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Abstract. Over the last two decades, a comprehensive mathematical model and its corresponding computational program, aimed to 
simulate steady-state operations of bubbling fluidized bed equipments, has been continuously improved and tested. Despite its 
success, the simulator has employed a simple approach for radiative heat transfers. In cases of high temperatures, thermal radiation 
becomes an important energy transfer mode and the original model could lead to deviations above acceptable levels. The purpose of 
the present work was to improve the model for thermal radiation heat transfer between all solid particles in the bed section by 
applying a two-flux method to a non-homogeneous polydispersed particulate media in radiative equilibrium. Gases in the emulsion 
and in the bubbles were assumed transparent to thermal radiation. This first part of the paper presents and discusses the basic 
structure of the former mathematical model and of the new one. 
 
Keywords. modeling, bubbling fluidized bed, thermal radiation, flux method 

 
1. Introduction 
 

Fluidized bed equipments are employed in many industrial processes such as combustion and gasification. Among 
their advantages over more conventional technologies, one can mention bed temperature control and uniformity, low 
pollutant emission rates, high turndown ratios and relatively high heat-transfer coefficients between bed material and 
immersed tubes. 

Since experimentation is more expensive than computation, modeling and simulation of fluidized-bed equipment 
play a major role in design and optimization. Moreover, numerical procedures may be the only permissible way to 
explore limiting situations due to safety concerns. Accordingly, a comprehensive mathematical model and computer 
program should cover important aspects of the process in order to be able to predict parameters that describe the 
operation of the equipment. 

Over the last 20 years, a comprehensive simulation program for bubbling fluidized bed equipments has been 
improved and tested against experimental data (de Souza-Santos, 1987). At its present stage, the mathematical model 
includes up to 100-coupled differential equations for mass and energy balances. A large number of those were 
incorporated in later versions of the program (de Souza Santos, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998 and 
1999), which evidences the dynamic feature of the simulation program, namely its ability to be extended and updated 
with newly published information. 

In systems where high temperature levels are achieved, such as in boilers and gasifiers, thermal radiation is an 
important heat transfer mode. Despite its success, the present version of the simulator has employed a simple approach 
for it. Therefore, further improvements are possible. This work intends to accomplish that, mainly for the treatment of 
radiative heat transfers between solid particles in the bed section. 

In order to preserve the basic structure of the original mathematical model and simulation program, a two-flux 
approach was applied to a non-homogeneous polydispersed particulate media in radiative equilibrium. The choice of 
such method comes also from the fact that thermal radiation in participating media is governed by an integro-
differential equation. The addition of such equations in the model would bring great difficulties for the mathematical 
solutions of differential systems of equations. The flux models use approximations for the directional dependence of 
radiation intensity, therefore allowing integro-differential equations to be replaced by a set of differential ones. 
 
2. Basic description of the current mathematical model 
 

The simulator considers steady-state operations of bubbling fluidized bed equipments. Another major assumptions 
are (de Souza-Santos, 1987, 1989): 
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• Axial plug-flow regimes for ascending gas in bubbles and gas percolating the particles in the emulsion. Hence, all 
physical quantities and operational parameters for gas phases are function of the bed height z alone.  

• Bubbles are free of particles. Therefore, the emulsion contains all particles plus the percolating gas. 
• Solid particles move randomly in the bed. 
Figure (1) shows a schematic representation of typical fluidized bed equipment simulated. 
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Figure 1. Schematic representation of a typical fluidized bed equipment simulated. 
 

In general, carbonaceous solids are continuously fed into the bed. Other species present in the emulsion phase are 
interstitial gas, inert material and limestone. The bubble phase is free of solid particles and the clouds are incorporated 
in the emulsion phase. Plug-flow regimes are assumed for the gas in the bubble and for the interstitial gas in the 
emulsion. This kind of flow is also assumed for the gas flow in the freeboard 

At the bed base (z = 0), the only set of boundary conditions completely known refers to the gas stream injected 
through the distributor. Boundary conditions for the lowest part of the freeboard correspond to the exiting conditions at 
the bed top. However, boundary conditions for the temperature of each individual solid species at the bed base are given 
by a convergence routine based on the heat fluxes transferred by convection and by conduction at  z = 0 . 

The basic system of differential equations resulting from the mass and energy balances throughout the bed and 
freeboard sections as well as the simulation strategy can be found in the forerunner work (de Souza-Santos, 1987) and 
in later versions (de Souza Santos, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998 and 1999). 
 
2.1. Energy balances and heat transfers in the bed section: original model 
 

The comprehensive simulation model takes into account many heat transfer modes occurring inside the equipment, 
involving different phases, namely between: 
• Gas in the bubbles and in the emulsion; 
• Solids and gas in the emulsion and in the freeboard; 
• Solids in the emulsion and in the freeboard; 
• Tube banks and gas in the bubbles and/or in the emulsion in the bed section; 
• Tube banks and gas in the freeboard section; 
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• Tube banks and solids in the bed and in the freeboard section; 
• Distributor plate and the bed; 
• Inner reactor walls and the bed; 
• Inner reactor walls and gas in the freeboard; 
• Outer reactor walls and the environment; 
• Inner tube walls in the bed or in the freeboard section and water (liquid or vapor) inside. 

The energy balance for a m-type solid (m = 1  for carbonaceous,  m = 2  for limestone and  m = 3  for inert) in the 
emulsion (bed section) is expressed by: 
 

 mSEWD,R,mSETD,R,

3

1n
nm,SESE,R,

3

1n
nm,SESE,C,mSEGE,C,mSEGE,M,mSE,Q,
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mS,mSE, d
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z

T
cF −−−−−−−= ∑∑
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where  FSE,m  is the solid mass flow (kg.s−1),  cS,m  its specific heat (J.kg−1.K−1) and  TSE,m  its temperature (K). The 
meaning of each energy source or sink term (W.m−1) on the right hand side of the Eq. (1) is: 
• EQ,SE,m =   energy released from solid surface chemical reactions; 
• EM,SEGE,m =   energy transferred between solids and gas due to mass transfer; 
• EC,SEGE,m =   energy transferred through convection between solids and gas; 
• EC,SESE,m,n =   energy transferred through convection between solids  m  and solids  n ; 
• ER,SETD,m =   energy transferred through thermal radiation between solids and tubes in the bed section; 
• ER,SEWD,m =   energy transferred through thermal radiation between solids and reactor walls in the bed section; 
• ER,SESE,m,n =   energy transferred through thermal radiation between solids m and solids n . 
A similar equation holds for solids in the freeboard. As a model simplification, gas phases in the emulsion and in the 
bubbles are assumed transparent to thermal radiation. Hence, there is no radiative heat transfer term such as  ER,SEGE,m . 
 
2.2. Radiative heat transfer between solids: original model 
 

Radiative heat exchange between the various solids in the emulsion is calculated as 
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where  σ  is the Stefan-Boltzmann constant and  dASE,m  is the total particle surface area in a differential bed section of 
length  dz . The “average” emissivity  SEε   is defined in terms of the area fraction  f″  and emissivity  εS  of the 

corresponding solid species, according to 
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The model assumes that the m-type particles are surrounded by particles of all types and therefore they “see” n-type 
particles through an area fraction  fn″ . In analogy, for the “reverse” radiative heat transfer it is possible to write 
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In order to establish a relationship between Eqs. (2) and (4), the definitions for  (dASE,m/dz) ,  (dASE,n/dz) ,  fm″  and  

fn″  should be evoked. In original model, these quantities are given by 
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where  SE  is the emulsion cross sectional area and  υE  the emulsion void fraction. For the m-type particles in the 
emulsion,  ASE,m  and  VSE,m  are their total surface area and total occupied volume respectively whereas  fm′  and  fm′″  
are their number and volume fractions in this order. In the model, these fractions are calculated as 
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Here,  ρS,m  is m-type solid density and  fm  is its corresponding mass fraction, obtained from the mass fraction referred 
to the particle size distribution (de Souza-Santos, 1987). 

After some algebraic manipulations, it is possible to demonstrate that 
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This equation is much like a “law of reciprocity for view factors”, commonly encountered in radiative heat transfer 
problems (Brewster, 1992 and Modest, 1993). An important mathematical consequence of inserting the above relation 
back into Eq. (2) and comparing the resulting equation to Eq. (4) is that 
 
 ER,SESE,m,n  =  − ER,SESE,n,m       ⇔       ER,SESE,m,n  +  ER,SESE,n,m  =  0 (9) 
 

The total radiative heat transfer  ER,SESE,m  concerning the m-type particles is the sum 
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Because of Eq. (10), at any bed position  z  the sum of all radiative heat transfer terms  ER,SESE,m  equals zero, i.e., 
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since the 9 terms taking part in the above double summation, either cancels each other or are identically null (which is 
the case of the 3 terms  ER,SESE,m,m ). 

The condition stated by Eq. (11) establishes a “conservation” of the thermal radiation exchanged among the solids. 
In other words, at a given position  z  in the bed, the local physical conditions (particle temperature, number fraction, 
area fraction, volume fraction) determine the amount of thermal radiation to be exchanged between particles. 
 
3. Radiative heat transfer in participating media 
 

As far as the computational program is concerned, it is assumed that Eq. (11) is a condition to be imposed by 
convergence. Such condition would also be applied in the improvements of the simulation regarding radiative heat 
transfer between solids. The new approach follows a two-flux model, which is incorporated to the simulation model. 
Therefore, the thermal radiation terms  ER,SESE,m  are conveniently redefined as to preserve Eq. (11). 
 
3.1. Thermal radiation within monodispersed participating media 
 

Radiative heat transfer with participating media is governed by an integro-differential equation known as the 
transfer equation. It represents the radiative energy balance on a differential volume element along a given line of sight. 
As sketched in Fig. (2), it provides a balance for the radiation intensity  I  (W.m−2.sr−1) as it travels through a distance  
d ��LQ�SDUWLFLSDWLQJ�PHGLD��7KUHH�SURFHVVHV�LQIOXHQFH�WKLV�EDODQFH��DEVRUSWLRQ��HPLVVLRQ�DQG�VFDWWHULQJ� 
 

 

Figure 2. Radiative intensity variation across a plane-parallel particulate system. 
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In order to preserve the basic structure of the original mathematical model and simulation program, axial symmetry 
was evoked. Therefore, the intensity  I  at any point becomes independent of the azimuth angle  ψ . However, it may 
still depend on the polar angle  θ  measured from the  z-axis. Following other investigators (Modest, 1993), isotropic 
scattering was assumed as well. Under all these assumptions and introducing  µ = cosθ  and  dz = d �FRVθ , the transfer 
equation for a plane-parallel media (composed by a single solid type) is expressed as 
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where  Ka  and  Ks  (m

−1) are respectively the absorption and scattering coefficients and  T = T(z)  is the local particle 
temperature. The quantity 
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is referred to as the incident radiation function and corresponds to the total intensity impinging on a point from all 
incoming directions, i.e., over the entire solid angle  Ω = 4π sr . Note that  I = I(z,θ)  and  dΩ = 2π senθ dθ , in 
accordance to the axial symmetry assumption. 

Consider a surface element whose outward normal is  n̂  , as sketched in Fig. (3). Hence, the radiative flux onto an 
orthogonal surface projection  dA⊥ = dA cosθ  is negative, whereas the radiative flux out of this surface element is 
positive. The net flux  q

r

  can be expressed in terms of incident and outgoing intensity as 
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Figure 3. Radiative heat flux into and out of an surface element. 
 

If energy balances are to be considered for the particulate media, attention should be assigned to the net radiative 
energy per unit volume and per unit time leaving a differential volume element in the bed. This quantity is represented 
by the divergence of the radiative flux vector, Eq. (14), and may be obtained by integrating Eq. (12) over the full  4π sr  
solid angle range. The result, demonstrated elsewhere (Brewster, 1992 and Modest, 1993), is 
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Independent absorption and scattering were also assumed. Thus, the particles interact with incident radiation 

without being influenced by surrounding particles. According to regime maps presented by Brewster and Tien (1982), 
Tien (1988), Brewster (1992) and Modest (1993), that is a very good approximation when applied to typical operations 
of fluidized bed equipments. Those maps are based on particle diameter, particle center-to-center distance and incident 
wavelength. As a result, absorption and scattering coefficients  Ka  and  Ks  are obtained by adding single-particle 
properties. As pointed by Shafey et al. (1993), considering usual thermal radiation wavelengths and particle sizes found 
in fluidized beds, geometric optics results can be employed. 

For a monodispersed fluidized bed of spherical opaque solids in the large particle limit, the expressions for 
absorption and scattering coefficients for a given solid species  m  are respectively expressed by (Brewster, 1992) 
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where  fV,SE,m  is the fraction of emulsion volume occupied by the m-type solids, whose diameter  dS,m  is supposed to be 

constant. It should be mentioned that this fraction do not correspond to the volume fraction mf ′′′  previously introduced. 

 
3.2. Thermal radiation within polydispersed heterogeneous participating media 
 

When the bed is composed by particles of different sizes, polydispersion effects take place. For a m-type solid, the 
supposed constant particle diameter  dS,m  in Eqs. (16) must be replaced by a mean diameter  d32,m , defined in terms of 
its corresponding radius  r32,m = d32,m / 2 , as suggested by Brewster (1992), 
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where   nm(r) = Nm(r) / VE   is the number of m-type particles per unit of emulsion volume, whose radius lies between  r  
and  r + dr . 

In the simulation program, the above integrals are numerically evaluated. At a given bed height  z , the total particle 
mass  Mm  obeys the following relations: 
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where  xm,i = Nm,i Mm,i / Mm  is the mass fraction of the  Nm,i  particles belonging to the i-th Tyler mesh opening. 
Assuming constant particle density  ρS,m , it follows that 
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Here,  i

~r   is the average radius of the i-th size interval. Then, a discrete evaluation of  r32,m  is 
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This result shows that the average diameter  d32,m  necessary for the calculation of absorption and scattering coefficients, 

corresponds to the very same average diameter  mS,d , as defined in most texts on fluidization theory (Kunii and 

Levenspiel, 1969 and Geldart, 1986), or 
 

 mS,

i i

im,
m,32

~

1
d

d

x
d ==

∑
 (21) 

 
Moreover, for each solid species  m, it is possible to relate the distinct volume fractions  fV,SE,m  (needed for the 

evaluation of optical coefficients) and  fm′″. If  VGE  and  VSE  are, respectively, the volume occupied by the gas phase 
and the solids in the emulsion, the total volume of emulsion is simply  VE = VGE + VSE  , and 
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where  fV,SE  is the fraction of the emulsion volume occupied by all particles. On the other hand, 
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and the desired relation is then obtained as 
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The absorption and scattering coefficients for a given solid type  m  in a monodispersed particulate media, Eqs. 

(16), may now be replaced by their polydispersion counterparts, or 
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Since volumetric fractions are independent and additive, emulsion bulk absorption and scattering coefficients are simply 
given by 
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However, the same rationale should be carefully applied to the emission term in the transfer equation. A non-linearity 
arises because distinct solid species may be at different temperatures and the emission depends on the fourth power of 
those temperatures. Having this in mind, Eq. (12) for a plane-parallel heterogeneous polydispersed emulsion becomes 
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where  Ka  and  Ks  are given by Eqs. (25) and (26). 
 
3.3. Radiative heat transfer between solids in the emulsion: two-flux model 
 

The directional dependence of the radiation intensity remains to be solved and flux models may be employed in 
order to simplify the problem. The two-flux model relies on a semi-isotropic distribution of the radiation intensity, 
namely 
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Integration of Eq. (27) over each range of  µ  results in the following differential equations: 
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Another consequence is that the incident radiation function  G  may now be evaluated as 
 

 )(2 −+ +π= IIG  (31) 

 
As an initial approach, the two-flux method was applied in the bed section in order to obtain an alternative of Eq. 

(10) for the radiative heat transfer rate  ER,SESE,m. Since  q
r

⋅∇   represents the thermal radiation balance within an 

emulsion volume element, the idea was to employ that term written for each solid species  m. It is then assumed that 
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where  SE  is the emulsion sectional area (including interstitial gas) at bed height  z . This equation represents a balance 

between emitted ( 4
m4 Tσ ) and incident (G) radiation for the m-type particles in an emulsion volume element of height 

equals to  dz . A schematic balance for a single particle is shown in Fig. (4). 
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Equations (31) and (32) show how solutions  I +(z)  and  I −(z)  are used to compute ER,SESE,m. Furthermore and as 
shown in Fig. (4), the thermal radiation balance is accomplished after integrating all involved intensities over a full  4π 
sr  solid angle. For that, the assumption  εS,m = αS,m  is applied. 
 

 
 
Figure 4. Thermal radiation absorption by and emission from a m-type single particle. 

 
3.4. Adaptation to the former simulation model: radiative equilibrium 
 

Applying the physical-mathematical condition stated by Eq. (11) to Eq. (32), the following result arises: 
 

 0
d

d3

1m

m
E

3

1m
mSESE,R, == ∑∑

== z

q
SE           ⇒          0

d

d

d

d3

1m

m ==∑
= z

q

z

q
     ,   z ≥ 0 (33) 

 
In the literature (Brewster, 1992 and Modest, 1993), this condition is referred to as radiative equilibrium and it is useful 
when thermal radiation is the dominant mode of heat transfer. Nevertheless, conduction and convection are incorporated 
as well into the heat source (or sink) term. As commented by Modest (1993), “the inclusion of a volumetric heat source 
allows the treatment of conduction and convection ‘through the back door’ ”. Therefore, the solution becomes an 
iterative process due to the mutual dependence among the temperature profiles and the heat source (sink) terms. 

If Eq. (33) is valid for all bed positions, it can be shown with the help of Eqs. (31) and (32), that  I +(z)  and  I −(z)  
are no longer independent, but related to each other according to 
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It should be mentioned that the above condition holds for the two-flux approximation. Therefore, only Eq. (29) should 
be included in the computational procedure. Temperature profiles of each solid species are found by solving Eq. (1). 
There, the summation  ∑ ER,SESE,m,n [Eq. (10)] should be replaced by  ER,SESE,m, as given by Eq. (32), or 
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Equations (29), (31), (32), (34) and (35) demonstrate the coupling suggested by Modest (1993). 
 
3.5. Boundary condition for the forward radiation intensity transfer equation 
 

Since all inlet particle temperatures  TSE,m(0)  are known, Eq. (34) applied at  z = 0  provides a condition for the sum  
I +(0) + I −(0) , namely 
 

 ∑π
σ=+ −+

m

4
mSE,ma,

a

)0(
12

)0()0( TK
K

II  (36) 

 
A further relation between these two quantities can be obtained with the help of an imaginary radiating gray surface 

at temperature  Tim , with emissivity  εim  and reflectivity  ρim . Such a surface lies just above the distributor plate, whose 
corresponding properties  Td ,  εd  and  ρd  are known as well. This upper surface may correspond to a first layer of the 
emulsion, as sketched in Fig. (5). Both surfaces are assumed to be diffusely emitting and reflecting opaque. This is a 
typical thermal radiation exchange problem between two infinite parallel flat surfaces facing each other. Writing the 
radiosities  Jd  and  Jim  for each surface and identifying the intensity  I+(0)  to the irradiation  Him , and the intensity  
I−(0)  to the irradiation  Hd  (which is reasonable, since the separation distance is very small), the following relations 
should hold (Goldstein Jr., 1988): 
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)]1)(1(1[

)1(
)0(

imd

4
imimd

4
dd

ε−ε−−π
σεε−+σε

=+ TT
I           and          

)]1)(1(1[

)1(
)0(

imd

4
ddim

4
imim

ε−ε−−π
σεε−+σε

=− TT
I  (37) 

 
 

 
 
Figure 5. Radiative heat transfer between two plane-parallel, gray and isothermal surfaces. 
 

As a principle, values for  εim  and  Tim  should be such that, after their substitution into the above equations along 
the corresponding distributor parameters, the intensities  I+(0)  and  I−(0)  do satisfy Eq. (36). Nevertheless, their 
definitions are unnecessary because few algebraic manipulations involving the above relations and Eq. (36) lead to the 
following boundary condition: 
 

 







ε−

ε
+

ε−
ε−

π
σ= ∑+ 4

d
d

d

m

4
mSE,ma,

ad

d

2
)0(

1

2

)1(2
)0( TTK

K
I  (38) 

 
which is independent of  Tim  and  εim . 

The distributor temperature  Td  is calculated by iterative process, which has been used since the early versions of 
the program (de Souza-Santos, 1987). The procedure is based upon an empirical correlation developed by Zhang and 
Ouyang (1984), as already mentioned. 
 
4. Concluding remarks 
 

As shown, the mathematical model for the radiative heat transfer between all solid species in the bed section of a 
fluidized bed has been reformulated. For this region, a new first-order ordinary differential equation was incorporated to 
the simulator. That equation governs the variation of the forward radiation intensity. Its solution allows the computation 
of thermal radiation exchange rates between particles in the emulsion. The associated boundary condition and auxiliary 
expressions were also implemented in the computational program. Numerical results are presented and assessed in next 
part of the paper. 
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