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Abstract. We present, for the SUPG formulation of inviscid compressible flows, stabilization parameters defined based
on the element-level matrices. These definitions are expressed in terms of the ratios of the norms of the relevant matrices.
They take into account the flow field, the local length scales, and the time step size. We compare the performance of
these stabilization parameters, accompanied by a shock-capturing parameter introduced earlier, with the performance
of a stabilization parameter introduced earlier, accompanied by the same shock-capturing parameter. We investigate the
performance difference between updating the stabilization and shock-capturing parameters at the end of every time step and
at the end of every nonlinear iteration within a time step. We also investigate the influence of activating an algorithmic
option that was introduced earlier, which is based on freezing the shock-capturing parameter at its current value when a
convergence stagnation is detected.
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1. Introduction

Some of the most well-established and widely-used stabilized formulations in finite element flow computations
are the streamline-upwind/Petrov-Galerkin (SUPG) formulation for incompressible flows (Hughes and Brooks,
1979), SUPG formulation for compressible flows (Tezduyar and Hughes, 1982; Tezduyar and Hughes, 1983),
and pressure-stabilizing /Petrov-Galerkin (PSPG) formulation for incompressible flows (Tezduyar, 1991). The
SUPG and PSPG formulations prevent numerical oscillations and other instabilities in solving problems with
high Reynolds and/or Mach numbers and shocks and strong boundary layers, as well as when using equal-order
interpolation functions for velocity and pressure and other unknowns. They act without introducing excessive
numerical dissipation. Because its symptoms are not necessarily qualitative, excessive numerical dissipation is
not always easy to detect. This concern makes it desirable to seek and employ stabilized formulations developed
with objectives that include keeping numerical dissipation to a minimum. It was pointed out in Tezduyar et al.,
1993 that these stabilized formulations also substantially improve the convergence rate in iterative solution of
the large, matrix systems. Such matrix systems are solved at every Newton-Raphson step in iterative solution
of the coupled nonlinear equation systems generated at every time level of a simulation.

The SUPG formulation for incompressible flows was first introduced in Hughes and Brooks, 1979. The
SUPG formulation for compressible flows was first introduced, in the context of conservation variables, in a
NASA Technical Report by Tezduyar and Hughes, 1982 and an ATAA paper by Tezduyar and Hughes, 1983.
After that, several SUPG-like methods for compressible flows were developed. Taylor-Galerkin method (Donea,
1984), for example, is very similar, and under certain conditions is identical, to one of the SUPG methods
introduced in Tezduyar and Hughes, 1982 and Tezduyar and Hughes, 1983. Another example of the subsequent
SUPG-like methods for compressible flows in conservation variables is the streamline-diffusion method described



in Johnson et al., 1984. Later, following Tezduyar and Hughes, 1982 and Tezduyar and Hughes, 1983, the SUPG
formulation for compressible flows was recast in entropy variables and supplemented with a shock-capturing
term (Hughes et al., 1987). It was shown in ASME paper by Le Beau and Tezduyar, 1991 that, the SUPG
formulation introduced in Tezduyar and Hughes, 1982 and Tezduyar and Hughes, 1983, when supplemented
with a similar shock-capturing term, is very comparable in accuracy to the one that was recast in entropy
variables. Later, 2D test computations for inviscid flows reported by Le Beau et al., 1993 showed that the
SUPG formulation in conservation and entropy variables yielded indistinguishable results.

The PSPG formulation for the Navier-Stokes equations of incompressible flows, introduced in Tezduyar,
1991, assures numerical stability while allowing us to use equal-order interpolation functions for velocity and
pressure. An earlier version of this stabilized formulation for Stokes flow was reported in Hughes et al., 1986. A
recently introduced SUPG formulation for compressible flows in augmented conservation variables (Mittal and
Tezduyar, 1998) leads to a proper incompressible flow formulation in the limit as the Mach number is taken to
ZEro.

A stabilization parameter that is almost always known as “7” is embedded in the SUPG and PSPG formu-
lations. Careful selection of 7 plays an important role in determining the accuracy of the formulation. This
parameter involves a measure of the local length scale (also known as “element length”) and other parameters
such as the local Reynolds and Courant numbers. Various element lengths and 7s were proposed starting with
those in Hughes and Brooks, 1979 and Tezduyar and Hughes, 1982 and Tezduyar and Hughes, 1983 , followed
by the one introduced in Tezduyar and Park, 1986, and those proposed in the subsequently reported SUPG and
PSPG methods. In this paper, we will call the SUPG formulation introduced in NASA Technical Report Tez-
duyar and Hughes, 1982 and ATAA paper by Tezduyar and Hughes, 1983 for compressible flows “(SUPG)s2”,
and the set of 7s introduced in conjunction with that formulation “75,”. The stabilized formulation introduced
in Tezduyar and Park, 1986 for advection-diffusion-reaction equations included a shock-capturing term and a
7 definition that takes into account the interaction between that shock-capturing term and the SUPG term.
That 7 definition, for example, precludes “compounding” (i.e. augmentation of the SUPG effect by the shock-
capturing effect when the advection and shock directions coincide). The 7 used in Le Beau and Tezduyar, 1991
with (SUPG)sgs is a slightly modified version of 7z,. A shock-capturing parameter, which we will call in this
paper “d,,”, was embedded in the shock-capturing term used in Le Beau and Tezduyar, 1991. Subsequent minor
modifications of 74, took into account the interaction between the shock-capturing and the (SUPG)sgs terms in
a fashion similar to how it was done in Tezduyar and Park, 1986 for advection-diffusion-reaction equations. All
these slightly modified versions of 73, have always been used with the same d,,, and we will categorize them in
this paper all under the label “75.00p "

Recently, new ways of computing the 7s based on the element-level matrices and vectors were introduced
in Tezduyar and Osawa, 2000 in the context of the advection-diffusion equation and the Navier-Stokes equa-
tions of incompressible flows. These new definitions are expressed in terms of the ratios of the norms of the
relevant matrices or vectors. They automatically take into account the local length scales, advection field and
the element-level Reynolds number. Based on these definitions, a 7 can be calculated for each element, or even
for each element node or degree of freedom or element equation. It was also shown in Tezduyar and Osawa,
2000 that these 7s, when calculated for each element, yield values quite comparable to those calculated based
on the definition introduced in Tezduyar and Park, 1986. In conjunction with these stabilization parameters,
in Tezduyar, 2001, a Discontinuity-Capturing Directional Dissipation stabilization was introduced as a potential
alternative or complement to the LSIC (least-squares on incompressibility constraint) stabilization. A second
element length scale based on the solution gradient was also introduced in Tezduyar, 2001. This new element
length scale would be used together with the element length scales already defined (directly or indirectly) in Tez-
duyar and Osawa, 2000. New stabilization parameters for the diffusive limit were introduced in Tezduyar, 2002.
These new parameters are closely related to the second element length scale that was introduced in Tezduyar,
2001. That second element length scale can be recognized in Tezduyar, 2002 as a diffusion length scale.

It was pointed out in Tezduyar and Osawa, 2000 and Tezduyar, 2001 that the 7s to be used in advancing the
solution from time level n to n+ 1 (including the 7 embedded in the LSIC stabilization term, which resembles a
discontinuity-capturing term) should be evaluated at time level n (i.e. based on the flow field already computed
for time level n), so that we are spared from another level of nonlinearity.

In this paper, we apply the 7 definitions based on the element-level matrices to the (SUPQG)gs formulation
introduced in Tezduyar and Hughes, 1982 and Tezduyar and Hughes, 1983 for inviscid compressible flows,
supplemented with the shock-capturing term (with §,,) introduced in Le Beau and Tezduyar, 1991. Our studies
here include performance comparisons between these 7s (with dy,) and a Tgomon (With d;) and comparisons
between evaluating these 7s and d,; at time level n and at (every nonlinear iteration of) time level n + 1. We
also here test the influence of activating the convergence-detection dy,-freezing option introduced in Catabriga
and Coutinho, 2002. With that option, when a convergence stagnation is detected, d,, is frozen at its current
value.



2. Euler Equations

The system of conservation laws governing inviscid, compressible fluid flow are the Euler equations. These
equations, restricted to two spatial dimensions, may be written in terms of conservation variables U = (p, pu, pv, pe),
as

Ui+ Fou+F,, =0 on Qx[0,7T] 1)

where F, and F, are the Euler fluxes given elsewhere Hirsh, 1992, {2 is a domain in R? and T is a positive real
number. We denote the spatial and temporal coordinates respectively by x = (z,y) € Q and ¢ € [0,T], where
the superimposed bar indicates set closure, and I' is the boundary of domain 2. Here p is the fluid density;
u = (ug, uy)T is the velocity vector; e is the total energy per unit mass. We add to equation (1) the ideal gas
assumption, relating pressure with the total energy per unit mass and kinetic energy. Alternatively, equation
(1) may be written as,

U;+A,U,+A,U,=0 on Qx[0,T] (2)
where A; =

%FI‘} . Associated to equation (2) we have proper boundary and initial conditions.
3. Stabilized formulation and stabilization parameters

Considering a standard discretization of Q into finite elements, the (SUPG)g2 formulation for the Euler
equations in conservation variables introduced by Tezduyar and Hughes, 1982 and Tezduyar and Hughes, 1983

is written as,
h
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where W" and U", respectively the discrete weighting and test functions, are defined on standard finite element
spaces. In (3) the first integral corresponds to the Galerkin formulation, the first series of element-level integrals
are the SUPG stabilization terms, and the second series of element-level integrals are the shock-capturing
terms added to the variational formulation to prevent spurious oscillations around shocks. The shock-capturing
parameter, dq,, is evaluated here using the approach proposed by Le Beau and Tezduyar, 1991,
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We define the following element-level matrices:
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Considering the standard finite element approximation we have:

U" =Nv (9)
W' =Nc (10)
U"% =Na (11)



where v is the vector of nodal values of U (depending on time only), ¢ is a vector of arbitrary constants, a is the

time derivate of the v (a = ‘fj—;’) and N is a matrix containing the space dependent shape functions. Restricting

ourselves to linear triangles, the element shape functions may be represented in matrix form as,

N¢=[ NiI N,I NsI ] (12)
where N1, Ny e N3 are the element shape functions and I is the identity matrix of order 4. The shape functions
for linear triangles in natural coordinates are:

Ni=§ No=n N3y=1-&—1 (13)
It is useful to define the discrete local (element) gradient operator as,
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Then, we may write B, and B, for the linear triangle as,

1

Bw = 2Ae |: y23I y311 y121 ] (15)
1
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where A° is the area of the element, z;; = z; — z;, and y;; = y; — y; for 4,5 = 1,2,3. Substituting the
above relations into the weak formulation and proceeding in the standard manner we may arrive to the element
matrices:
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where m', m? and m? are given by,

m' = y3A, + 7324,
m® =y31 A, + 7134, (21)
m® =y2A, + T2 Ay

c= / (NTA,B, + NTA,B,)dQ° (22)
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and the submatrices ¢!, ¢? and c® are,

c' = yA, +T32A,
c? =ynA; + 7134, (24)
S =ynA, + 1A,
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The submatrices in Eq.(26) are:

Bio = y23(ys1Ags + T13A5y) + T32(Y31Ays + T13A4y) (27)
Bis = y23(y12Ass + T21Asy) + T32(y12Ays + T21Ayy) (28)
Bo1 = y31(y23Ass + T32A4y) + T13(Y23 Ay + T32A ) (29)
Bos = y31(y12A0s + 221 Azy) + T13(Y12A Y + T21Ayy) (30)
Bs1 = y12(y23Ass + T32A4y) + 221 (Y23 Ay + T32Ay,y) (31)
Bix = yi12(ys1Azs + T13A4y) + 221 (Y31 Ay + T13Ayy) (32)
B = —(Bi2+ By3) (33)
Ba2 = —(Ba21 + Ba3) (34)
Bs; = —(Bs1 + Bsy) (35)

where A;; = A;A; for ¢,j = z,y. We define the SUPG parameters from the element matrices as given
in Tezduyar and Osawa, 2000,

_ el ()
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(38)
where ||.|| = mazi<i<n.. {|ai|+|a|+. .. +|ain., |}, nee is the number of element equations, that is, the number

of element nodes times the number of degrees of freedom per node. We define the resulting SUPG parameter,
as given in Tezduyar and Osawa, 2000,

1 1 —1/r
TSUPG = (T + —) (39)

po

Ts1  Ts2
where r is an integer parameter.
4. Numerical Results

4.1. Oblique Shock

The first problem consists of a two-dimensional steady problem of a inviscid, Mach 2, uniform flow, over a
wedge at an angle of —10° with respect to a horizontal wall, resulting in the occurrence of an oblique shock
with an angle of 29.3° emanating from the leading edge of the wedge, as shown in Figure 1.

The computational domain is the square 0 < z < 1 and 0 < y < 1. Prescribing the following flow data at
the inflow, i.e., on the left and top sides of the shock, results in the exact solution with the flow data past the
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Figure 1: Oblique shock - problem description.
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where M is the Mach number, p is the flow density,

2.0
1.0
cos10°

= —sinlQ°

0.17857

respectively, and p is the pressure.

Four Dirichlet boundary conditions are imposed on the left and top boundaries; the slip condition us = 0 is
set at the bottom boundary; and no boundary conditions are imposed on the outflow (right) boundary. A 20x 20
mesh with 800 linear triangles and 441 nodes is employed. Tolerance of preconditioned GMRES algorithm is
set to 0.1, the dimension of the Krylov subspace to 5 and the number of multicorrections fixed to 3. All the
solutions are initialized with free-stream values.

Figure 2(a) shows density along line z = 0.9, computed by a 7z, mop parameter and the new 7 parameter
with » = 1,2,3 and 5. Here we update 7 and d,, at every nonlinear iteration of a time level (i.e. iteration
update). All solutions are very similar, therefore from now on we are going to use r = 2. Figure 2(b) shows the
evolution of density residual for 300 steps.
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Figure 2: Oblique shock - investigation about r parameter.
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We also tested what happens if we update 7 and §y, only at every time step at the beginning of a time step



(i.e. time-step update). Figure 3(a) shows the density along line z = 0.9 with iteration update and time-step
update. Both solutions are virtually identical. Figure 3(b) shows the evolution of the density residual for 300
steps. The evolution of density residual for time-step update is faster than iteration update.

1.6 T T T T O-l F T T T T T
TAU_82-MOD —— TAU_82-MOD ——
iteration update -+--- [ iteration update ------

15 time-step update -&--- time-step update -

exact

14 b 0.01 k!

13 B

12 b 0.001

11 B

1 0.0001 |
09 | b
08 1 1 1 1 1e_05 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 50 100 150 200 250 300
(a) Density profile at z = 0.9. (b) Evolution of density residual.

Figure 3: Oblique shock - investigation about updating.

Figures 4(a) and 4(b) show the action of Catabriga and Coutinho, 2002 procedure to detect convergence
stagnation and afterwards freezing the contribution of the shock-capturing parameter, with the two updating
strategies for 7 and §y,. The density profiles computed with the convergence stagnation procedure switched on
are very similar to the previous cases as well as the evolution of density residual. However, when we update 7
only at every time step we observe that a few more GMRES iterations are needed compared to when we update
7 every nonlinear iteration. The exact number of iterations for both cases are respectively 4,879 and 4,798 and
these figures are better than the number of GMRES iterations obtained by the standard procedure to compute
7 and d,, that is, 5,226 GMRES iterations.
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Figure 4: Oblique shock - freezing shock capturing.

4.2. Reflected Shock

This two-dimensional steady problem consists of three regions (R1, R2 and R3) separated by an oblique
shock and its reflection from a wall, as shown in Figure 5. Prescribing the following Mach 2.9 flow data at the



inflow, i.e., the first region on the left (R1), and requiring that the incident shock to be at an angle of 29°, leads
to the exact solution (R2 and R3):

M = 29 M = 23781 M = 1.94235
p = 10 p = 17 p = 2.68728
R1< w3 = 29 R2¢ u; = 2.61934 R3¢ uy = 2.40140 (41)
Uy = 0.0 Uy = —0.50632 Uy = 0.0
p = 0.714286 p = 1.52819 p = 2.93407
y
M=2.3781
\\\\>290 S B
M=2.9 M=1.94235
y=0.25 @ ,,,,,,,,,,,,,,,,,,,,,,,, @ ,,,,,,,,,,,,,,
-7 \23.28

Figure 5: Reflected shock - problem description.

We prescribe density, velocities and pressure on the left and top boundaries; the slip condition is imposed on
the wall (bottom boundary); and no boundary conditions are set on the outflow (right) boundary. We consider
a structured mesh with 60 x 20 cells, where each cell was divided into two triangles (1281 nodes and 2400
elements) and an unstructured mesh with 1,837 nodes and 3,429 elements covering the domain 0 < z < 4.1 and
0 <y < 1. The tolerance of the preconditioned GMRES algorithm is 0.1, the dimension of the Krylov subspace
is 5, the number of multi-corrections is 3, and all the solutions are initialized with free-stream values.

Figure 6(a) shows the density along line y = 0.25 for the structured mesh, computed by a 7gs. mop parameter
and the new 7 parameter with r = 2, for iteration update and time-step update cases. As in the previous
problem, both solutions are very similar. Figure 6(b) shows the evolution of density residual for 300 steps. We
observe that the density residual computed updating 7 and d,, with time-step update is smaller than the one
computed by the other alternative strategies.
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Figure 6: Reflected shock - structured mesh - investigation about updating.

Figures 7(a) and 7(b) show the action of the convergence stagnation detection procedure, with the two
updating strategies for 7 and dy,. The density profiles computed with the convergence stagnation procedure
switched on are very similar to the previous cases. However, here 7g,.mop lead to a better evolution of the
density residual, needing 3,226 GMRES iterations. For the cases when we update 7 with time-step update we
observe 3,627 GMRES iterations and for the case when we update T with iteration update we needed 3,787
GMRES iterations.
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Figure 7: Reflected shock - structured mesh - freezing shock capturing.

Figure 8 shows the density contours for the unstructured mesh, computed by using the same 7s and updating
strategies of the previous case. Again, all solutions are very similar. Figure 9 shows the evolution of density
residual for 300 steps for iterations update and time-step update. We observe that the density residual diminishes
significantly faster for the case where 7 and d,, are updated only at every time-step.

(2)

(c) Density contours with the new 7 parameter and
without updating.

Figure 8: Reflected shock - density contours in the unstructured mesh.

The action of the convergence stagnation detection procedure can be observed in Figures 10 and 11. We see
that the steady-state density distributions are in good agreement. Again in this problem the solution obtained
with the Ty .mop reaches steady-state faster, as shown in Figure 11. Note that the 7g,0p solution reaches
steady-stated in 836 steps, needing 9,573 GMRES iterations, while for the case where parameters are update
with iteration update and time-step update we need respectively 9,980 and 9,485 GMRES iterations.

5. Concluding remarks

We highlighted, for the SUPG formulation of inviscid compressible flows, stabilization parameters defined
based the element element-level matrices. These definitions are expressed in terms of the ratios of the norms of
the relevant matrices, and take automatically into account the flow field, the local length scales, and the time
step size. By inspecting the solution quality and convergence history, we compared the performance of these
stabilization parameters, accompanied by a shock-capturing parameter introduced earlier, with the performance
of a stabilization parameter introduced earlier, accompanied by the same shock-capturing parameter. Also by
inspecting the solution quality and convergence history, we investigated the performance difference between
updating the stabilization and shock-capturing parameters at the end of every time step and at the end of every
nonlinear iteration within a time step. We observed that the solution qualities were quite comparable. Updating
the new stabilization parameters at the end of every time step gives better convergence than updating them at
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(a) Density contours. (b) Density contours with freezing.
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Figure 10: Reflected shock - density contours in the unstructured mesh - freezing shock-capturing.
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Figure 11: Reflected shock - evolution of density residual in the unstructured mesh - freezing shock capturing.
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the end of every nonlinear iteration. We also investigated the influence of activating an algorithmic option that
was introduced earlier, which is based on freezing the shock-capturing parameter at its current value when a
convergence stagnation is detected. From the convergence histories in that investigation, we observe that this
freezing option benefits both the older and newer definitions of the stabilization parameters, with a slightly
more benefit for the older definition.
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