of parameters that minimizes a cost function Ω. These
parameters represent the best approximation between the experimental and numerical mechanical
behavior. This cost function is defined based on the weighted least squares of the difference between
experimental and numerical data, including monotonic and cyclic results in both:

Ω =

N∑
i=1

[wF,m(Fnum,m(p)(i) − F
exp,m

(i))
2 + wF,c(Fnum,c(p)(i) − F

exp,c
(i))

2]+

+
N∑
i=1

M∑
j=1

[wUX
(j)

(UXnum(p)
(j)
(i) − UX

exp(j)
(i) )

2]

(3)

where N is number of data used in the test, M is the number of markers analyzed, wF,m is the weight
of the force for the monotonic case, wF,c is the weight of the force for the cyclic case, wUX (j) is the
weight of the displacement of the j−th marker, UXnum(j)

(i) is the i−th component of the numerical

displacement of the j−th marker, UXexp(j)
(i) is the i−th component of the experimental displacement of

the j−th marker, Fnum,m(i), F exp,m(i), Fnum,c(i) and F exp,c(i) are, respectively, the i−th component
of the numerical force for the monotonic case, the i−th component of the experimental force for the
monotonic case, the i−th component of the numerical force for the cyclic case and the i−th component
of the experimental force for the cyclic case and p represent the vector with the material parameters:

p =
[

E ν σy ∆ ϕ H I εp

]
. (4)
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The schematic representation of the parameter identification is shown in Fig. 11. The input data
is the initial guess of the material parameters p to approximate the experimental and numerical
data. In the numerical analysis is computed the reaction force and the displacements of the markers.
Then, the cost function Ω is computed in the optimization procedure and the material parameters are
update. This procedure is repeated until the minimization of the cost function. In this study only the
x−displacement of three markers (M1, M2 and M3) from the monotonic test (see Fig. 9) were used.

Figure 11: Optimization routine

The optimization process was performed in the commercial software modeFRONTIER [26]. Since
the minimization involves 8 unknown parameters, a genetic optimization was used to obtain the
global minimum candidates, and then, these candidates were used as initial guess of a gradient-based
minimization. This strategy was used to avoid local minima.

5 Results

Different tests were carried out varying the weight of the force for the monotonic case wF,m, for the
cyclic case wF,c and of the displacements wUX in the Eq. 3 in order to obtain an adequate fitting of
the curves. Should be noted that wF,m, wF,c and wUX are used due to the magnitude of F,m and F, c
being considerably higher than UX. When weights are set as wF,m and wF,c»wUX good results were
achieved for the force but the displacement over the surface shown considerable errors. Conversely,
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when wF,m and wF,c«wUX good results were achieved only for the displacement over the surface of
the specimen. The material parameters obtained in the parameters identification procedure are shown
in Table 1 and the numerical and experimental curves are shown in Fig. 12.

Figure 12: Numerical and experimental curves for the monotonic and cyclic cases

6 Conclusion

In this study, the parametric identification using data acquired from different types of mechanical
tests using an optical measuring system was investigated. Even with the highly heterogeneous strain
fields behavior of the PVC material, the implemented DIC method could obtain useful information
regarding the mechanical behavior of the material, principally during the traveling neck, at the surface
of the necking region where the control points were analyzed.

The multi-linear elastoplastic model was chosen to represent the mechanical behavior of the PVC.
As expected, the experimental and numerical results show relatives differences, mainly at the elastic-
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PARAMETER VALUE

E 2680 MPa

ν 0.43

σy 46.30 MPa

ϕ 0.198

∆ 6.05 MPa

H 0 MPa

εp 0.397

I 141.29 MPa

Table 1: Material parameters results

Figure 13: Numerical and experimental curves of four chosen markers

plastic transition (also observed by Meuwissen et al. [17]). It can be attributed to the elastic linear
characteristic of the model or a possible tensile drop of the real stress-strain curve of the material
(softening).

A cost function that has a multi-objective characteristic was used to deal with different magni-
tudes of the data present in the objective function (displacements and forces). From the results of
the sensitivity analysis, only the experimental force is not enough to find the material parameters
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since that different combinations of the parameters can result in exact match between the numerical
and experimental reaction force, but quite different with regard to the experimental and numerical
transverse displacement in the necking region.

Only three markers of the monotonic test were effectively used within the cost function and they
seem to provide significative information of the traveling neck. In addition, only the data provided by
the monotonic test is not enough to find the correct elastic limit. The data provided by the cyclic test
was used to determine the range where the elastic limit occurs. It was necessary because the material
doesn’t have a clearly transition between the elastic and plastic region.

Despite of the simplifications, like the use of a simple material model and only three tracking points,
it can be concluded that the use of DIC provided useful information to the inverse problem of material
parameters characterization. In this context, the objective proposed with this study was successfully
achieved and opens a promising field of further improvements with the use of nonlinear elastic-plastic
or visco-elastoplastic models.

References

[1] Mahnken, R., Aspects on the finite-element implementation of the gurson model including parameter
identification. International Journal of Plasticity, 15(11), pp. 1111–1137, 1999.

[2] Gavrus, A., Massoni, E. & Chenot, J.L., An inverse analysis using a finite element model for identifica-
tion of rheological parameters. Journal of Materials Processing Technology, 60(1-4), pp. 447 – 454, 1996.
Proceedings of the 6th International Conference on Metal Forming.

[3] Frank, G.J. & Brockman, R.A., A viscoelastic-viscoplastic constitutive model for glassy polymers. Inter-
national Journal of Solids and Structures, 38(30-31), pp. 5149–5164, 2001.

[4] de Souza, S.A., Ensaios Mecânicos de Materiais Metálicos. Fundamentos teóricos e práticos. Edgard
Bucher Ltda, 1982.

[5] Yoshida, F., A constitutive model of cyclic plasticity. International Journal of Plasticity, 16(3-4), pp. 359
– 380, 2000.

[6] Oomens, C., Ratingen, M., Janssen, J., Kok, J. & Hendriks, M., A numerical-experimental method for
a mechanical characterization of biological materials. Journal of Biomechanics, 26(4-5), pp. 617 – 621,
1993.

[7] Sutton, M., McNeill, S., Helm, J. & Chao, Y., Advances in two-dimensional and three-dimensional com-
puter vision. Photomechanics, pp. 323–372, 2000.

[8] Lu, H. & Cary, P., Deformation measurements by digital image correlation: Implementation of a second-
order displacement gradient. Experimental Mechanics, 40(4), pp. 393–400, 2000.

[9] Pan, B., Qian, K., Xie, H. & Asundi, A., Two-dimensional digital image correlation for in-plane dis-
placement and strain measurement: a review. Measurement Science and Technology, 20(6), pp. 062001–,
2009.

[10] Roux, S., Réthoré, J. & Hild, F., Recent progress in digital image correlation: From measurement to
mechanical identification. Journal of Physics: Conference Series, 135(1), p. 012002, 2008.

[11] Avril, S., Pierron, F., Sutton, M.A. & Yan, J., Identification of elasto-visco-plastic parameters and char-
acterization of lüders behavior using digital image correlation and the virtual fields method. Mechanics
of Materials, 40(9), pp. 729 – 742, 2008.

[12] Kajberg, J. & Lindkvist, G., Characterisation of materials subjected to large strains by inverse modelling

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



Identification of material parameters for elastoplastic model using DIC 569

based on in-plane displacement fields. International Journal of Solids and Structures, 41(13), pp. 3439 –
3459, 2004.

[13] Sutton, M., Yan, J., Avril, S., Pierron, F. & Adeeb, S., Identification of heterogeneous constitutive param-
eters in a welded specimen: Uniform stress and virtual fields methods for material property estimation.
Experimental Mechanics, 48(4), pp. 451–464, 2008.

[14] Milani, A., Dabboussi, W., Nemes, J. & Abeyaratne, R., An improved multi-objective identification of
johnson-cook material parameters. International Journal of Impact Engineering, 36(2), pp. 294 – 302,
2009.

[15] Wang, Y. & no, A.M.C., Full-field measurements of heterogeneous deformation patterns on polymeric
foams using digital image correlation. International Journal of Solids and Structures, 39(13-14), pp. 3777
– 3796, 2002.

[16] Jin, H., Lu, W.Y., Scheffel, S., Hinnerichs, T.D. & Neilsen, M.K., Full-field characterization of mechanical
behavior of polyurethane foams. International Journal of Solids and Structures, 44(21), pp. 6930 – 6944,
2007.

[17] Meuwissen, M.H.H., Oomens, C.W.J., Baaijens, F.P.T., Petterson, R. & Janssen, J.D., Determination
of the elasto-plastic properties of aluminium using a mixed numerical-experimental method. Journal of
Materials Processing Technology, 75(1-3), pp. 204 – 211, 1998.

[18] Parker, J.W., Development And Implementation Of A Low Cost Image Correlation System To Obtain
Full-field In-plane Displacement And Strain Data. Master of science in mechanical engineering, Montana
State University, Bozeman, Montana, 2009.

[19] Gambarotta, L., Massabò, R., Morbiducci, R., Raposio, E. & Santi, P., In vivo experimental testing and
model identification of human scalp skin. Journal of Biomechanics, 38(11), pp. 2237–2247, 2005.

[20] Gundiah, N., Ratcliffe, M.B. & Pruitt, L.A., The biomechanics of arterial elastin. Journal of the Mechan-
ical Behavior of Biomedical Materials, 2(3), pp. 288–296, 2009.

[21] Duan, Y., Saigal, A., Greif, R. & Zimmerman, M.A., A uniform phenomenological constitutive model for
glassy and semicrystalline polymers. Polym Eng Sci, 41(8), pp. 1322–1328, 2001.

[22] Blaga, A., Properties and behaviour of plastics. Report 157, NRC Institute for Research in Construction;
National Research Council Canada, 1973.

[23] Pan, B., Wang, Z. & Lu, Z., Genuine full-field deformation measurement of an object with complex shape
using reliability-guided digital image correlation. Opt Express, 18(2), pp. 1011–1023, 2010.

[24] Chu, T., Ranson, W. & Sutton, M., Applications of digital-image-correlation techniques to experimental
mechanics. Experimental Mechanics, 25, pp. 232–244, 1985.

[25] ANSYS, Inc., User guide for revision 12.1. ANSYS, Inc., Pittsburgh, 2010. http://www.ansys.com.
[26] modeFRONTIER, The Multi-Objective Optimization and Design Enviroment. Manual do Usuário. Esteco

srl. Trieste, Itália., 2010. http://www.modefrontier.com.

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8





Author Index

Ávila, A.F., 25
Aguiar, A.R., 1
Alberti, A. R., 13
Alves, M., 353
Alves, M.K., 131
Beck, A.T., 41, 311
Benvenutti, I.J., 381
Bittencourt, M.L., 63
Botega, L.F.C., 555
Brilla, I., 77
Calle, M.A.G., 353
Campeão, D.E., 401
Campos Filho, A., 215
Cardoso, E.L., 175
Cavallante, I., 89
Coelho, J.L.V., 103
Creus, G.J., 381
da Costa Mattos, H.S., 113
da Costa-Mattos, H.S., 103
da Silveira, O.A.A., 527
de Almeida, S.F.M., 89, 197
de Castro, J.T.P., 367
de Deus, H.P.A., 131
de Faria, A.R., 89, 159
de Jesus Miranda, C.A., 327
de Lima, A., 291
de Mendonça, P.T.R., 381
de Pina Filho, A.C., 455
Donadon, M.V., 89, 159
Dumont, N.A., 143
Dutra, M.S., 455

Eduardo, A.C., 25
Fainer, G., 327
Fancello, E.A., 555
Farias, J.M.C., 175
Ferreira, A.P.C.S., 197
Figueiredo, M.P., 215
Fonseca, J.S.O., 527
Fujarra, A.L.C., 477
Furlan, F.A.C., 63
Gomes, W.J.S., 41
Guimarães Neto, A.C.B., 555
Iturrioz, I., 249
Kühl, A., 381
Karagiozova, D., 231
Kosteski, L.E., 249
Labaki, J., 267
Lellep, J., 277
Lopez, R.H., 311
Madenci, E., 431
Maghous, S., 215
Marczak, R.J., 291
Mascia, N.T., 541
Mattar Neto, M., 327
Mattedi, R., 341
Mazzariol, L.M., 353
Meggiolaro, M.A., 367
Mesquita, E., 267
Mourão, R.P., 327
Moura, R.T., 353
Muñoz-Rojas, P.A., 175, 381
Nicolazzi, L. C., 13

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8



572 Author Index

Novotny, A.A., 401
Nunes, L.C.S., 341, 421, 517
Oshiro, R.E., 353
Oterkus, E., 431
Pérez-Fernández, L.D., 1
Paccola, R.R., 541
Paim, L.M., 113
Pedroso, L.J., 489
Pereira, J. C. de C., 13
Pesce, C.P., 477
Pimenta, P.M., 445
Prusty, P.G., 467
Puman, E., 277
Rabelo, M.A., 477
Rajapakse, N., 267
Reis, J.M.L., 103, 113
Ribeiro, P.M.V., 489
Riera, J.D., 249
Rizzi, P., 89
Scoaris, M.R., 541
Siddiqui, N.A., 505
Silva Neto, A., 25
Silva, T.C., 517
Vanalli, L., 541
Vargas, E.Y.M., 143
Vassoler, J.M., 555

Mechanics of Solids in Brazil 2011, E.A. Fancello, P.T.R. Mendonça & M. Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-46-8


