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Abstract. Meshfree �uid �ow simulation has achieved large popularity in the last years. Meshfree Galerkin
Methods and Smooth Particle Hydrodynamics are typical examples of meshfree techniques, whose ability to handle
complex problems has motivated the CFD community. In this work we present a new meshfree approach that
uses moving least square (MLS) to discretize the model equations. A mesh is only employed to manage the
neighborhood relationship of points spread within the domain, avoiding thus the problem of keeping a good quality
mesh. This strategy was implemented in the integrated simulation system, called UmFlow-2D, whose purpose is
to simulate incompressible �uid �ow on unstructed mesh. The system is divided in three modules: modeling,
simulation and visualization modules. The simulation module implements the Navier-Stokes equation, which are
discretized by a Generalized Finite Di�erence Method. In particular convective terms are discretized by a semi-
lagrangean technique. A projection method is employed to uncouple the velocity componentes and pressure. Results
of numerical simulations proving the e�ectiveness of our approach in two-dimensional �uid �ow simulations are
presented and discussed.

keywords: Numerical simulation. Generalized �nite di�erence method. Unstructed mesh. Meshfree Discretiza-
tion.

1. Introduction

The need for new techniques for the solution of problems where the classical numerical methods fail or are
prohibitively expensive has motivated the development of new approaches, such as meshfree methods. Aiming
at avoiding di�culties as the generation of good quality meshes and mesh distortions in large deformation
problems, the meshfree methods try to construct approximation functions in terms of a set of nodes.

The literature has presented a set of di�erent meshfree methods, according to computational modeling, the
meshfree methods may be put into two di�erent classes, [Li and Liu, 2004] those that approximate the strong
form of a partial di�erential equation (PDE), this techniques, in general, discretize the PDE by a collocation te-
chnique. Examples of such methods are generalized �nite di�erence method (GFDM) [Liszka and Orkisz, 1980]
and smoothed particle hydrodynamics (SPH) [Monaghan, 1988] . The methods in the second class, i.e., ser-
ving as approximations of the weak from of a PDE, are often Galerkin weak formulations (meshfree Galerkin
methods). Examples of such an approach are element-free Galerkin method (EFGM) [Belytschko, 1994], di�use
element method (DEM)[Nayroles et al., 1992], reproducing kernel particle methods (RKPM)[Liu et al., 1995],
and partition of unit method (PUM) [Melenk and Babuska, 1996].

In this work we present a new meshfree method that approximates the strong form of a PDE. Our approach
estimates the derivatives involved in a PDE from a polynomial approximation conducted in each discretized
node. Di�erent from GFDMmethods, which use the classical Taylor series expansion to calculate the polynomial
from which the derivatives are extracted, our strategy adopts a more �exible scheme to compute the polynomial
approximation, namely the moving least square (MLS)[Levin, 1998]. The moving least square presents some
advantages over Taylor series expansion. For example, the weight assignment, usually employed to control the
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contribution of neighbor nodes to the polynomial approximation, can be accomplished in a more straight way
by MLS. Furthermore, MLS can be combined with partition of unity in order to tackling the problem of the
number of neighbor nodes properly. In order to show the e�ectiveness of the proposed technique, we present an
integrated simulation system, called UmFlow-2D, wich aims at simulating two-dimensional incompressible �uid
�ow using unstructed mesh. The system is divided in three modules: modeling, simulation and visualization
modules. The modeler module is used to de�ne a �uid, boundary conditions, and others simulation's datas.
The simulation module implements the Navier-Stokes equation and boundary bonditions. The visualization
module is a system that permit the visualization of result and implements several visualization method.

In this paper we presents the simulation module. This module implements the Navier-Stokes equation in a
computacional code. The governing equations are discretized by a generalized �nite di�erence method with the
convective terms discretized by a semi-Lagrangian scheme. A projection method is employed to uncouple the
velocity componentes and pressure. The strategy employed to solve the Poisson's equation generated from our
discretization strategy is another novelty of this work. The details of such a modeling is also presented.

The work is organized as follows: Section 2 presents the least square discretization method proposed in this
work. A description of how to employ such a discretization method in Navie-Stokes equations is discussed in
section 3. The scheme adopted to de�ne the boundary conditions is presented in section 3.1. Section 4 presents
some results obtained from the proposed approach. Conclusions and future work are in section 5.

2. Least Square Approximation

In this section we present some basic de�nitions and notation employed in the remaining of the text and the
Least Square Approximation.

2.1. Computional Node Arrangement

Let V = {v1, v2, . . . , vn} be a set of discrete nodes representing a domain D ⊂ R2. For each node vi ∈ V we
de�ne the local coordinate system of vi by writing any point r = (x, y) ∈ D as r̄i = r − ri, where ri = (xi, yi)
are the coordinates of vi. We denote by r̄k,i = rk − ri the coordinates of a node vk ∈ V written in the local
coordinate system of vi.

Let Si ⊂ V be a non-empty subset of nodes, Si is a star of vi, if the two conditions bellow are satis�ed:

1. if ‖r̄s,i‖ ≤ ‖r̄k,i‖, ∀vk ∈ V, k 6= s then vs ∈ Si

2. if vs is in the convex hull of S then vs ∈ Si

The local minimum length of a star Si is de�ned as:

hi = min
vs∈Si

‖r̄s,i‖ (1)

Notice that the local minimum length is the same for all stars of vi. From the de�nition of local minimum
length we can de�ne the global minimum length with respect to V :

h = min
vi∈V

hi (2)

in another words, the global minimum length h is the shortest distance of the nodes representing D.

2.2. Least Square Approximation

Let vi ∈ V be a node in the domain D and Si be a star of vi. Suppose that f : D → R is a real function
de�ned in D. We aim at approximating f in a neighborhood of vi by a function f̄ of the form:

f̄i(r̄) = f(ri) + Wi(r̄) (3)

where Wi is a polynomial of degree d that can be written as:

Wi(r̄) =
N∑

j=1

cjP
(j). (4)

The terms P (j) in Eq. (4) forms a basis of monomial {x, y, x2, xy, y2, . . .}, which can be numbered as in Fig.
( 1). Notice that the constant monomial is not considered, as the polynomial will be employed to approximate
derivatives, thus the constant term can be neglected.
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Monomial Basis
monomial Degree
P (1) = x 1
P (2) = y 1
P (3) = x2 2
P (4) = xy 2
P (5) = y2 2
P (6) = x3 3
P (7) = x2y 3
P (8) = xy2 3
P (9) = y3 3 degree1 degree2 degree3

P (2) P (4)

P (5)

P (9)

P (8)

P (7)

P (6)P (3)P (1)

Figure 1: Monomial basis and numbering scheme.

Given the values of f in each node vk ∈ Si, we can compute the coe�cients cj of Wi by solving the linear
system Ac = B:




a11 · · · a1N

...
aN1 · · · aNN







c1

...
cN


 =




b1

...
bN


 (5)

where the elements aij of the matrix A and the elements bi of vector b are given by:

aij =
∑

vk∈Si

P (i)(r̄k)P (j)(r̄k)wk; i, j = 1, . . . , N (6)

bi =
∑

vk∈Si

(f(rk)− f(ri))P (i)(r̄k)wk (7)

As can be seen from Eq. (6) and (7), using the MLS we are assigning weights wk for the node vk ∈ Si.
Such weights can depend on the distance between vk and vi or they can be a Gaussian in vi. It is important to
point out that the rank of A depends on the number of elements in Si. For example, for a quadratic polynomial
approximation there will be needed at least �ve nodes in Si. The higher the degree of Wi the more nodes are
needed.

Once the coe�cients cj have been computed, the derivatives of f can be approximated in vi by the derivatives
of f̄i. Furthermore, if f̄i is a quadratic polynomial then the second order derivatives are given directly from the
coe�cients cj , i.e.,

∂2f̄i

∂x̄2
=

∂2Wi

∂x̄2
= 2c3

∂2f̄i

∂x̄∂ȳ
=

∂2Wi

∂x̄∂ȳ
= c4 (8)

∂2f̄i

∂ȳ2
=

∂2Wi

∂ȳ2
= 2c5

It can be shown that the discretization strategy presented above is consistent if the nodes in Si are distributed
properly. Details about this theoretical result can be found in Peña's master dissertation [Peña, ]. In order
to verify the e�ectiveness of the scheme above in numerical simulations, we apply the proposed strategy in an
incompressible �uid �ow simulation problem. How to conduct the discretization of the Navier-Stokes equations
from our approach is the subject of the next section.

3. Discretizing Navier-Stokes Equations

Although the discretization technique presented in the last section has been developed for meshfree domain
decompositions, we prefer using a mesh to make the access to the neighborhood of a node easier. To this end, the
set of nodes representing a domain D has been input in a Delaunay mesh generator. It is not di�cult to show
that Delaunay meshes guarantee the �rst condition of the de�nition of a star. Without any post-processing a
Delaunay mesh satisfy the second condition in almost every node. Steiner points can be inserted if it is strongly
necessary to respect condition 2 of the de�nition of a star.
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Pressure discretization will also be making use of the mesh, as we are storing the pressure on the triangular
cells. It is worth mentioning that the velocity �eld is stored on the nodes as in Fig (2). Such a scheme has been
adopted in order to make velocity and pressure decoupling easier.

u, v

p

u, v

u, v

Figure 2: Computational cell.

Consider the Navier-Stokes and continuity equations:

Du
Dt

= −∇p +
1

Re
∇2u+

1
Fr2

g, (9)

∇ · u = 0 . (10)
where u is the velocity and p is the pressure of the �uid, Re is the Reynolds number and Fr is the Froude
number.

The material derivative Du
Dt is discretized by the semi-Lagrangian method:

Du
Dt

=
u(x, t + δt)− u(x− δx, t)

δt
. (11)

where δx = uδt.
Using the fractionary step method (projection method), we obtain the set of equations:

ũ(x, t + δt)− u(x− δx, t)
δt

=
1

Re
∇2u+

1
Fr2

g, (12)

u(x, t + δt)− ũ(x, t + δt)
δt

= −∇pn+1, (13)

∇2pn+1 =
1
δt
∇ · ũ(x, t + δt), (14)

From the above equations, the velocity and pressure �elds can be computed, for each time step, as follows:

1. Intermediate velocity

ũ = u(x− δx, t) + δt

(
1

Re
∇2u+

1
Fr2

g
)

(15)

2. Intermediate pressure

∇2pn+1 =
1
δt
∇ · ũ, (16)

using the following boundary conditions

• Homogeneous Neumann condition for rigid contours, given by

∂pn+1

∂n
= 0.

This condition is used also on the in�ows.
• Homogeneous Dirichlet condition for out�ow, i.e., pn+1 = 0.
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3. New velocity

un+1 = ũ− δt∇p (17)

The term u(x − δx, t) in Eq. (15) is computed by linear interpolation of the velocity u on the nodes vi, vj

and vk closest to x− δx. The Laplacian term ∇2u is computed from a least square approximation as described
in (9).

After estimating ũ, we must solve Poisson's equation (16). In fact, this is the hardest step of the scheme.
Using a quadratic polynomial for the least square approximation, a 5× 5 linear system is obtained:




a11 · · · a15

...
a51 · · · a55







c1

...
c5


 =




b1

...
b5


 (18)

where the elements aij and bi are given by Eq. (6) and Eq. (7) respectively.
Using Gaussian elimination we can re-write the system (18) as:




â11 · · · â15

. . .
â55







c1

...
c5


 =




b̂1

...
b̂5


 . (19)

By backward substitution one can obtain the coe�cients c5 and c3 that are involved in the discretization of
∇2p, and they can be written as:

c3 =
∑

vk∈Si

αkp(rk) + αip(ri) (20)

c5 =
∑

vk∈Si

βkp(rk) + βip(ri) (21)

where αk and βk are constants obtained from the Gaussian elimination process.
In that way, the Poisson matrix is sparse and non-symmetric. In our implementation we employ the bi-

conjugate gradient method [Saad, 2003] to solve the resulting linear system.
Once p has been calculated, moving least square can be employed to approximate ∇p, making it possible to

solve Eq. (17).

3.1. Boundary Conditions

The boundary conditions employed in our discretization scheme have been discussed. In fact, we must handle
three di�erent types of boundary: rigid contours, in�ow and out�ow.

For rigid contours two di�erent boundary conditions have been implemented in our code: no slip and free
slip. In the �rst case the velocity is set to zero in all nodes de�ning the rigid contours. The free slip condition
imposes that the velocity in the normal direction be zero and the derivative of the tangential velocity with
respect to the normal direction is also zero.

On the in�ows, the velocity is given in the normal direction, being zero in the tangential direction.
On the out�ows, the derivative of the normal component of the velocity with respect to the normal direction

is zero and the derivative of the tangential velocity with respect to the normal direction is also zero.
The boundary conditions for pressure is introducted for each triangular element at contour an "imaginary"

triangular element, increasing a neighborhood in the cell of approach of the derivatives as in Fig. (3).

• Homogeneous Neumann condition for rigid contours, given by

p(n+1)(rf )− p(n+1)(r0)
dist(rf → r0)

= 0.

The value of p in the triangular element imaginary is equal to the value of p in the triangular element of
contour.

bi =
∑

vk∈C0

(p(n+1)(rk)− p(n+1)(r0))P (j)
k ωk (22)
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����

{{

Figure 3: Boundary condition for pressure.

The independent term bi is not modi�ed.

• Homogeneous Dirichlet condition for out�ow, i.e.,

p = 0.

In this case the value of p in the element imaginary is

p(rf ) = −p(ri).

and the independent term is modi�ed

bi =
∑

vk∈C0

(p(n+1)(rk)− p(n+1)(r0))P (j)
k ωk

Getting 2p0P
i
f where P i

f is the monomial i of the triangular element imaginary.

4. Results

In order to illustrate the e�ectiveness of our discretization technique, we present two examples of simulations.
The �rst example shows the classical �uid �ow simulation in a channel. The second example aims at illustrating
the behavior of our approach in a �ow over a circular cylinder.

4.1. Flow in a Channel

The well known Hagen-Poiseuille �ow has been chosen to validate our numerical method, as an analytical
solution is available. This simulation consists of a �ow between two parallel plates, as illustrated in Fig. ( 4).

L

Figure 4: Hagen-Poiseuille �ow.

The analytical solution for Hagen-Poiseuille �ow, which can be found in Batchelor [Batchelor, 1970], is given
by:

u(y) = − 1
2µ

∂p

∂x
(yL− y2), (23)

where µ is the viscosity and the velocity u is a function of the distance y to the wall. Considering L to be the
width of the channel, the pressure gradient can be written as:

∂p

∂x
= −12

µQ

L3
, (24)
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where Q is de�ned by:

Q =
∫ L

0

u(y)dy. (25)

Considering u(y) = U on the in�ow, where U is the reference velocity, and choosing L = U = 1, the
analytical solution is:

u(y) = −6y(y − 1), (26)
Three di�erent meshes have been employed to show the convergence of our method: a course mesh with

193 cells (M1), an intermediate mesh containing 728 cells (M2), and a re�ned mesh with 2853 cells (M3). The
parameters of the simulation have been set as: domain: 3m×1m; Viscosity: 0.10Ns/m2; Density: 0.10Kg/m3;
Reynolds: Re = 1; Froude: Fr = 0.319275. Figure ( 5) shows the intermediate mesh and Fig. ( 6) presents a
qualitative map of the velocity in x.

Figure 5: Intermediate mesh with 728 cells.

Figure 6: Velocity �eld in x direction.

Figure ( 7) shows a comparison between the analytical and numerical solution on a line in the middle of the
channel.

One can observe that in the re�ned mesh it is di�cult to distinguish the analytical from the numerical
solution.

4.2. Flow over a circular cylinder

We �nish this section with an example illustrating the simulation of bidimensional around a circular cylinder.
For numbers of Reynolds in the band 40 < Re < 1000, the draining around the cylinder cause the detachment
of vortices, being this laminar until Re = 300.

The boundary conditions were imposed in such a way that the �ow was from the bottom up toward the top
of the domain. A Newman boundary condition was used on the lateral boundaries. A constant velocity pro�le
U was speci�ed at the domain entrance.
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Figure 7: Comparing analytical and numerical results.
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Figure 8: Computacional domain and boundary condition for �uid around a cylinder.

The simulation was in a �xed mesh with elements and h = 0.1, shown in the Fig. (9). The used Reynolds
of number was Re = 100, su�cient for the detachment of vortices. The Fig. (10) - (13) shows the vorticity of
�uid in some time di�erent.

Figure 9: Mesh used in simulation around a cylinder.

Notice from Fig. (10) - (13) vorticity of �uid is in accordance with what we expected.
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Figure 10: Vorticity �eld, t = 10s.

Figure 11: Vorticity �eld, t = 20s.

Figure 12: Vorticity �eld, t = 30s.

5. Conclusions and Future Work

In this work we present a new discretization technique that makes use of least square approximation to
estimate derivatives. Such an approach has turned out to be very robust in �uid �ow simulation, being thus
a new alternative for handling these kind of problems. The strategy adopted to build the Poisson's matrix by
Gaussian decomposition of the least square matrix is another contribution of this work.

The results of applying the proposed approach in the well known Hagen-Poiseuille �ow and in a �uid �ow
simulation are very consistent, con�rming thus the e�ectiveness of our method.

Although this new methodology has been developed envisioning a complete meshfree discretization scheme,
we make use of a triangular mesh to improve the access to nodes neighborhood. In order to get rid of the
mesh we are developing a set of data structures devoted to access neighborhood of nodes. A new scheme for
discretizing the pressure on the nodes has also been investigated.

Another aspect we are considering is to employ high order semi-Lagrangian schemes, making it possible to
deal with higher Reynolds number.
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Figure 13: Vorticity �eld, t = 33s.
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