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Abstract. The advances in computer technologies have expanded the capability for numerical simulation in science and
engineering. This happens specially in environmental problems since their mathematical and computational complex-
ity can grow very fast. Their solutions have required the development of appropriate mathematical models, numerical
methodologies and algorithms to solve practical problems. A common environmental problem is the thermal pollution
created by a thermal power plant where cold water is pumped into the plant and returned at elevated temperature. This
relatively hot water is detrimental to aquatic life in rivers, lakes or bays. There are two approaches to deal with thermal
pollution problems. In the near-field approach the problem is concerned with a very limited zone, near the discharge point.
The other one is the far-field approach in which the main emphasis is on the effects of a perturbation at a considerable
distance downstream. The purpose of this work is to provide a numerical methodology to solve thermal pollution problems
efficiently in the far-field approzimation. The Streamline Upwind Petrov-Galerkin Method provides the numerical stability
of the finite element method. The solution of the algebraic linear system that arises from the finite element discretization
is performed by a new method called Left Conjugate Gradient Method presented by Yuan, Golub and Plemmons. Its
performance is compared with the most traditional methods for this type of problems, the GMRES Method.
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1. Introduction

In recent years water pollution in surface waters like rivers, lakes and coastal seas dominate discussions of
environmental problems world-wide. This concern is motivated by the increasing in human activities in the last
decade and the high cots of new technologies to obtain drinking water.

Modeling environmental problems is not an easy task due to the fact that they deal with large scale phe-
nomenon for a long period of time. As an example, consider the impact of the installation of a power plant on a
river ecosystem. Because of the discharge of hot water, even slightly higher than the original water temperature,
factors like: low circulation regions of the river, bathymetry and seasonal variation of the air temperature can
keep the water temperature higher for long distances and long periods of time which can promote and acceler-
ate some chemical reactions and decrease the dissolved oxygen (DO), affecting the water quality and the river
ecosystem.

The numerical model for the thermal pollution problem must satisfy some basic essential requirements in
order to get a feasible computation. First of all, the finite element formulation should be stable enough to deal
with thermal gradients that often appear in such problems. Here this is provided by the Streamline Upwind
Petrov-Galerkin Method (SUPG) proposed by Brooks and Hughes, 1982, which has good stability and accuracy
properties in the case of regular exact solution. The used finite element space is spanned by piecewise linear
functions. The efficient solution of the resulting system of linear equations that arises from the discretization is
the main focus of this work.

Solving this discrete problems requires the resolution of large, sparse and non-symmetric systems of linear
equations for different scenarios. It is well known that iterative methods are the only affordable choice when
dealing with large and sparse systems. In this work we evaluate the use of a new iterative method introduced
by Yuan et al., 2000, called Left Conjugate Gradient method (LCG). We use a traditional method, in this case
the GMRES (k) method introduced by Saad and Schultz, 1986, to compare with its performance.

The outline of this paper is as follows. In Section 2, the thermal pollution problem is presented and the
numerical formulation used is derived. Section 3 presents the basic ideas of the Left Conjugate Gradient method
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(LCQ). Section 4 briefly presents the GMRES method. The numerical experiments are presented in Section 5
and, finally, Section 6 draws the final conclusions as well as the directions for further research.

2. Problem Statement

The thermal pollution problem can be modeled by the stationary convection-reaction-diffusion transport
equation of the form

V- (-KV¢)+u-Vo+op=f in Q, (1)

with the following boundary conditions
o(x) = g(x) , xely, (2)

—KV¢ -n=qx), xely,

where the bounded domain 2 € R" has a smooth boundary ' =T, UTy, 'y NI, = 0, with an outward unit
normal n. The unknown field ¢ = ¢(x) is the physical quantity to be transported by a flow, characterized by
the given velocity field u = (uq, - . ., uy), the diffusion tensor K = K(x),the reaction term ¢ and the source term
f. The functions g(-), ¢(-) are given data.

It is well known that if the boundary data g(-) is discontinuous there may be regions in {2, where the solution
¢ varies dramatically. The width of such layers depends on the amount of diffusion present in the fluid flow,
being very small for convection-dominated problems. In this case, the use of the standard Galerkin finite element
method produces a globally oscillating approximate solution unless an extremely fine mesh is used, which most
of the time leads to an unbearable computational cost for practical purposes. To resolve those sharp layers the
SUPG method is used, which is presented in the next section.

2.1. Approximate Solution

_ Ne _ Ne
Let us consider a finite element partition 7" of triangular elements . such that Q@ = |J Q. and ) Q. =0,
e=1 e=1
where N, is the total number of elements in 7. The chosen finite dimensional set of kinematically admissible
functions and space of admissible variations are

sh={¢" e’ (@), ¢"|, ePt, ", =g} 3)
and
Vh:{aheco(n), 0", € X, 6" :o}, (4)

where P* is the space of polynomials of degree less or equal to k and the subscript e denotes the restriction of
a given function to the element (..

With these definitions, the Petrov-Galerkin approximation of the problem (1) consists of finding ¢* € S” such
that

N,
G (¢",6") + 3 (R (¢") .pl) g, = F (6, (5)
e=1
V 0" € V" where
R, (¢") =V - (-KV¢") +u-Vé" +o¢—f in Q (6)

is the residual of the approximate solution, with G and F' defined as:

G(¢",0") = (u-Vo" o) + (KVe", V") + (o¢",0"),
F(6") = (£,6") +(g,6"), -

Remarks:

1. in the formulation (5), the space of weighting functions is constructed by adding to the standard Galerkin
weighting function §* € V" a perturbation p” in each element (2. Different choices of this perturbation
generate different consistent Petrov-Galerkin methods;

2. the operator G (-,-) stands for the Galerkin contribution to (5).
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The SUPG method introduces a discontinuous perturbation in the streamline direction defined as
pt=riu-VO", e=1,...,N., (7)
where 77 is the upwind function given by:

s __ gehe

7 2]

(8)

with h. being the characteristic element length in the streamline direction and &, the non-dimensional numerical
diffusivity as defined in Brooks and Hughes, 1982. Rewriting the variational formulation (5) we obtain:

G(¢",0") +C (¢",0")=F (6") , VvoreV", (9)
where
Ne
C(s"0") = > {(r: DV, Vo), — (V KV, 7l u, - VO, + (06" u. - VO"), |
e=1
and
N.
F(0") =F(0")+> (firsu- Vo), . (10)
e=1

In the above expression D = u, ® u,, with ® denoting the tensor product. It is exactly the quadratic term
containing the tensor D which is responsible for the additional stability engendered by the SUPG method.
Substituting ¢" and 6" in (9) leads to a system of linear equations that can be written as:

Az =b (11)

where z is the unknown vector, A is a non symmetric matrix and b is the source given vector. For practical
interests, in special for 3D and transient problems, this system is solved by iterative methods. But to find the
most effective method for the problem at hand is still a challenge. In the next section a new iterative method
introduced by Yuan et al., 2000, is presented.

3. The Left Conjugate Gradient Method

The Left Conjugate Gradient method (LCG) proposed by Yuan et al., 2000, is different in nature from the
Krylov subspace methods, such as GMRES and their variants. The main difference is that LCG method finds
a basis of IR™ that enables the exact solution of (11) to be expressed uniquely by solving a triangular system,
instead of solving at each iteration a least square problem. Besides, LCG method can be applied in order to
find the inverse of A.

Although LCG could be reduced to CG when the matrix is symmetric and positive definite, the method
does not keep the conjugate orthogonality property in the non symmetric case. LCG also guarantees finite
termination, in the absence of roundoff errors, but looses some short recurrence relations. The method is
designed as follows.

The vectors p1,ps2,...,pn € IR™ denotes the left conjugate gradient vectors in respect to A if, for i,j =
1,...,n,

{ piTApj =0, for i<y,
pf Api #0.

Suppose p1,...,p, are given LCG vectors. Analogous to the meaning of the residual defined by r = b — Az in
CG method, that attends the optimally condition of a corresponding minimization problem (Golub, 1985), the
residual 7*, evaluated on the exact solution z* of (11) should obey

plr* =0, Vi=1,...,n. 12
2

Since py,...,p, are linear independent vectors when A is nonsingular, let us consider

n

"

T =xo+ E Q;ipi,
i=1
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for a given zy € IR™. Observe that z* is uniquely determined by py,...,p, and z¢. Thus, substituting =* in
(12), the following expressions can be derived, for i = 1,...,n:
P pzTTi—l
K3 - bl
pi Api
ri = b—Ar; =ri1 — aiApi,
i
T, = To+ Z QgPr = Ti-1 + QP
k=1
Let ¢ and py,-..,pr be respectively the residual and the LCG vectors given at iteration k. Suppose the next

LCG vector can be expressed by

k
Dkt+1 =Tk + Z Bipi- (13)

i=1

By definition of LCG vector, for all 1 < j < k + 1, we have
pJTAPk-H =0.

Pre-multiplying pjTA in (13), j = 1,...,k, we shall obtain the following recurrence formulas to generate a well
defined pgy1:

qo =Tk

fori=1,...,k
Bi = — (PiTqu'fl) / (PiTAPi)
¢i = ¢i—1 + Bip

Pk+1 = Qk-

Regarding the fact that A is neither a symmetric nor a positive definite matrix, the choice of the first
direction must be such that p! Ap; # 0. The LCG algorithm with few modifications related to the convergence
test is here reproduced:

LCG Algorithm

given A, b, 7o, p1 such that pT Ap; #0 and e >0
compute rg = b — Axg

set k=1
while £ < n and ||rg]| > ¢
ar = ATpy

ag = (prrr-1)/ (g pr)
Tp = Tp—1 + APk
T = Th—1 — QR Apy

Pk+1 =Tk
fori=1,...k
g = Alp;

Bi = —(QiTPk+1)/(Q¢TPi)
Dk+1 = Pr1 + Bibi
k=k+1
end of while

Remarks:

e the total flops per iteration of the above algorithm is 2n? + (2k + 4)n + 1. In the case A is symmetric and
positive definite, the algorithm obtains the A-conjugate gradients vectors of CG method;

e in Yuan et al., 2000, the LCG authors present also a variant of LCG method called Generalized LCG to
overcome problems with skew symmetric matrices and general breakdown problems.

Here, the performance of the method just outlined is compared with the most traditional one used for non
symmetric Computational Fluid Dynamics (CFD) problems, the GMRES method, that will be presented in the
following section for the sake of clarity.
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4. GMRES

The GMRES method, proposed by Saad and Schultz in 1986, has gained wide acceptance in solving systems
coming from CFD problems due to the following properties:

e it never breaks down, unless the exact solution has already been achieved;
e the convergence is monotonic;
e assuming exact arithmetic, it converges in no more than n iterations.

The GMRES derives an approximate solution to x in the form z = xg + z, where z is the initial guess and
z comes from minimizing the residual ||b — A(zo + z)|| over the Krylov subspace span [ro, Arg, A%rg, ..., Akro],
where here k is the dimension of the Krylov space and ¢ = b — Axg . The major known drawback of GMRES
is that increasing k the amount of memory required per iteration increases linearly and the computational work
increases quadratically. In order to control the amount of work and memory requirements a restarted version
(GMRES(k)) is used. This means that after k orthogonalization steps all variables will be cleaned up and the
solution obtained at this point will be taken as the initial solution for the next k steps. Unfortunately, there
are some problems for which this version stagnates, failing convergence indenpendent of the value of k (Barret
et al., 1994). The restarted version algorithm used here is the following:

GMRES (k) Algorithm

given A, b, zg, k and € > 0
repeat
set nsteps = 0
while nsteps < k
(Arnoldi process)
compute ro = b — Azg, = ||ro|| and vy =ro/S

forj=1,...,k
compute w = Av;
fori=1,...,j
h@j = (U),U,')
w=w — hiyj’l]i
compute hji1; = [|w]| and vj1 = w/hji1 ;.

define Vi, = [v1,...,v] and Hy = {h;
(form the approximate solution)
compute x = zo + Vi Y,
where yj, = argmin, ||ﬁ€1 — Hy, y|| and e; = [1,0,...,0]%.
nsteps = nsteps + 1

end of while

o = T

until ||rg]| <e

dheicjrnsick:

5. Numerical Results

All the numerical experiments are performed using the iterative methods tolerance equal to 1078, The first
example is a two-dimensional test problem with 0 <z < 1,0 <y < 1, no source term, u = (1,1)!, K = 0.005
and the following boundary conditions

¢($,0) =0,

b0 =1 if y<02,

p0,) =0 if y>04

$0,y) =5(02—-y)+1 if 02<y<04.

(14)

This is a predominant convective transport problem and such boundary conditions generate two internal bound-
ary layers, beginning at y = 0.2 and y = 0.4. The dimension of the Krylov space (k) is set equal to 5 for the
GMRES method.

In Figure 1 the influence of the reaction factor o in the convergence of the iterative methods are presented.
Notice that the performance of the LCG method is better when o is small, even in the presence of some
oscillations. For higher o values there are almost no oscillations but the performance of the LCG decreases.
This behavior is probably due to the fact that as long as the reaction term becomes more relevant the system
matrix A tends towards symmetry.
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Figure 1: Example 1: convergence rate for GMRES(5) and LCG with o = 0.
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Figure 2: Example 1: convergence rate for GMRES(5) and LCG with o = 1.
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Figure 3: Example 1: convergence rate for GMRES(5) and LCG with o = 10.
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The second and the third examples simulate the problem of a discharge of a hot water in a river. For
these examples, the water temperature is the variable modeled by equation (1). We used the same physical
parameters used in Banks, 1994; Pirozzi and Zicarelli, 2000, presented in Table 1.

river velocity uy =03 m/s
thermal diffusivity K =25 m/s>

air temperature Gair = 20°C
discharge temperature bin = 30°C
surface transfer coefficient o =2.0 x 107 °s~!

Table 1: Parameters used in the one dimensional thermal problem

The second example is a one dimensional problem: the computational domain has 150km of length and the
hot water discharge occurs at the origin, x = 0. Figure 4 presents the analytical and numerical steady state
temperature profiles obtained using LCG, showing that they agree very well, even with the coarse mesh used.
The temperature drops from 30°C' to 25°C' after 10km due to heat transfer from the river water to the air.
After 50km the water temperature is approximately equal to the air temperature.

30 T
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Analitic
Numerical Solution [4 km] +

g
(0]
S
T \\
[
o
£ 22 ™.
[ \.\\\
20 \’\Hm*&#w
18
16
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Figure 4: Example 2: comparison of analytical and numerical solutions with 4 km resolution.

The third example is a thermal pollution 2D problem. The computational domain is 100 km x 5 km,
discretized using a regular mesh which resolution is 2 km x 1 km and considering the discharge inside of the
domain. Figure 5 presents the temperature profile at the middle section. The discharge origin causes oscillations
upwind to this point in the numerical solution for the Galerkin formulation, enforcing the necessity of a stable
method.

The convergence rate of LCG and GMRES are presented in Figure 6, where we can notice that LCG takes
less iterations than GMRES, even increasing the Krylov space dimension from 5 to 10 and 20. The last case,
which doubles the memory requirements, leads to a small difference in the convergence history. The drawback
of the LCG method is that, besides keeping the LCG vectors in memory, it needs an additional Matrix-vector
product for the transpose product.

6. Conclusions

This work shows some computational experiments of combining a stable finite element method and two
iterative methods to simulate thermal pollution problems. Even for the simple environmental problem considered
here, the presence of steep gradients requires the use of a stable method, like SUPG, to get rid of global spurious
oscillations. The system of linear equation originated from the finite element discretization is solved using a
new method called LCG. Its performance is compared with the well known GMRES(k), concluding that it has
superior convergence behavior. Like the initial version of GMRES, LCG consumes a lot of memory resource.
However, this is a initial version of the LCG method and there are plenty of improvements to be done.
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Figure 5: Example 3: comparison of the Galerkin and SUPG formulations for the middle section (2500 m).
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Figure 6: Example 3: convergence rate for LCG and GMRES(k), k£ = 5,10 and 20.
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