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Abstract. The displacement of a non-Newtonian power-law liquid by a Newtonian liquid, more viscous then the first is investigated 
numerically with the Galerkin Finite Element Method. This present study is qualitatively different from gas displacing the same 
fluid, a problem reported in the literature, in the sense that the viscosity ratio between displaced and displacing fluids is less then 
unity. Besides the viscosity ratio, a non-Newtonian Capillary number, and the power-law index are the dimensionless parameters 
investigated. The displacement efficiency is also investigated and compared with previous results. 
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1. Introduction  
 

The present paper deals with the displacement of a liquid, initially occupying the interior of a tube, by another 
liquid which is immiscible with the first. Practical applications include the flow through porous media during enhanced 
oil recovery and the cementation process of production and injection wells. Comprehensive reviews on this subject are 
available in the literature. In these processes, it is important to understand the mechanism of liquid displacement and to 
determine the amount of liquid that is left behind adjacent to the wall. The configuration of the interface between the 
two liquids depends on the force balance near the interface, which is the focus of the present study. Most of the related 
work found in the literature deals with the case of a gas displacing a viscous liquid, going back to the pioneer work of 
Fairbrother and Stubbs (1935) and Taylor (1961). In the experiments reported in these early papers, the Reynolds 
number was kept small enough to assure negligible inertial effects. The main goal was to determine the fraction of mass 
deposited on the tube wall m, which, with the aid of the mass conservation principle, can be written as a function of the 
velocity of the tip of the interface U  and the mean velocity u of the liquid ahead of the gas-liquid interface, viz., 

 
U um

U
−

=             (1) 

Taylor (1961) studied the dependence of the mass fraction on the capillary number Ca Uμ σ≡ , where μ and 
σ are the liquid viscosity and surface tension, respectively. His analysis indicated that the amount of liquid deposited 
on the wall rises with the interface speed, and that m tends asymptotically to a value of 0.56 as Ca approaches 2. 
Working on the same problem, Cox (1962) studied the mass fraction over a wider range of the capillary number, and 
also observed that m reaches an asymptotic value at a high capillary number. However, he showed that this asymptotic 
value was 0.60 as Ca approached 10. Using the lubrication approximation, Bretherton (1961) derived a theoretical 
correlation between the mass fraction and the Capillary number, and the agreement between his predictions and Cox’s 
experiments is good in the range of . 3 210 10Ca− −< <

Some contributions found in the literature deal with the theoretical modeling of gas-liquid displacement in the small 
gap between two parallel plates. Giavedoni and Saita (1987) reviewed these articles and presented a theoretical analysis 
of the steady displacement of a viscous liquid by a semi-infinite gas bubble using finite element method. They extended 
the range of the Capillary number of the analysis from 55  10−× up to 10. Lee et al. (2002) used a finite-element method 
to study the steady gas displacement of a polymeric liquid confined between two parallel plates. The non-Newtonian 
behavior of the liquid was modeled by three different differential constitutive equations. Articles dealing with the 
analysis of liquid-liquid displacement are much scarcer. One of these few papers is given by Goldsmith and Mason 
(1963), who report experimental results on the amount of displaced liquid left on the tube wall as a function of different 
parameters. In their experiments, the displacing material is a long drop of a viscous liquid. The results showed that the 
mass fraction rises as the viscosity ratio 2 1Nμ μ μ= is decreased, where the index 1 refers to the displacing fluid and 

2μ , to the displaced fluid. This trend agrees with the theoretical predictions and experimental data presented in this 
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work. Teletzke et al. (2002), using a perturbation method, analyzed the wetting hydrodynamics problem. They extended 
the work of Bretherton (1961) to account for a viscous (rather than inviscid) displacing fluid, and the effects of 
intermolecular forces in submicroscopically thin films. Their computations agreed with the observation of Goldsmith 
and Mason (1963), which showed that the film thickness of the displaced fluid left on the wall rises with the viscosity 
of the displacing fluid. However, their results were limited to small capillary numbers, namely, . 410Ca −<

Petitjeans and Maxworthy (1996) analyzed the situation of liquid-liquid displacement with miscible liquids. They 
studied the effect of the Peclet number, defined as mPe V D Dm= , where  is the maximum velocity far from the tip 
of the interface, D the tube diameter, and  is the diffusion coefficient. The high Peclet number regime should 
correspond to the case of immiscible fluids and infinite capillary number.  

mV

mD

 Soares et al. (2005), studied the case where a Newtonian viscous liquid was displaced by a long drop of another 
Newtonian viscous liquid in a capillary tube. The problem was analyzed by numerical simulations and experiments for 
some governing parameters. The authors investigated the capillary number and viscosity ratio effects on the fractional 
deposited mass, m. They also analyzed the stream line patterns and the shape of the interface tip. The viscosity ratio 
analyzed was from very large value, where the results were coincident to the case of a gas displacing a liquid, to 

. The goal of the present work is to extend this limit,  4Nμ =

The goal of the present work is to extend this limit. 
A thin layer of the displaced liquid is left behind on the tube walls, as illustrated in Fig.(1). In the figure, is the 

radius of the tube and  the radius of the cylindrical portion of the interface. The theoretical approach consisted of the 
solution of the governing equations of this free surface problem using the finite element method. The flow field 
variables and the position of the interface between the two liquids are all solved simultaneously and the formulation is 
not limited to low capillary numbers. The theoretical predictions show the effect of different parameters on the interface 
configuration and on the thickness of the layer of the displaced liquid left on the walls. It is important to notice that, a 
main hypothesis considered is that we study the problem far from the limit of instability effects. Depending on the 
wetability, the dimensionless lenght of the drop and the other dimensionless parameters of the problem indicated below, 
the problem becomes unstable. The stability analysis associated with the physical problem is still in order. 

0R

bR

 

Figure 1 – Schematics of the problem. 
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2. MATHEMATICAL FORMULATION 
 
2.1. Conservation equations and boundary conditions  
 

The physical model to describe the displacement of a Newtonian liquid of viscosity 2μ  by a long drop of a second 
non-Newtonian liquid of viscosity 1η  is now presented. The displacing drop (liquid 1) is translating steadily with speed 

. To simplify the analysis, the governing equations are written with respect to a moving reference frame located at 
the tip of the interface. In this frame of reference, the flow is steady and the wall is moving with velocityU .  
U

The geometry analyzed is an axisymmetric tube of radius . The liquid is assumed to be incompressible, and the 
flow is laminar and the inertia is negligible.The velocity and pressure fields are governing by the continuity and 
momentum equations. In cylindrical coordinates, these governing equations are written as (the subscript  labels 
the two liquids). 

0R

1,2k =

 

( ) ( )10 krv u
r r x
∂ ∂

= +
∂ ∂ k            (2) 
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p
r
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−⎥
∂

        (4) 

 
Where u and v are respectively the axial and radial components of the velocity field u and the quantities 

, , ,xx yy rx ryτ τ τ τ and θθτ  are the components of the stress tensor . τ
In order to facilitate the following description of the boundary conditions, the boundaries are labeled from 1 to 5, as 
illustrated in Fig. (1).  
 
1) Far enough upstream of the interface, Boundary 4, the flow is taken to be fully developed and the pressure is 
assumed to be uniform: 
 

2 20,   inp p⋅∇ = =n u            (5) 
 
where n is the unit vector normal to the boundary surface and  the pressure field. inp
 
2) Far enough downstream, Boundary 1, the flow is also assumed to be fully developed, but the pressure is not imposed: 
 

1 0⋅∇ =n u             (6) 
 
3) Along the symmetry axis, Boundary 2, both the shear stress and the radial velocity vanish: 
 
[ ] ( ) 0

k
k rxτ⋅ ⋅ = =t n τ ,           (7) 0k⋅ =n u

where t is a unit vector tangent to the boundary surface. 
 
4) The no-slip and impermeability conditions are imposed along the tube wall, Boundary 3: 
 

xU=u e              (8) 
where ex is the unit vector in the x-direction. 
 
5) At the liquid-liquid interface, Boundary 5, the traction balances the capillary pressure, and there is no mass flow 
across the interface: 
 

( ) ( )1 2 2 1
m

p p
R
σ

− + − =n n τ τ n           (9) 

 
( )1 2 0− =u u             (10) 
 
In Eq. (9), 1/Rm is the local mean curvature of the interface, defined as  
 

2 2 2 2

1 1 s

m s s s s

x
R sx r r x r

∂
= −

∂+ +

tn n           (11) 

 
where t is the unit tangent vector to the free surface, s is the arc-length curvilinear coordinate along the interface in the 
r-x plane and sx x s= ∂ ∂  and sr r= ∂ ∂s  are spatial derivatives with respect to s. 
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2.2. Constitutive equations 
 

In order to close the set of differential equations, the stress tensor was related with the kinematics of the flow by the 
Generalized Newtonian Fluid model. In this model, the stress tensor is given by 
 

( )p η γ= − +T I γ            (12) 
 
where = ∇ +∇ Tγ u u is the rate of strain tensor. The scalar quantity ( )η γ  is the viscosity function, and 

( )1
2

trγ ≡ ⋅γ γ is the deformation rate. The viscosity function ( )η γ  is a Ostwald-de Waele power-law fluid, described 

by Eq. (13). 
 

1nKη γ −=            (13) 
where K  is the consistency index and n is the behavior index. Pseudo-plastic fluids are obtained with this model when 
n<1 and dilatant fluids are obtained with this model when n>1. 
 
 
 
3.SOLUTION METHOD  

 
3.1 The free boundary problem 
 

Due to the free surface, the flow domain is unknown a priori. In order to solve this free-boundary problem by 
means of standard techniques for boundary value problems, the set of differential equations and boundary conditions 
written for the physical domain has to be transformed to an equivalent set, defined in a known reference domain. This 
subject is better discussed on papers of Kistler and Scriven (1983) and de Santos (1991). This transformation is made 
by a mapping  that connects the two domains, as shown in Fig. (( )x = x ξ 2). A functional of weighted smoothness can 
be used successfully to construct the type of mapping involved here. The inverse of the mapping that minimizes the 
functional is governed by a pair of elliptic differential equations that are identical to those encountered in diffusional 
transport with variable diffusion coefficients. The coordinates ξ and η of the reference domain satisfy 

 
( ) 0Dξ ξ∇ ⋅ ∇ = and          (14) ( ) 0Dη η∇ ⋅ ∇ =

 
where Dη  and Dξ  are diffusion-like coefficients used to control gradients in coordinate potentials, and thereby the 

spacing between curves of constant ξ on the one hand and of constant η on the other that make up the sides of the 
elements that were employed; they were quadrilateral elements. Eq. (14) describe the inverse mapping ( )xξ . To 

evaluate ( )x x ξ= , the diffusion equations that describe the mapping also have to be transformed to the reference 
configuration.  

The gradient of the mapping ( )x x ξ=  in a two dimensional domain is defined as xξ∇ = J , and detJ = J  is the 
Jacobian of the transformation. Boundary conditions are needed in order to solve the second-order partial differential 
equations (14). Spatial derivatives with respect to the coordinates of the physical domain x can be written in terms of 
the derivatives with respect to the coordinates of the reference domain ξ  by using the inverse of the gradient of the 
mapping 

 
1x

J
y

ξ
η

−∂ ∂ ∂ ∂⎛ ⎞ ⎛
=⎜ ⎟ ⎜∂ ∂ ∂ ∂⎝ ⎠ ⎝

⎞
⎟
⎠

           (15) 

 
Along the solid walls and synthetic inlet and outlet planes, the boundary is located by imposing a relation between 

coordinates x and y, and stretching functions are used to distribute the nodal points of the finite element mesh along the 
boundaries. The free boundary (gas-liquid interface) is located by imposing the kinematic condition, Eq. (6). The 
discrete version of the mapping, Eq. (14), is generally referred to as mesh generation equations. 
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Figure 2 – Mapping between the physical and reference domains. 
 
3.2 Solution of the equation system by Galerkin / Finite Element Methods 
 
 The differential equations that govern the problem and the mapping (mesh generation) equations were solved all 

together by the Galerkin/Finite Element Method. Biquadratic basis functions ( jφ ) were used to represent the velocity 
and nodal coordinates, while linear discontinuous functions ( jχ ) were employed to expand the pressure field. The 
velocity, pressure and node position are represented in terms of appropriate basis functions. 

 
; ; ; ;j j j j j j j ju U v V p P x X r Rj jφ φ χ φ= = = = =∑ ∑ ∑ ∑ ∑ φ

⎤⎦

      (16) 
 
The coefficients of the expansions are the unknown of the problem: 
 

j j j  P  X  R
T

j jC U V⎡= ⎣           (17) 
 
The corresponding weighted residuals of the Galerkin method related to conservation of momentum, mass and 

mesh generation are: 

( ) ( ) ( )
k k

i i i
mx x k ixx xr

dR T T r J d r
x r d
φ φ

φ
Ω Γ

∂ ∂⎡ ⎤= + Ω− ⋅⎢ ⎥∂ ∂⎣ ⎦∫ ∫
Γe n T Γ
Γ

d       (18) 

( ) ( ) ( )
kk k

i i i
mr r k ixr rr

dR T T T r J d r
x r r dθθ
φ φ φ φ

Ω Γ

∂ ∂⎡ ⎤= + + Ω− ⋅⎢ ⎥∂ ∂⎣ ⎦∫ ∫
Γe n T Γ
Γ

d      (19) 

( )1i k
c k i

u
R rv r J

r r x
χ

Ω

∂∂⎡ ⎤= +⎢ ⎥∂ ∂⎣ ⎦∫ dΩ          (20) 

( )i
i

dR D J d D
x x r r dξ ξ ξ
φ ξ φ ξ ξ φ

Ω Γ
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Γ
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( )i
i

dR D j d D
x x r r dη η η
φ η φ η η φ

Ω Γ

∂ ∂ ∂ ∂⎛ ⎞= − + Ω+ ∇ ⋅⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠∫ ∫
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3.3 Solution of the non-linear system of algebraic equation by Newton’s Method 
 
As indicated above, the system of partial differential equations and boundary conditions is reduced to a set of 

simultaneous algebraic equations for the coefficients of the basis functions of all the fields. This set is non-linear and 
sparse. It was solved by Newton’s method. In order to improve the initial guess there were necessary to solve 
intermediate problems. The first successful free surface flow was computed using a fixed boundary flow field with 
slippery surface in place of the free boundary as the initial condition for Newton’s method. The linear system of 
equations at each Newton iteration was solved using a frontal solver. A mesh convergence analysis was done increasing 
the elements number until the solution changed by less that 1% between successive refinements. The domain was 
divided into 880 elements that correspond to 3635 nodes and 17180 degrees of freedom. A representative mesh is 
shown in Fig (3). 

 

 
Figure 3 – The finite element mesh, with 880 elements and 17180degrees of freedom. 

 
4. RESULTS 
 
The amount of the liquid 2 that remains on the capillary wall is usually reported in terms of the mass fraction of 

liquid that is not displaced , or simply by the liquid film thickness left on the wall. The two forms are related by  m
 

2 2

0 0

mass left on wall displaced mass1
total mass total mass

21 1 1b

m

D h
D D

∞

= = −

⎛ ⎞ ⎛ ⎞
= − = − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∂

        (23) 

 
The mass fraction of the liquid 2 left on the tube wall can be evaluated using the mass conservation principle for the 

liquid 2 in a control volume containing the tip of the interface and attached to it. Figure (4) shows this control volume 
and the sketch of the velocity profiles at inlet and outlet plane as seen from a reference frame attached to tip of the 
interface. The mass flow rate of the liquid 2 through the control surface upstream of the drop is equal to 2 *

0R uπ  and 

through the control surface downstream the tip of the interface is ( )2 2
0 bR R Uπ − , *u and U  being the average velocities 

of the liquid 2 at the two planes with respect to the moving frame of reference. 
 

U U 

r

x
u*is the average velocity here

U*is the average velocity here

Control volume 

 

Figure 4 –Velocity profile as measured from a reference frame at the tip of the interface. 
  
The average velocity with respect to the moving frame of reference *u can be evaluated as a function of the average 

velocity with respect to a fixed frame of reference, *u U u= − . Combining the previous relations, the mass fraction  
can be expressed in terms of the average velocities. 

m
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2

0

1 bD U um
D U

⎛ ⎞ −
= − =⎜ ⎟

⎝ ⎠
          (24)  

For a Newtonian liquid displacement of a no inertial incompressible Newtonian liquid, the relevant dimensionless 
parameters that govern the problem are the Capillary number ( )Ca  and Viscosity ratio ( )Nμ . The Capillary number 
and viscosity ratio are given by 

 
2UCa

μ
σ

≡             (25) 

 
2

1

Nμ
μ
μ

≡             (26) 

On the other hand, when the displaced liquid is non –Newtonian, the Ca is, again, calculated by Equation (25), but, 
Nμ  must be redefined. It is necessary to choose a characteristic viscosity of the problem. For this purpose the viscosity 
function is evaluated at the characteristic deformation rate of the flow which is in this problem /c bV Rγ = . Hence, the 
viscosity ratio for the power-law fluid is given by 

1

1 1

n
c cK

Nη
η γ
μ μ

−

= =           (27) 

 
The rheological dimensionless parameter is the behavior index, n      
 
In order to validate the present work, the results are compared with the experiments from Taylor (1961) and Cox 

(1962) and numerical solution obtained by Souza et al (2006) for gas-liquid displacement, these results are shown in 
Figure (5). The agreement is quite good over the range of capillarity numbers explored.  

Figure (6) presents the values of the fraction of mass deposited on the tube wall as a function of the capillary 
number at fixed viscosity ratio, , for liquid-liquid displacement of two Newtonian fluids. Figure (6) shows a 
good agreement with the results of Soares et al (2006). 

4Nμ =

 

 
Figure 5 – Fraction of mass deposited on the tube wall as a function of the capillary. Experimental and Numerical 

predictions for gas displacing a Newtonian liquid. 
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Figure 6 - Fraction of mass deposited on the tube wall as a function of the capillary for two Newtonian liquids. 

Numerical predictions at fixed viscosity ratio 4Nμ = . 
 
Figure (7) presents the fraction of mass deposited on the tube wall as a function of the behavior index n for shear-

thickening fluids. The results indicate that as n becomes higher the fraction of mass deposited on the tube wall 
increases. 
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Figure 7 - Fraction of mass deposited on the tube wall as a function of n for a shear-thickening fluid.  
 
 
 
Figures (8) and (9) shows flow patterns for capillary number Ca=0.2. In Fig.(8) there is a Newtonian fluid with 

viscosity ratio  and Fig. (9) there is a shear-thinning fluid with n=0.75 and the same viscosity ratio. It is an 
interesting flow in which was captured a secondary flow inside the displacing fluid. 

2Nμ =
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(2D) ⏐ 22 Jun 2006 ⏐g8llin - 062 STREAMLINES(2D) ⏐ 22 Jun 2006 ⏐g8llin - 062 STREAMLINES

 
Figure 8 – Streamlines for a Newtonian case – Ca=0.2 - 2Nμ =  
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(2D) ⏐ 22 Jun 2006 ⏐g8llin - 131 STREAMLINES(2D) ⏐ 22 Jun 2006 ⏐g8llin - 131 STREAMLINES

 
Figure 9 – Streamlines for a shear-thinning fluid n=0.75 – Ca=0.2 - 2Nμ =  
 
 
The results are similar, but it can be seen that the secondary flow in the shear-thinning liquid is larger, but further 

investigation is needed. 
 

 
5. Conclutions 

 
An axisymmetric model of the flow near the upstream liquid-liquid interface of a long newtonian drop penetrating 

through a Newtonian or power-law liquid in a capillary tube was presented. The presence of the interface makes the 
problem complex, since the domain in which the differential equations are integrated is unknown a priori. A fully 
coupled formulation was used and the differential equations were solved via the Galerkin finite element method. 

Recent articles are found in the literature which analyze liquid displacement in tubes. However, these are limited to 
gas-liquid displacement or to liquid-liquid displacement at rather small capillary Numbers and for two Newtonian 
fluids. Thus, the main contribution of the present work was to investigate the influence of the power-law behavior index 
of the displaced liquid on the fraction of mass deposited on the tube wall for a fixed capillary number and viscosity 
ratio.  

The predictions showed an increase of fractional mass left behind with increase of n. Hence, shear-thinning 
materials seems to be a more efficient when displaced by a Newtonian liquid. 
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