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Abstract. This paper presents numerical simulations of incompressible turbulent free-surface fluid flow problems. The
methodology employed to solve the Reynolds Averaged Navier-Stokes equations and k — € turbulence equations is an
extension of GENSMAC: a finite-difference marker-and-cell technique for the numerical solution of incompressible free-
surface flows using a velocity-pressure formulation. The numerical solution procedure is applied to a turbulent boundary-
layer on a flat plate and a jet impinging onto a flat surface.
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1. Introduction

In the two-dimensional cartesian coordinate system, the governing equations for incompressible turbulent
fluid flows are the Reynolds Averaged Navier-Stokes (RANS) equations
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where ¢ is the time, u = u(z,y,t) and v = v(x,y, t) are, respectively, the components in the x and y directions
of the local time-averaged velocity vector field u = u(z,y,t), pe = p + %ﬁn is the effective pressure, being
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k = k(z,y,t) the time-averaged turbulent kinetic energy, v is the kinematic viscosity of the fluid, and v; is
the eddy-viscosity. The non-dimensional parameters Re = UgLg/v and Fr = Up/+/Lo|g| denote the associated
Reynolds and Froude numbers, respectively, in which Uy is a characteristic velocity scale and Lg is a length
scale. Equations (1) through (3) form a closed system, which can be solved for the variables u, v and pe,
provided that an acceptable turbulent model is defined.

In this work, the closure of the RANS equations is made by using two-equation x — & turbulence models

A Pt (R Ry (BR[O 4)

5+ oo 2 (e wieag ) + 5 (A4 ufo )| +(€reP - caaymit s, )

or

where € = g(x,y,t) is the dissipation rate of x, and Cy, Cic, Coe, 0, and o, are empirical constants. The
isotropic eddy-viscosity, the production of turbulence P, the source term E and the turbulence time scale T}
are, respectively, defined as

vi = Cy furTy, (6)
P (a(Z) () (2 2)), "
=3 () (%))
T,=(1 —5)Mm{ g%@ } +B{g + (%)1/2}, 9)

where, in Eq. (9), [S|? = D:D, with D=Vu+ (Vu)T. Together with the model constants, the parameter
f appearing in Eqgs. (5) and (9) is used to specify the k — ¢ model. In the case of C,, = 0.09, Ci. = 1.44,
Coe =192, 0, = 1.0, 0. = 1.3 and 8 = 0, we deal with the high-Reynolds « — £ model of Launder and
Spalding, 1974 (HRe k—¢ model), with the time scale proposed by Durbin, 1996 for appropriated treatment of
stagnation-point anomaly. When the model constants are that proposed by Hoffman, 1975; that is, C}, = 0.09,
Cie =181, C3. = 2.0, 0, = 2.0, 0. = 3.0 and B = 1, we treat with a low-Reynolds k — & model (LRe k — ¢
model), similar to that proposed by Yang and Shih, 1993. The dependent variables in Eqgs. (1)-(9) have been
nondimensionalized by Uy, Lo and v in the usual way. The damping function f, in Eq. (6) assumes the value
fu =1 in the case of the HRe k — ¢ model, and takes the following expression in the case of the LRe k —¢
model

1/2
fu= (1 — Exp(—a1 Rey,, — agRe‘;w - a;,Reiw)) , (10)

where a1,a3 and az are constants given by

a1 =1.5x107% a3 =5.0x 1077, a5 = 1.0 x 10719, (11)
and Rey,, is the local Reynolds number defined by

Re,,, = y,Rex'/?, (12)

being y,, the normal distance from the rigid-boundary to a point into the flow.

The main purpose of this work is to present numerical simulations of incompressible turbulent free-surface
fluid flow problems using the HRe k —¢ and LRe k — € turbulence models. The numerical solution procedure
is applied to a turbulent boundary-layer on a flat plate and a jet impinging onto a flat surface.

2. Initial and Boundary Conditions

Equations (1) through (5) are coupled, non-linear, partial differential equations and, together with the eddy-
viscosity model (6), are sufficient, in principle, to solve for the five unknowns u, v, p, £ and € when appropriated
initial and boundary conditions are specified. In this work, a staggered grid is used where the effective pressure,
the turbulent kinetic energy and the dissipation rate are stored at the center of a computational cell, whereas
velocities are stored at the cell boundaries. With this grid system, effective pressure boundary conditions are
not needed.
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For initial conditions, the values of all variables are prescribed. Five types of boundary conditions are used,
namely: inflow, outflow, symmetry, free-surface, and rigid-wall boundaries. At the inflow, the values of u, v, K
and ¢ are prescribed. At the outflow, the streamwise gradient for each variable is required to be equal to zero.
At symmetry boundaries, we are using

8ut Ok Oe
up=0, — =0, — =0 and — =0 13
n ) an ’ an an Y ( )
where n and ¢t denote normal and tangential directions to the boundary, respectively. At the free-surface, we
are considering that the fluid is moving into a passive atmosphere (zero-pressure) and, in the absence of surface
tension forces, the normal and tangential components of the stress must be continuous across any free-surface,
so that on such a surface we have (see, for example, Ladau and Lifshitz, 1987)

n-(c-n)=0, (14)
m- (o -n) =0. (15)

In the above equations, n and m are unit normal and tangent vectors to the surface, and o is the general
constitutive equation (Cauchy stress-tensor) defined as

1
o=—-p I+ E(l +1)D, (16)

where I denotes the identity tensor. From Egs. (14) and (15), we determine the effective pressure and the
velocities, respectively. The turbulent variables at the free-surface are determined by imposing

Ok Oe

— =0 and —=0. 17
on on (17)
The boundary conditions at rigid-wall depend on the k — & model considered. When the simulation is performed
with the HRe k — € model, the wall-function approach (Launder and Spalding, 1974) is used. In this case, the
fundamental equation for determining the fictitious velocities and turbulent variables near a rigid-wall is the
total wall shear stress 7, given by

1
ﬁ(l + Vt)

N Ul = Ty, (18)

on

where 4 represents the velocity component tangential to the rigid-wall, and u, is the friction velocity. The
values of the k and € in the inertial sublayer are given by

Tw TwUr
0‘1/2 and €= ReKyw’

k= Re

(19)

being K = 0.41 the von Karmén constant. In the viscous sublayer, we are using the strategy of Sondak and
Pletcher, 1995, that is,

+\ 2 3/2
k= Re T11‘}2<y+) and szﬁi, (20)
Cy/* \Ye Re I*
where yt is defined as y* = Reu,y, and [* represents the length scale proposed by Norris and Reynolds,
1975. Neglecting the buffer layer of a turbulent boundary-layer, the critic y* (y.7) in Eq. (20) delimits the
viscous sublayer and the inertial sublayer. A detailed discussion of the initial and boundary conditions using the
HRe k — e turbulence model is given in Ferreira, 2001. When the LRe k — e model is used in the simulations,

the velocity at solid boundary is set to zero, in order to represent the no-slip condition (u = 0), and the values
of the variables k and € at this boundary are

9 1/2\ 2
k=0 and 5:§(agn ) (21)

2.1. Wall-Function Aspects

It is well known that the HRe x — ¢ model requires modification for the simulation of flow near rigid
boundaries, so as to account for damping of velocity flutuations and viscous effects. In general, the solution of
the conservation equations in the inner layer is not necessary since the flow mechanism in such a region can be
described reasonably well by employing wall-functions (for a more datailed discussion see, for example, Ferreira,
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2001). The behavior of the mean velocity profiles in the viscous and inertial sublayers are, respectively, given
by (see, for example, Bradshaw, 1976, Wilcox, 1988, or White, 1991)

ut —yt =0, (22)
In(Ey") — Ku™ =0, (23)

where ut = 4/u, and E = exp(K5.1).

One of the central questions in the application of the wall-functions (18)-(20) is the determination of the
friction velocity, and hence the wall shear stress. It is determined from relation (22) or (23), depending on
the local Reynolds number y*. When u, is obtained by (23), the Newton-Raphson’s method is applied with
ur = 11.60 as the initial condition. We initiate the calculations by determining the critic Reynolds number
y. 1, solution of the non-linear equation defined by the intersection of (22) and (23), and by imposing that it is
in the viscous sublayer. By neglecting the transition sublayer, in every cycle of the computational procedure,
the friction velocity is estimated in the following manner: with the tangential velocity 4 known in the first
cell adjacent to the wall, u, is apdated according to the value of the y* given by (22). If y* is less than y.T,
we use (22); on the other hand, we employ (23). The fictitious velocities are calculated by central-diference
aproximation of the Eq. (18).

3. Solution Procedure

The governing equations (1) through (5) are solved with an extension of the GENSMAC methodology for
turbulent flow field (see Ferreira, 2001). The detailed information of the GENSMAC for the simulation of
free-surface flows without turbulence modelling is provided in Tomé and McKee, 1994 and Tomé et al., 2000.
It is a finite-difference, explicit, first/second-order accurate numerical method based on a predictor-corrector
scheme. By using a guessed effective pressure p, and an eddy-viscosity v4, the method consists of solving the
time-averaged Navier-Stokes equations (1)-(2) at the (k + 1) time-step for a tentative velocity field . The @
is related to the true velocity field u, at the (k + 1) time-step, by an auxiliary potential function ¢ which is
calculated by a Poisson equation, originated by imposing V - u = 0 at the (k + 1) time-step. The effective
pressure and the turbulent variables k and € are then updated, and the procedure is repeated at each time-step.
In particular, when calculating 1 in step 1, we employ an adaptive time-stepping routine (see Tomé and McKee,
1994). The numerical solution procedure may be summarized as follows.

It is supposed that, at a given time ¢t = tg, the velocity field u is known and suitable boundary conditions
for the velocity and turbulent variables are given. Let p.(z,y,t) be an arbitrary effective pressure field, which
satisfies the correct pressure condition on the free-surface. This pressure field is constructed by employing the
normal-stress condition (14) at the free-surface, and it is chosen arbitrarily (for instance p.(z,y,t) = 0) into
the fluid. The updated velocity field, the effective pressure and the turbulent variables, at time t = to + dt, are
calculated by the following steps:

1. With the eddy-viscosity v; known at ¢ = t5, compute an approximate velocity field u(z,y,t) from a
finite-diference discretization of

(G ) O, 10 (0u 2y, 1
ot |y, B Oz Oy O0x Redy \Oy Oz Fr2 e
1 0 Oou 0 Ou Ov
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with u(x,y,t0) = u(z,y,to) using the correct boundary conditions for u(z,y,tp). It can be shown (see,
for example, Ferreira, 2001) that u(z,y,t) possesses the correct vorticity at time ¢ but does not satisfy
(3), in general. By writting

u(wayat) = ﬁ(a:,y,t) - V¢($,yat) (26)
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and imposing
VZW%?]J) =V 'ﬁ(ﬂ?,y,t), (27)

a velocity field is obtained in which the vorticity and mass are conserved;

2. Solve the Poisson equation (27) for ¢. The appropriate boundary conditions for this elliptic equation
are homogeneous Dirichlet-type on the free-surface and homogeneous Neumann-type on fixed boundaries.
These are treated in a similar way as in the GENSMAC codes of Tomé and McKee, 1994 and Tomé et al.,
2000;

3. Calculate the velocity field u(z,y,t) from (26);

4. Compute the effective pressure. It can be shown (see Ferreira, 2001) that the effective pressure field is
given by

pe(@,y,1) = Pe(x,y,t) + (2, y,1)/6t; (28)
Compute the kinetic energy « from a finite-difference approximation of (4);
Compute the dissipation rate € from a finite-difference approximation of (5);

Update the eddy-viscosity v; from (6);

® N ot

Particle movement. The last step in the calculation involves the movement of the marker particles to their
new positions. These are virtual particles (without mass, volume, or other properties), whose coordinates
are stored and updated at the end of each cycle by solving the ordinary differential equations

dx dy

= — d 2= 29
g - v and - =v (29)
by Euler’s method. This provides a particle with its new coordinates, allowing us to determine whether
or not it has moved into a new computational cell, or if it has left the containment region through an
outflow-boundary;

9. Update the boundary conditions and go back to the first step.

4. Discretization

In the solution procedure outlined above, the differential equations are discretized in time and space in pre-
cisely the same manner for all dependent variables. The temporal derivatives are discretized using the first-order
forward difference (Euler’s method), while the spatial derivatives are evaluated using specific finite-differences
on a uniform staggered grid system. The convection terms are approximated by the high-order oscillation-free
upwinding VONOS scheme of Varonos and Bergeles, 1998, which satisfy the Convection Boundedness Crite-
rion (CBC) formulated by Gaskell and Lau, 1988. A detailed discussion of high-order convection schemes,
including the VONOS one, would go beyond the scope of this paper, and the reader is referred to Ferreira
et al., 2002 for details of the implementation and application. All the other derivatives are approximated using
standard second-order central-difference formulation. The Poisson equation (27) is discretized using the usual
five-point Laplacian operator, and the corresponding symmetric-positive definite linear system is solved by the
conjugate-gradient method.

5. Numerical Results

First, results with the HRe k — ¢ model will be presented for the turbulent boundary-layer on a flat plate.
For this problem, the Reynolds number based on the inflow velocity Up = 1.0 m/s and the channel height
H =1.0m is Re = 2.0 x 108. Three different meshes are used: a coarse mesh (20 x 100 computational cells,
oz = dy = 0.05 m); a medium mesh (40 x 200 computational cells, dz = jy = 0.025 m); and a fine mesh (80 x 400
computational cells, z = dy = 0.0125 m). Figure 1 shows a comparison between the turbulent skin-friction
coefficient profiles C, as a function of the Re, = Upx /v, obtained by the HRe k—e model, in the three meshes
and at the adimensional time ¢ = 6.477, and the estimates given by Prandtl, power-law and White (see, for
example, White, 1991). In this figure, for simple comparison, the theoretical profile for laminar flow field is
also presented. As shown in Figs. 1 a), b) and c), the numerical estimates are generally satisfactory for Re,
beyond 1.0 x 10%. It can also be observed from Fig. 1 d) that when the coarse mesh is twice refined, there was
convergence of the numerical solution for a profile near the power-law and White profiles. On the other hand,
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Figure 1: Comparison between the skin-friction coefficient profiles Cy = C¢(Re;) for the turbulent boundary-
layer on a flat plate, showing well known theoretical estimates and that by HRe x — ¢ model: a) Comparison
in the coarse mesh; b) Comparison in the medium mesh; ¢) Comparison in the fine mesh; ¢) Comparison of

the three numerical solutions in the three meshes. Cy = 27,/ pU02.
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Figure 2: Comparison between the numerical solutions by using the HRe x — ¢ (left column) and LRe k — ¢
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(right column) models and approximate analytic solutions by Watson.
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for Re, < 1.0 x 10%, the discrepancy may be due to the uniform meshes used and the initial velocity profile not
being sufficiently turbulent at the entrance region. Of course, near to Re, = 1.0 x 108, it may be noticed the
tendency of the numerical profile, in the fine mesh (Fig. 1 c)), to follow the theoretical profiles.

Next, results with both the HRe k — e and LRe k — € models will be examined for a two-dimensional jet
impinging onto a flat surface. For this free-surface fluid flow problem, the Reynolds number based on the inflow
velocity Up = 2.0 m/s and inflow diameter D = 1.0 x 1072 m is Re = 3.2 x 10*, and the Froude number is
F, = Uy/\/gD = 6.39. Three different meshes are also used for this flow, namely: a coarse mesh (25 x 50
computational cells, dz = dy = 0.002 m); a medium mesh (50 x 200 computational cells, = = dy = 0.001 m);
and a fine mesh (100 x 400 computational cells, §z = dy = 0.0005 m). Figure 2 shows a comparison between the
variation of the adimensional free-surface height h/0.5D with adimensional distance (2/0.5D)Re~'/*, obtained
from the HRe k — ¢ (Figs. 2 a), ¢) and e) - left column) and LRe k — e (Figs. 2 b), d) and g) - right column)
models in the three meshes and at the adimensional time ¢ = 19.0, and approximate viscous and inviscid
solutions by Watson, 1964. In this picture, for simple information, Watson’s boundary-layer thickness is also
presented. It can be seen, from Figs. 2 (left column) and 3 a), that the calculations using the HRe & — e model
on fine mesh (200 x 400 nodes) provide, practically, the same results as the ones in the coarse and medium
meshes, indicating grid independence of the numerical results. One can note also that the numerical results
on coarse and medium meshes monotonicaly converge to the numerical solution on the fine mesh, and that the
numerical solution on the fine mesh is in good agreement with the Watson’s viscous solution.

At the same adimensional time of the simulation with the HRe & — & model, the comparison between the
free-surface height obtained from the LRe k — e model and the Watson’s viscous solution was also made, and
the results are displayed in the Figs. 2 (right column) and 3 b). It is clear that the numerical results with
this k — € turbulence model on the three meshes are unsatisfactory. We believe that, for this especific fluid
flow problem, the disagreement between viscous analytical solution, developed by Watson, and the numerical
solution, obtained by the LRe k — & model, may be attributed to the fact that the numerical solution has been
calculated on a uniform mesh, resulting in a poor resolution of the viscous sublayer. In fact, for this Reynolds
number flow dynamics, the thickness of the viscous sublayer of the turbulent boundary layer is so thin (O(v/u,),
Gyr et al., 1999) that it would be difficult to resolve it in any reasonable time.

In terms of computational cost, it is important to note that when the k — ¢ turbulence model was applied
with wall functions the computer cost was reduced by approximately a factor of 3.

6. Conclusion

Numerical simulations of turbulent fluid flow problems by using two versions of the k — € models have been
presented. In order to describe the turbulent effects on the averaged flow, the x and & conservation equations
were analysed and implemented into the two-dimensional GENSMAC code.

In an attempt to obtain bounded transient solutions, the convection VONOS scheme was adopted for all
non-linear derivatives of the convective transport equations. The numerical results show that it is not only
beneficial, but also essential to incorporate this high-order oscillation-free upwinding method in order to reduce
the effects of numerical diffusion in turbulent flow problems.

Particularly, the H Re k—e model yields favorable predictions of zero-pressure-gradient turbulent boundary-
layer on a flat plate (a confined flow) and a jet impinging onto a flat surface (a free-surface flow). On the other
hand, the numerical results for these fluid flows using the LRe « — ¢ model were unsatisfactoy.

The simulations of the fluid flow problems presented in this paper confirm the importance of correctly
prescribing the boundary conditions at the rigid-wall boundaries.

At the present, the authors are looking at the adaptation of these numerical techniques to more difficult
fluid flow problems, such as those involving three dimensions.
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