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Abstract. In this work, the statistical and the mean properties of a boundary layer subject to a rough-to-smooth
step change in surface will be studied. The particular interesting property of this flow is the slow recovery in
characteristics following the change in surface roughness. The result is the establishement of a flow where the
rough-wall dominates the rate of diffusion of the disturbances for a considerable length, dictating conditions that are
far from self-preserving. The hot-wire anemometry is our selected measuring technique. A hot-wire anemometer
18 a low cost equipment with a very high frequency response, relative small size, low noise levels, high accuracy and
a continuous analogur signal. For this reason, it is the ideal instrument for measurements in low and moderate
turbulence intensity flows.
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1. Introduction

The purpose of this work is to investigate the mean and the statistical properties of a boundary layer subject
to a rough-to-smooth step change in surface. The resulting flow is a particularly good test case for the study
of non-equilibrium conditions. Indeed, in the early seventies, Antonia and Luxton (1971), Antonia and Luxton
(1972) and Antonia et al. (1977) showed that for rough-to-smooth surface transitions the rate of diffusion of
the disturbances is dominated by the rough-wall conditions for a considerable length. Thus, this slow recovery
in flow properties following the change establish conditions that are not self-preserving.

An interesting question that soon comes to mind, then, concerns the behaviour of the error in origin. The
error in origin is a well established concept since the sixties when it was solidly established by Perry and Joubert
(1963), Perry et al.(1969) and Perry et al. (1987). In a classic paper, Perry and Joubert (1963) reviewed many
rough-wall boundary layer investigations in order to correlate resistance to a characteristic length of the flow,
the distance below the top of the roughness elements; also known as the error in origin, €. The result was
the development of a graphical method that has been used since then to determine the local boundary layer
characteristics from each measured velocity distribution. The Perry and Joubert graphical method was further
put to proof and improved on two following publications, Perry et al.(1969) and Perry et al. (1987). Some years
later, Jackson (1981) provided a better physical interpretation to the displacement height showing that it could
be regarded as the level at which the mean drag on the surface appears to act. Jackson also showed that the
displacement height coincides with the displacement thickness for the shear stress.

Thus, the question we were referring to before is the following. In the non-equilibrium region following the
surface change when we have already a smooth surface but the flow keeps part of the memory it had acquired
over the rough surface, what is the behaviour of the error in origin? How does it recovers to its equilibrium
value? Can a standard numerical computation of the flow based on a classical algebraic turbulence model
capture this behaviour?

All this questions are of great relevance in view of the extensive use of the law of the wall and, consequently,
of the error in origin, for the evaluation of the skin-friction coefficient. In fact, Avelino and Silva Freire (2002)
and Loureiro and Silva Freire (2004) have shown that much remains to be understood about the error in origin
for turbulent flows over rough surfaces.
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While many works turned their attention on investigations to the mean properties of the flow, others have
studied the statistical properties (Ligrani and Moffat (1985), Perry et al. (1987), Bandyopadhyay (1987),
Krogstad and Antonia (1994)). Here we we also investigate some of the statistical properties of a boundary layer
subject to a rough-to-smooth step change in surface. It 1s a fact that the recent development of computational
fluid dynamics has placed a strong emphasis on the accurate measurement of mean velocity components and
of Reynolds stresses. However, the fundamental statistical approach to turbulence analysis still plays a central
role in the understanding of complex flows.

The chief measuring technique to be employed here will be the hot-wire anemometry. A hot-wire anemometer
is a low cost equipment with a very high frequency response, relative small size, low noise levels, high accuracy
and a continuous analogur signal. For this reason, there is no surprise such equipments are judged ideal for
measurements in low and moderate turbulence intensity flows.

2. The error in origin

For flows over surfaces, where the roughness elements have a height much superior to the viscous region
length scale, v/u,, the viscous sublayer is completely destroyed by the protuberances at the wall. Under this
condition, the fully turbulent region has to suffer some adjustments so as to yield a good description of the
velocity and the temperature fields. Some authors, Perry and Joubert (1963), Perry et al.(1969) and Perry
et al. (1987), have shown that a universal expression can be written for the wall region provided the origin
for measuring the velocity profile is set at some distance below the crest of the roughness elements. This
displacement in origin is referred to in literature as the error in origin, .

Thus, for any kind of rough surface, it is possible to write

1 T A
:ln[(zT+6)u]+A_ u’ (1)
Ur v Ur
where,
Au 1 EUs
2l o et @)

»x=104, A=5.0,and C;,7 = K, D; is a parameter characteristic of the roughness.

Equations 1 and 2, although of a universal character, have the inconvenience of needing two unknown
parameters for their definition, the skin—friction velocity, u,, and the error in origin, €. A chief concern of many
works on the subject 1s, hence, to characterize these two parameters.

For an experimentalist, however, these equations are very useful for they provide a graphical method for the
determination of the skin-friction coefficient.

3. The one-dimensional spectrum

The three-dimensional energy spectrum is one of the key concepts in turbulence theory (Tennekes and Lumley
(1972)). However, in the laboratory, researchers find it much more convenient to measure the longitudinal
spectrum. This, of course, sets the problem of relating the measured one-dimensional spectrum to the theoretical
three-dimensional spectrum.

If a one dimensional flow has its movement captured by a hot-wire anemometer, then the velocity fluctuations
may be decomposed into their harmonic components in respect to the angular frequency, w. Then, by analyzing
and averaging the signal, the resulting frequency spectrum, Fy;(w) must have the property

<u’12> = /000 F11(w)dw. (3)

To relate the frequency and wavenumber spectra, the common practice 1s to use the ’frozen convection’
hypothesis of Taylor that considers the changes in u; with time at a fixed point to be due to the passage of a
frozen pattern of turbulent motion.

This is equivalent to state

u(z,t) = u(z — uyt, 0), (4)

or else,
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0 __ 0

The Taylor hypothesis 1s still open to scrutiny even today, but it is at least a very good approximation and
hence will be used extensively here.
Defining

Ep(k) =uby(w), ki =w/ug. (6)
Then, it follows that
o0 «© Eii(k)dw o0
/ Ell(w)dw = / % :/ Ell(k’l)dk’l = <U/12> . (7)
0 0 Uy 0

An extension of the above equation to three dimensions is trivial, it suffices to integrate out the dependence
of F11(k1) on ks and ks to obtain

_ K[k~ d By (k) /]

B (k) - . (8)

4. Time domain analysis

The output signal of a hot-wire anemometer is random by its very nature (Bruun (1995)). Therefore, a
statistical description of its contents is in order. Next we will very briefly remind the reader some of the basic
concepts in random data analysis and introduce the paper notation.

The autocorrelation function for the flow velocity is denoted by R,,, the autocorrelation coefficient function
by p, and the auto-spectral density function by S, .

Consider a time-history velocity record, u. It can be split into a mean, u and a fluctuating component,
u’ through

u(t) =u+u (9)

where the mean value is the average of all values, defined by

1 T
U:limT_,oo—/ u(t) dt. (10)
T Jo
In a digital data analysis, the continuous signal is replaced by a digital sample record. Taking T" as the total
sample time and N the corresponding number of samples, the sampling rate is given by Sg = N/T = N F.
Thus, the mean value of a finite sample record, u(j), j = 1,2,..., N can be given by

= %Zu(n). (11)

j=1

The autocorrelation function shown the dependence of the data at one time in relation to the values at
another time. An estimate of the autocorrelation function with a time delay 7 = »/F can be written as

N-—r
S @) —uluG+r)—al, r=0,1,2,--,m. (12)

j=1

Rulr/F) = o+

r

where r is the lag number and m is the maximum lag number.
The autocorrelation coefficient function is defined by
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Ru(r/F)
(7 F) = ——=. 13
pulr/1) = (13)
The autospectral density function is defined in terms of a Fourier transform of the previously calculated
correlation function

Su(f) = /00 Ru(r)e_iZWfT dr. (14)

— 00

The autospectral density function can also be evaluated from a finite Fourier transform of the data record.
Define

SuJTK) = i, Ty (£,T), (15)

where

uk(f,T):/O g (e~ 2T dt. (16)

Quantity ug(f,T) represents a finite Fourier transform of uy () and * denotes the complex conjugate.

Then, S, (f) can be defined by

Su(f) = lim E[S:(f, T, k)], (17)
T—o0
where F [Sy(f, T, k)] is the expected value by taking the ensemble average.
Here the autospectrum was estimated by computing an ensemble of estimates from different subrecords.
This procedure drastically reduces the autospectrum random error.
The corresponding integral time-scale for the autocorrelation function is given by

Ti, = /000 pu(T)dT. (18)

The integral times scales give a measure of the time separation in which the two fluctuating parameters u'(¢)
and u'(t 4+ 1) are correlated with themselves. So that two signals can be considered statistically uncorrelated
we must have a time interval between samples of the order of = = 27%.

The second order moments, also called the variance, is given by

Nn
1 u

ol =u o = T Z [u(5)]” — Nny @ (19)
u j=1

, (20)

N

The third and forth order moments, also known as the skewneess and the kurtosis, or flatness factor, are
given by

Nn
1 u
2 _ _ 12 2
o, =u uw = o1 jg_l [u(4)]” — Nny u (21)

and
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Nn,, Nn,, Nn,,

ot = i X " 40 Y G 00 Y L =3 N (22)

j=1

The uncertainties (P=99) associated with the measured statistical quantities are given by

w(0) w'(0) w(0) =o' v uw +2,57 (v u’)3/2 NL (25)
V Nn,

2 96
Nny, '

w(0) w'(0) w(0) w'(f) = u u u o +2,/57 (W)

5. Small scales

Although the large eddies contribute to most of the transport of momentum and scalars, we know viscous
dissipation of turbulence to be determined by the smallest of the eddies.

In this section, we will show how the smallest length scales in a turbulent flow can be found (Tennekes and
Lumley (1972)).

Consider that small-scale motions have small time scales; which are statistically independent of the large
scales. This argument leads to the conclusion that the rate of energy suply should equal the rate of dissipation.
This 1s the basis of Kolmogorov’s universal equilibrium theory. This theory suggests that the microscales of
length, time and velocity are given by

n = (”—3)1/4, o= (3)1/2,6 v = (we)'*. (27)

9 9

The autocorrelation coefficient defines a further important microscale, A,, which is defined by the curvature
of p, at the origin:

dzpu (C) _ _i (28)

dc2 ‘(:0 B A’LzL

The length scale A, 1s called the Taylor time microscale; it is directly associated with the dissipation rate
in a turbulent flow.
Expanding py ({) in a Taylor series around the origin, we can write for small values of ¢,

2
Pl =15 (29)

To correlate the Taylor time microscale with the longitudinal spectrum, we make
du'\? u'u!
— ) =2—.
(%) =% B

Then, applying Taylor hypothesis to the above equation,
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du'\? RTE
) =22 1
(dx ) A2 (31)
The Taylor length microscale, x,,, is given by
du'\® W
) = 32
(&) =% o

and the following relation holds

U
w= —=Ay 33
Xu =75 (33)
Finally, considering the turbulence isotropic, the dissipation rate, €, can be evaluated from
/ /
e = 1502 2u (34)

u

6. Data reduction

As mentioned in the introduction, the present study resorted to the hot-wire anemometry to measure the
properties of the turbulent flow. To accounted for any temperature variation, a temperature-compensated
Dantec probe, model 55P76, was used. This probe consists of two sensor elements: a hot-wire and a resistance-
wire, usually called cold-wire, situaded 2 mm below and 5 mm downstream of the former. Both sensors are
Pt-plated tungsten wires, 5 gm in diameter, overall length of 3mm and sensitive wire length of 1,25 mm. They
are copper and gold plated at the ends to approximately 30 pm. They were connected respectively to a constant
temperature bridge, Dantec 556M10 and to a constant current brigde, Dantec 56C20.

Reference measurements for velocity were obtained from a Pitot tube connected to an inclined manometer;
temperature reference data was obtained from previously calibrated microthermocouples.

The temperature dependence of the thermal anemometer signal was accounted for by the linear correction
method, where the heat transfer from the probe is assumed to be proportional to a product of the temperature
difference Ty, — T, and a function of the velocity, where T, 1s the temperature of the heated wire and T, is the
ambient temperature. The output voltage, F, of a constant temperature hot-wire anemometer can hence be
represented by:

E* = f(U) Ty — Ty). (35)

Temperature measurements with resistance wires require both low drift, low noise constant current anemome-
ters and high quality amplifiers. If the resistance wire is heated by a current I = 0.15mA, then the “hot” resis-
tance Ry, will only deviate from R, by (Ry — R4)/Ra =~ 0.0004, and the corresponding temperature difference
(Tw — Ty) will be less than 0.1 °C.

Thus, a common practice is to consider R,, = R,, with

Ra = Ro [1 + Ozo(Ta — TO)]. (36)

For practical applications, it is recommended that a temperature calibration of the resistance-wire 1s used
to determine the calibration constants in the relationship

R,= A+ BT,. (37)

To establish the velocity and temperature sensitivity of the hot-wire probe operating at a fixed hot resistance,
Ry, the anemometer output voltage, F,,, was red as a function of the velocity, U, and the fluid temperature,
T,. This type of calibration is often carried out by performing a velocity calibration at a number of different
fluid temperatures.
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The functional form of the calibration data was then written as

FE = F(U, Ta - Tw)Tw:const~ (38)

Equation 38 is a very good approximation to the velocity calibration data, obtained at a constant value of
Ta, provided the calibration constants are determined by a least-squares curve fit. This procedure has been
applied by other authors to their velocity calibration data using the wire voltage relationship

Pu  _ 44 g (39)
Ry (Ry — Ra) '

This curve-fitting procedure gave the most accurate results. When a constant value of n(= 0.45) was
selected, A and B also became constants, and the increase in the uncertainty is insignificant for most hot-wire
anemometry aplications.

The sampling rate was 2500 Hz, and the total measuring time for each point, 53 seconds.

7. Experimental facilities

The low-velocity, stratified-flow, wind tunnel used in this work was described in detail in Cataldi et al.(2001,
2002) and in Loureiro et al. (2001). The tunnel main objective is to simulate stratified atmospheric boundary
layers. Some improvements have been recently made in the tunnel to achieve a better representation of atmo-
spheric flows and similarity conditions. The test section has now an overall length of 10 m, with a cross section
area of 0.67 m x 0.67 m. The position of the roof is ajustable so as to produce different pressure gradients. The
potencial velocity of the wind tunnel varies from zero to 3,5 m/s, and the free stream has a turbulence intensity
of about 2%.

The stratification section, consisting of 10 eletrical resistances, is capable of heating the flow differentially
up to 100 °C’; each of the resistances can be controlled individually. Following the heating section, the floor
temperature can also be raised by 100 °C' over a 6m long surface, by a series of resistances with a controlled
variation of 5°C". The total heating capacity of each panel is about 7 kW /m?.

The flow was subjected to a step change in roughness (from rough-to-smooth) after travelling the first six
meters over a rough wall. The rough surface consisted of roughness elements constructed from equally spaced
transversal rectangular slats. The dimensions of the roughness elements were K (= 4.7625 mm), where denotes
the height, S (= 15.875 mm) the length, W (= 15.875 mm) the gap, and A (= 31.756 mm) the pitch. In
constructing the surface, extreme care was taken to keep the first roughness element always depressed below
the smooth surface, its crest kept aligned with the smooth glass wall surface.

The glass surface was always kept at 25 °C' & 0.5 °C'. The next 6 meters, fitted with the rough surfaces, had
their temperature raised to 75 & 3 °C'. In fact, the variation in surface temperature for most of the plates was
very small, within £ 1 °C". However, the plates were manufactured in such a way that, at the junction (over a
length of 10 cm), conjugated effects resulted in a small decrease in temperature (— 3 °C'). The wall temperature
was controlled by 15 thermocouples, set at five stream-wise stations at three span-wise positions.

8. Results

To determine the velocity error in origin, ¢, the method of Perry and Joubert (1963) was used. Thus,
velocity profiles were plotted in semi-log graphs in dimensional coordinates. Next, the normal distance from the
top of the roughness elements was incremented by 0.1 mm and a straight line fit was applied to the resulting
points. The best fit was chosen by searching for the maximum coefficient of determination, R-squared. Others
statistical parameters were also observed, the residual sum of squares and the residual mean square. Normally,
a coefficient of determination superior to 0.99 was obtained.

The determination of ¢ is illustrated in Figure 1.

Having found €, we can then use the gradient of the log-law to determine u,. Another method to obtain u,
is the momentum integral equation. This latter method, however, 1s very sensitive to any three-dimensionality
of the flow and the determination of the derivatives of the various mean flow parameters is a highly inaccurate
process.

To recover to the classical undisturbed values, the error in origin is observed to relax over 50 cm, the
equivalent to about five boundary layer thicknesses. This value is quite different from the data reported in
Antonia and Luxton (1972) where more than 16 boundary layer thicknesses were necessary for the flow to
return to a self-preserving state. Thus the behaviour of the error in origin seems to be somehow detached from
the behaviour of the Reynolds stresses that are much slower in responding changes in wall conditions.
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Figure 1: The determination of e.
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The next figures illustrate the changes in the statistical properties of a fluid passing over a sudden rough-
to-smooth change in surface condition.

The autocorrelation function, Figure 2, shows that for measurements taken with a time shift over 0.2 seconds
the data were uncorrelated. This number is quite different from our smooth plate results where 0.05 seconds
were necessary for data to be uncorrelated.

1,0+ rough surface . 1,0+ smooth surface .
x=-24cm ——vy= 4mm x=25cm ——vy= 4mm
0,8 i
0,6 i
% 04} i
0,2+ .
0,0 i
_0’2 1 1 1 1 1 _0’2 1 1 1 1 1
0,0 0,1 0,2 0,3 0,4 0,0 0,1 0,2 0,3 0,4
?1[sl ?1[sl
Figure 2: Autocorrelation function.
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Figure 3: The Kolmogorov time and length scales. Curves were drawn for the following stations: x= -6,2, 0.5,
2.5, 5.5, 9.5 and 24.5 cm. The reference x=0 1s the point of surface change.

The Kolmogorov scales, Figures 3 and 4, were shown to be virtually independent of the flow transition
regime. Thus, they do not present any significant longitudinal variation. This same trend is followed by the
scales of Taylor, Fig. 5, and by the turbulent energy dissipation, 6.

The major changes in flow conditions are illustrated by the higher-moments and the energy spectra, Figures
7, 8 and 9. These graphs clearly show the roughness effects on the inner layer properties of the boundary layer.

The second-order moments are particularly affected by the upstream wall condition. For the whole x-wise
distance, where the profiles were measured, a non-equilibrium condition was observed. The high turbulence
levels originated at the rough wall showed a reasonably slow decay rate (Figure 7).

The third-order moments are negative in most of the outer region, and positive in the near-wall region. Also,
because they are much the same for flows over smooth or rough walls, they tend to colapse onto a single line.

The same trend is observed for the forth-order moments; they are independent of the wall condition. Much
as observed by Bandyopadhyay and Watson (1988), the peak occurs for y/d of the order of 1.2, contrary to the
data of other authors that show that for high Reynolds number the peak is achieved at 0.8. Thus we have found
a peak at a position that has been determined by the upstream surface condition.

The spectra show clearly an inverse-power-law region where the Kolomogorov scaling can be identified. The
-5/3 power law region could be well discriminated, showing the inertial subrange.
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Figure 4: The Kolmogorov velocity scale. Curves were drawn for the following stations: x= -6,2, 0.5, 2.5, 5.5,
9.5 and 24.5 cm. The reference x=0 is the point of surface change.

After an integration over the various uj-spectra regions, the u;-broadband turbulence intensity distribution
in the turbulent wall region can be written as

g amY—c -z 40
E_ Lo Arins = (yur /v) (40)

where (' is a universal constant and By is a large-scale characteristic constant.
The above equation is now under a further scrutiny from the authors so that the behaviour of By, A; and
C' can be investigated.
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Figure 5: The Taylor time and length scales. Curves were drawn for the following stations: x= -6,2, 0.5, 2.5,
5.5, 9.5 and 24.5 cm. The reference x=0 is the point of surface change.

9. Final Remarks

The data presented in this paper have shown that soon after a change in surface properties, from rough to
smooth, some of the statistical characteristics of the flow go through a slow recovery process. That is due to
the fact that the rough-wall flow dominates the rate of diffusion of the disturbances for a considerable length,
dictating conditions that are not self-preserving. The second-order moments are an example of this occurence.

On the other hand, the fact that the spectra suffers very little, or even none, influence of the roughness
length scale is significant to illustrate that simple turbulence models will not be able to correctly simulate all
the flow characteristics. In other words, we have shown that to try to characterize a flow over a rough surface
by just modelling the effects that the protuberances have on the mean velocity or temperature profiles is simply
not enough, more sophisticated models are needed.
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Figure 6: The turbulent energy dissipation. Curves were drawn for the following stations: x=-6,2, 0.5, 2.5, 5.5,
9.5 and 24.5 cm. The reference x=0 is the point of surface change.
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Figure 7: Turbulent intensity and longitudinal second-order moments.
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Figure 8: Longitudinal third- and forth-order moments.
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Figure 9: Energy spectra. Figures refer to the two following stations: x=-6.2 and 24.5 cm (left to right). Curves
were drawn from top to bottom for the following heights: 4, 9, 18, 27, 54, 79, 111 cm.
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