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Abstract. Composites are among the most important and frequently used materials. The determination of macroscopic
thermal properties of composites is of great engineering interest. It is frequent in the literature to calculate the effective
conductivity of composites assuming that the individual constituents have a perfect thermal contact. In reality, that is
not the case, and one has to account for the interfacial thermal resistance which is almost inevitably present between
the constituents. In this paper, we develop a new three-dimensional isoparametric finite-element discretization scheme to
treat the interfacial thermal resistance in composite materials. We demonstrate the validity and flexibility of our scheme
by effecting truly three-dimensional sample calculations of the effective conductivity of an ordered-array composite, for
which analytical results are known. The scheme presented here has the distinct advantage of being applicable to complex
and realistic microstructures.
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1. Introduction

Composite materials are relatively easy to fabricate, and are versatile with respect to mechanical and thermal
properties. As a consequence, they are among the most important and frequently used materials. The detailed
study of the local transport of heat in composite materials is an essentially impossible task, due to their
complex microstructures. Engineering analyses thus aim to determine the global, effective thermal conductivity
of composites in terms of their microstructures and relevant physical parameters.

Frequently, due to mathematical simplifications, the effective conductivity of composites is calculated assum-
ing that the individual constituents have a perfect thermal contact. In reality, perfect contact is not afforded
by standard manufacturing processes, and one has to account for the interfacial thermal resistance which is
almost always present between the constituents. In this paper, we develop a new three-dimensional isoparamet-
ric finite-element discretization scheme to treat the interfacial thermal resistance in composite materials. The
general scheme presented here has the advantage of being applicable to complex and realistic microstructures.

The paper is organized as follows. In section 2, we briefly review the pertinent literature. In section 3,
we describe the multiscale heat conduction problem in a composite material with interfacial thermal resistance
between the constituents, and write the appropriate continuous cell problem which has to be solved, to be able
to calculate the effective conductivity. In section 4, we present in detail our new three-dimensional isoparametric
finite-element discretization scheme to deal with the surface integral term which arises due to the interfacial
thermal resistance. In section 5, we demonstrate the validity and flexibility of our scheme by presenting the
results for a case study: we effect truly three-dimensional sample calculations of the effective conductivity of an
ordered-array composite, for which analytical results are known. Finally, we wrap up the paper with conclusions
and comments on future work.

2. Brief Literature Review

Comprehensive reviews of analytical and experimental techniques for the study of heat conduction in com-
posite materials are presented by Mirmira (1999), Mirmira and Fletcher (1999), and Furmarfski (1997). In
general, analytical (e.g., Hasselman and Johnson, 1987; Perrins et al., 1979) and phenomenological (e.g., Every
et al., 1992; Benveniste, 1987) treatments of heat conduction in composites are restricted to simple microstruc-
tures and dilute concentrations, or to the validity of self-consistent assumptions. Computational approaches,
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reviewed by Cruz (2001), are better suited to treat more complex geometries and phenomena relative to an-
alytical studies. Different numerical schemes have been employed to investigate heat conduction in composite
materials: finite elements (Matt and Cruz, 2001; Rolfes and Hammerschmidt, 1995; Cruz and Patera, 1995),
finite differences (James and Keen, 1985) and boundary elements (Ingber et al., 1994). An alternative to exact
analytical treatments is statistical bound methods, reviewed by Torquato (1991). The objective of these meth-
ods is to determine upper and lower bounds for the effective property of interest, based on a description of the
composite microstructure via correlation functions. In all these studies, the effective thermal conductivity is
determined in terms of the microstructure and individual physical properties of the constituents.

Because most fabrication processes of composite materials do not ensure a perfect thermal contact between
the constituent phases, the effective thermal conductivity also depends on the interfacial thermal resistance, or
contact resistance, between the continuous (matrix) and the dispersed phases. This interfacial resistance is due
to poor chemical and/or mechanical adherence, caused by different thermal expansion coefficients of the phases,
and the presence of roughness, waving and impurities at the interface (Cheng and Torquato, 1997; Lipton and
Vernescu, 1996; Fletcher, 1988). Physically, the contact resistance tends to thermally insulate the dispersed
phase, and may dramatically reduce the conduction capacity of the composite material. Despite the significant
influence of the contact resistance on the effective conductivity of the composite, the authors are unaware of
any three-dimensional numerical study which attempts to account for this effect.

The interface between the phases of a composite is usually modeled as a surface of zero thickness, and
the contact resistance is defined as the ratio of the temperature jump to the heat flux at the interface. The
evaluation of the contact resistance between surfaces of various geometries, finish, materials and modes of
deformation of their asperities and substrates is the subject of a large number of investigations (Fletcher,
1988). Previous analytical (Cheng and Torquato, 1997; Lipton and Vernescu, 1996; Auriault and Ene, 1994;
Hasselman and Johnson, 1987), phenomenological (Every et al., 1992; Benveniste, 1987), and computational
(Rocha and Cruz, 2001) studies of heat conduction in composite materials, however, regard the interfacial
resistance as an independent (prescribed) uniform parameter; here, though not a necessary assumption, we
adopt this same approach. Specifically, we extend in two important directions the finite-element computational
procedure recently developed by Rocha and Cruz (2001), to treat conduction in unidirectional composites
with contact resistance: first, we add one more dimension, and second, we employ isoparametric quadratic
discretization. While the implementation of this new procedure is significantly more complicated, it can be
applied to realistic three-dimensional geometries of composite materials.

3. The Continuous Cell Problem

The problem considered here is heat conduction in a multiscale periodic composite, €2, composed of a
dispersed phase of geometric domain 4 and thermal conductivity k4, and a continuous phase of geometric
domain (), and thermal conductivity k.. There is a uniform interfacial thermal resistance r, or interfacial
thermal conductance h = 1/r, between the phases. The conductivity ratio « is defined as o = kq/k. , kq , ke > 0.
It is assumed that the constituent phases are solid, homogeneous and isotropic. An external temperature
gradient of magnitude AT/L is imposed over the macroscale L of ). The smallest length scale of Q is the
characteristic size d of the dispersed phase, called the microscale. The mesoscale A (d < A <« L) is the
characteristic length of the periodic cell, Q,., of volume \?; we denote by Q.. and €, 4 the subdomains of
Q,. occupied by the continuous and dispersed phases, respectively. The parameter ¢ = A/L is the ratio of
two natural length scales of the problem, and is assumed to be much less than unity. The concentration ¢, or
dispersed-phase volume fraction, is defined as the ratio of the volume of Q. 4 and the volume of €, .

The continuous formulation of the heat conduction cell problem in 2. is obtained from the original multiscale
problem in Q by applying the method of homogenization (Auriault and Ene, 1994; Furmanski, 1997; Auriault,
1991; Bensoussan et al., 1978). Rocha and Cruz (2001) have derived in detail the general nondimensional
variational formulation of the cell problem for finite values of the Biot number, Bi = h\/k. = O(e?). For
our purposes in this paper, it suffices to assume that the composite is isotropic. Defining x as the periodic
cell temperature field, using A and AT as the characteristic length and temperature scales, respectively, and
adopting the summation convention over repeated indices, the weak form of the cell problem for an isotropic
composite is given by

¢ ov® / ox¢ ov? / ) ov® /
dy + ——d + [ Bijw ds = dy +
/Qpc,cayj dy; Y Qpe,d dy; Oy, r e b Qe OU1 Y Q

pc,c

as 1dy Yo €Y (Qpe) (1)

pe,d
In Eq. (1), the space coordinates are (y1,ys2,y3) =y, the differential surface and volume elements are, respec-
tively, ds and dy = dy,dy,dys, the function space Y is defined as Y () = {w|w)q,. . = w* € H} 24 (Qpec)wia,. 4,
=w € H#(QpC d);wlr = s € R, fQ wedy + fQ wldy = 0}, and H#(Qpc) is the space of all A-triply
perlodlc functions in §2,. for which both the function’ and derivative are square-integrable over €2,.. The inter-
face between the phases inside the periodic cell is denoted by T', and the square-bracket notation [w]r is used
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to represent the discontinuity (w® — w?) of the function w at I'. Finally, due to the assumed isotropy of the
composite, the external temperature gradient is arbitrarily set in the y;-direction. The surface integral term on
the left-hand side of Eq. (1) accounts for the effect on the field x of the contact resistance at the interface T'.

Once the temperature field y of Eq. (1) has been found for the particular cell configuration of the composite,
the corresponding scalar effective thermal conductivity, k., can be computed from the following expression
(details in Rocha and Cruz, 2001)

1 Ix°© ox?
S =RV G LRy A G S & 2
|€pec| { Qpe,c oy Y Qpe.a oy Y @

where [Q,.| = fﬂpc dy is the nondimensional volume of the periodic cell (here equal to 1), and k. is nondimen-

sionalized with respect to k..
4. Three-Dimensional Isoparametric Finite-Element Discretization Scheme

In this section, we proceed to describe in detail our three-dimensional isoparametric finite-element discretiza-
tion scheme to treat the surface integral term in Eq. (1), which arises due to the presence of an interfacial thermal
resistance between the constituent phases of the composite material. Discretization of the cell problem, with its
volume terms and the surface integral term, is effected using isoparametric 10-node tetrahedra (Hughes, 1987).
We know from finite element theory that the discretization of the variational form of a boundary value problem
leads to an equivalent discrete linear system of algebraic equations. This set of linear algebraic equations may
be solved by iterative procedures: the conjugate gradient method (e.g., Matt and Cruz, 2001), appropriate when
the global system matrix is sparse, symmetric and positive-definite; the minimum residual method (Paige and
Saunders, 1975), appropriate when the global system matrix is sparse and symmetric.

For our purposes, the field variable of interest inside the periodic cell is the periodic temperature field x(y),
x(y) € Y(Qpc). In the following, we first describe the main steps to discretize the two volume terms in the cell
problem, and then the finite-element discretization of the surface integral term. We can rewrite Eq. (1) in the
following manner

a(v,x) +br(v,x) = £(v) Vv €Y (D), 3)

where a(v X fQ ) (0x/0y;) (0v/dy;)dy and br(v,x) = fF Bi[v]r [x]r ds are symmetric bilinear forms,
fQ Bv/ayl) dy is a linear functional, and f(y) =1ify € Qpcc, and f(y) =aif y € Qpcq.

The ﬁmte element discretization begins with the subdivision of €,. into N, nonoverlapping conforming
tetrahedra 7y, k = 1,2,..., N.. Therefore, the periodic cell domain €, is transformed into its discrete equiv-
alent Q,., = UM< D(7;), which is the union of the domains D(7;) associated with each tetrahedron 7,
k =1,2,...,N.. In the Galerkin approximation (Hughes, 1987), we expand both the test, x(y), and the
weight, v(y), functions as linear combinations of the interpolation functions, ¢;(y), ¢ = 1,2,..., Ny, where
Ny, is the total number of global nodes. The interpolation functions are constructed such that ¢;(y;) = d;;,
1,7 =1,2,...,Ng,, and y; is the set of coordinates (y1,y2,ys) of node j. The Galerkin approximation to Eq.
(3) can thus be expressed as

a(vn, xn) + br(vn, xn) = L(vn) Yon € Ya(Qpe,n), (4)

where y, and vy, are, respectively, the discrete approximations to x and v. We employ quadratic tetrahedra,
such that the interpolation functions, ¢;(y), i = 1,2,..., Ng,, are the usual Lagrangian interpolants of second
order (Hughes, 1987); Y3, (Qpe,n) = Y (Qpen) N {wiz, € Po(Ti)}, and Pa(Ti), k = 1,2,..., N, is the space of
all polynomials of degree 2 defined on tetrahedron 7. In other words, we use the same interpolation functions
(quadratic) for the approximation of both the solution and geometry (second order isoparametric mapping).
It is important to note that I in Eq. (4) is strictly I'j, , the discrete quadratic approximation to the interface;
however, henceforth we use I' for simplicity of notation.

As exposed in Rocha and Cruz (2001) and in Matt and Cruz (2001), to account for the jumps of the
temperature field and of the weight function at the interface, each global — corner and midside — node on
the interface I must store two values of xj: one corresponding to the continuous phase, x§|r, and the other
corresponding to the dispersed phase, X%h«, such that the jump [x]r is given by x5 |r — Xﬁﬂp. Therefore, as
shown schematically in Fig. (1), we must first duplicate the corner and midside nodes on T', and then modify
accordingly the connectivity of the tetrahedra which have at least one node on I'. For example, note that in
Fig. (1) the corner nodes A, A’ are in fact the same geometric node, however the degrees of freedom associated
with these nodes, respectively x4 and x4/ are, in general, different from each other.
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Figure 1: Duplication of degrees of freedom associated with global mesh nodes on the interface T'.

4.1. Global nodes not on the interface

For the global — corner and midside — nodes not on I', we express the temperature field, xj, and the weight
function, vy, in Eq. (4) in terms of the usual Lagrangian interpolants of second order (Hughes, 1987). For these
global nodes, the jumps [x] and [vs] are equal to zero; therefore, br(vn, xn) = 0. Evaluating the resulting
integrals numerically by Gaussian quadrature with five points (Bathe, 1982), we then obtain, for each degree of
freedom associated with a global node not on I', the expressions for the entries in the global system matrix /C
(a(¢i, ¢j)) and in the global forcing vector F (£(¢;)).

4.2. Global nodes on the interface

For the global — corner and midside — nodes on I', we use discontinuous weighting functions vy, € Y3, (Qpe,n),
for which the jump s at the interface is nonzero, [v,]r = s = 8 € IR*. The contribution to br(vp, x1), due to
the degree of freedom at a global node on I'; is dependent on the Biot number and on the areas of the curved
tetrahedra faces lying on T' and sharing the global node. For example, for the generic corner node A (whose
degree of freedom is x 4) in Fig. (1), situated to the continuous phase side of T and shared by, say, six tetrahedra,
the contribution due to y 4 depends on the areas of the curved surfaces Sapc, Sacp, Sape, Saer, Sarc and
Sacp. For the generic midside node P (whose degree of freedom is xp) in Fig. (1), situated to the continuous
phase side of I" and (always) shared by two tetrahedra, the contribution due to xp depends on the areas of the
curved surfaces Sppc and Sacp. We remark that only the tetrahedra which have exactly three corner nodes
on the interface, will contribute to the term br(vn, xn).

The procedure to incorporate the contributions due to the term br(vp, x5) in Eq. (4) to the global stiffness
matrix K will be now described, first for the generic corner node A, and then for the generic midside node
P. The weighting function for A is vg = NG € Y4 (Qpe,n), where N§ is the standard quadratic interpolation
function for A restricted to €., . For implementation simplicity, we choose 5 = 1, such that [va]r =1 (Rocha
and Cruz, 2001; Matt and Cruz, 2001). Now, introducing the function v4|..r = N§|e,r, which is the restriction
of v4 to tetrahedron e (e is 7y for some k, k = 1,2,..., N,.) and to the interface T, the restriction of the discrete
field xy, to tetrahedron e and to I', x§|c.r, can then be written as

Xiler = xaNjler + xBNEler + xeNEler + XuNyfler + XNNFler + xPNpler (5)

where x4, xB, X, XM, xn and xp, are, respectively, the values of xf at the global nodes A, B, C, M, N
and P. The term br(vp, xs) is evaluated through numerical integration of the discontinuities of v, and xy
across I'; therefore, to compute the contribution to br (v, xr) of the discontinuities across the curved surface
of tetrahedron e on I', S4pc, we must also consider the tetrahedron e’ to the dispersed phase side of I', which
shares with e the curved surface Sapc (or, equivalently, Sa/p/¢:). From our definition of vg4, it follows that
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vAlerr = 0. Similarly to Eq. (5), we have for the function y, restricted to tetrahedron e’ and to the interface T',

e+ XN'Nf\lp lerr + foNfﬁ/ lerr s (6)

d d d d d
Xalerr = xarNaler + X Ngilerr + xar Névlenr + xar N

where N, |or, N&|er, N |er, N&ler, N&|er and N4, | are, respectively, the standard quadratic
interpolation functions for A’, B’, C’, M’, N’ and P’ in the dispersed-phase domain, restricted to tetrahedron
e’ and to I'. From Egs. (5) and (6) and from the definition of the function v4|. r, we are now able to compute
the jumps of vy and xj across I'cer, which is the curved surface of tetrahedron e on I' (or, equivalently, the
curved surface of tetrahedron e’ on I'):

['UA]FES/ — vA|e,F _UA|e’,F = vA|e,F = N2|6,F7 (7)

e, T+ XM-N'J?ﬂe,F + XNN’]We,F + XPNJCD|67F -
Xa NG er = XBNger — XarNE e — xaeNipler = xv N e — xprNgder . (8)

[Xulr.., = xaNiler +xBNEler + X NE

It follows that the contribution to br(vp, xp) due to the discontinuities of v;, and x}, across the curved surface
Sapc shared by tetrahedra e and ¢’ on T is given by

/ Bilvalr, , [xnlr,., ds = Bi(XA/ Niler Niler dS+XB/ Niler Nglerds +
r.., r.. r..

ee

Xc/ Nfﬂe,r./\fé e,FdS+XM/ Nﬂeyr/\/fﬂe,rds—‘rx]v/ N§|671‘Nﬁ, er ds +
FCC/ FEE/ Fee’

d
e,I’ NB’ |5/7[‘ dS -

d
xp | NSler Nlords — xa / NSler N lorp ds — x0 / N
Fee/ Fee/

T .

d
e, NN’ |e’,F ds —

d
xer | NSler N oo ds — xa / N
FCC’

FEE/

d
e,I‘NM/|e’,F dsfo// Nj
FCCI

[ Niler Nl ds). ©
For the corner node A depicted in Fig. (1), five more equations similar to Eq. (9) must be written for the
contributions to br(vp, xr) due to the discontinuities of vy, and yj across the curved surfaces, on I', shared by
tetrahedra f and f’, g and ¢’, h and I/, ¢ and ¢/, and j and j'.

Referring to Fig. (1), the weighting function for the midside node P is vp = SN§ € Y, (Qpe,n), where again
N is the usual quadratic interpolation function for P restricted to Q. .. Defining the function vp|er = N§ler
as the restriction of vp to tetrahedron e and to the interface I', the restriction of the discrete field x; to
tetrahedron e and to I', x§ |c.r, can then be written as

Xiler = xaNfler + xBNEler + XcNEler + xmNifler + XNNRler + XPNpler - (10)

As for corner node A, to compute the contribution to br(vg, xp) of the discontinuities across the curved surface
of tetrahedron e on I', S4pc, we must also consider the tetrahedron e’ to the dispersed phase side of I', which
shares with e the curved surface S4pc. From our definition of vp, it follows that vple,r = 0. Similarly to Eq.
(10), we have for the function yy, restricted to tetrahedron e’ and to the interface T,

Xiler = xaNG e + xpNiler + XN |er + X Nipler + Xv N e + xp N enr - (11)

Computing the jumps of v, and y; across I'.er, and calculating the contribution to br(vh, xn) due to the
discontinuities of v;, and yj across the curved surface S4pc shared by tetrahedra e and ¢’ on I', we have

J

Bi[vp]r,, [X#]r,, ds = Bi (XA NEler Nilerds + xB NEler Ngle,r ds +
Feel Feel

ee’

X [ Npler Nelrds+xar [ Nplor Niflerds+xy [ Npler Al ds +
FEE/ FEC/ FEE/
d d
xp [ NplerNilerds —xar [ Npler Nirlerds —xp | Npler Npilenr ds —
Feel Fee/ Fee/
d d d
xcr | Npler Néilenr ds — xar / Npler Niplenr ds — xn / Npler Nyilenr ds —
FCC/ Fce/ FEC/
d
o [ Nplor Al ds). (12)
FE:E:,
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For the midside node P depicted in Fig. (1), one more equation similar to Eq. (12) must be written for the
contribution to br(vp, xn) due to the discontinuities of v, and X, across the curved surface, on I', shared by
tetrahedra f and f’.

The calculation procedure described above (for corner node A and midside node P) to determine the con-
tributions to br(vp, xn) of the discontinuities of v;, and x}, across the curved surfaces on I' that share the same
corner or midside node, must be repeated for all the other corner and midside nodes at the interface. All the
resulting surface integrals, such as those in Egs. (9) and (12), can be calculated using numerical integration
techniques (Hughes, 1987), and are related to the areas of the curved surfaces involved. In this work, we use
Gaussian quadrature (Bathe, 1982).

Finally, such contributions to br(vp, x7) must be summed to a(¢;, ¢;), 4,7 = 1,2,..., Ngy , at the appropriate
entries of the global system matrix /L. For example, in the line of IC corresponding to degree of freedom x4,
we must sum contributions to entries K a4, Kaa, Kan, Kap, Kac, Kacrs Kap, Kapr, Kag, Kag, Kar,
Kar, Kags Kacrs Kams Kanvrs Kap, Kaprs Kar, Karr, Kar, Karr, Kav, Kave, Kag, Kagr, Kan, Kanv,
/CAQ, ICAQ/, Kas, Kas', Kav, Kavr, Kaw, Kawr, Kak and Kags. In the line of IC corresponding to degree
of freedom x p, we must sum contributions to entries Kpp, Kppr, Kpa, Kpymr, Kpn, Kpne, Kpr, Kprr, Kpg,
Kpg', Kpa, Kpa, Kpp, Kpp', Kpc, Kpcr, Kpp and Kpp,. These contributions are proportional to the
Biot number Bi, such that the resulting global system matrix K*, although still symmetric, is not necessarily
positive-definite for arbitrary values of Bi. Of course, the number of tetrahedra sharing a corner node on T’
varies in an unstructured 3-D finite-element mesh, and the procedure described above can easily accomodate
such variations. The number of tetrahedra, with exact three corner nodes on I', that share one corner node on
I" ranges from four to seven in our 3-D mesh generation procedure using NETGEN (Schoberl, 2001).

The resulting linear system of algebraic equations can be written as

K'x, = F. (13)

where X, is the vector of unknown values of the field y,. The uniqueness condition, given in continuous form
in the definition of the space Y (€,.), is imposed discretely by requiring that X, have zero algebraic average.
The system given by Eq. (13) is iteratively solved by the minimum residual method, described in detail by Paige
and Saunders (1975), which is suitable for symmetric sparse systems of linear equations. The iteration proceeds
until the square of the ratio of the Euclidean norm of the residual to the Euclidean norm of the initial residual
falls below a user-prescribed tolerance, o2.

Finally, after numerical determination of the field x , the numerical value of the effective thermal conduc-

tivity, kY, is computed by substituting x;, for x in Eq. (2),

N 1 / Oxn
= 1 - = 14
k; T meh(y) n dy , (14)

where fj,(y) = 1 for tetrahedra inside the matrix domain, and f,(y) = « for tetrahedra inside the dispersed-
phase domain.

5. Case Study

In this section, in order to demonstrate the validity and flexibility of our scheme, we present sample numerical
results for a particular case study: we effect truly three-dimensional calculations of the effective conductivity
of the simple cubic array of spheres. Our numerical results, kY, are then compared and validated against
the (semi-)analytical results obtained by Cheng and Torquato (1997), kST. The case study and associated
computations are described below.

Table 1: Values of the effective conductivity for fixed values of ¢, o, and mesh spacing.

¢ =0.20, o = 2, mesh spacing set to 0.10
Bi | kST kY
0.01 | 0.7280 0.7286
10 1.054 1.056
100 | 1.145 1.147

Finite element solution of the cell problem, Eq. (1), in a particular domain requires three steps: geometry and
mesh generation, finite element discretization and solution of the resultant linear system of algebraic equations.
The physical domain for our case study is the periodic cell €2, for the simple cubic array of spheres, composed
of a cube and a geometrically centered sphere, as illustrated in Fig. (2). The semi-automatic procedure to
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el

Fig. 2: Geometry of the periodic cell for the simple cubic array of spheres and associated Cartesian coordinate
system.

generate unstructured quadratic tetrahedral meshes inside €2,. is an adaptation of the one described in detail
by Matt and Cruz (2001), and is based on the software NETGEN (Schéberl, 2001). For illustrative purposes,
a vertical y1-yo cut of a tetrahedral mesh generated with a uniform mesh spacing of 0.05 is shown in Fig. (3),
for the concentration value ¢ = 0.20. As described in section 4, the system of equations resulting from the
discretization process for the simple-cubic cell problem is solved using the minimum residual method.
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Fig. 3: Vertical y;-yo cut of a tetrahedral mesh generated in the simple-cubic cell for ¢ = 0.20 and mesh
spacing of 0.05 (the tetrahedra inside the sphere have been removed for better visualization).

Table 2: Values of the effective conductivity for fixed values of ¢, o, and Bi.

c=0.20, a =2, Bi = 0.01

mesh spacing | ST EN
0.10 0.7280 | 0.7286
0.05 0.7280 | 0.7283
0.04 0.7280 | 0.7282

In Tables 1 and 2 we show the computed values kY and the corresponding values kT (Cheng and Torquato,
1997) for the following specific data: concentration ¢ = 0.20, conductivity ratio a = 2, and Biot number
Bi € {0.01,10,100}. All the results have been obtained using the tolerance o = 10~* and (coarse) uniform
mesh spacings. The chosen values of o and mesh spacings ensure: (i) that the meshes generated for the case
study possess no sliver elements (Batdorf et al., 1997), and (ii) that the numerical results are correct to 3-4
significant digits. First, we observe in Table 1 that the computed values kY agree well with those of Cheng
and Torquato (1997) even for a coarse mesh spacing, for all values of Bi. And second, we observe in Table 2
that kY approaches kST as the uniform mesh spacing decreases, which demonstrates the success of our scheme
implementation.
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6. Conclusions

We have successfully developed a new three-dimensional isoparametric finite-element discretization scheme
to treat the interfacial thermal resistance in composite materials. We have demonstrated the validity and
flexibility of our scheme by effecting truly three-dimensional sample calculations of the effective conductivity of
an ordered-array composite, for which reference results are known. The scheme presented here, compared to
previous approaches, has the distinct advantage of being applicable to complex and realistic microstructures,
such as transversely-aligned short-fibers (Matt, 2003). It is thus expected that the scheme in hand will have
a much greater potential to more closely reproduce experimental findings (e.g., Mirmira and Fletcher, 1999;
Every et al., 1992).
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