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Abstract. This paper deals with the estimation of the thermal conductivity and of the volumetric heat capacity of solids. The
experimental setup designed in our previous works consists of a heater symmetrically assembled between two pieces of the specimen
with unknown properties. Transient temperature measurements taken in the heated surface of the specimen are used in two
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presented for the estimation of the properties of Teflon.
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1. Introduction

The accurate knowledge of thermophysical properties is of importance for the correct prediction of the thermal
behavior of bodies. Several experimental techniques have been developed in the past for the estimation of thermal
conductivity and volumetric heat capacity by using steady-state as well as transient experiments. Transient techniques
have the advantage of involving faster experiments than steady-state techniques. More recently, the use of inverse
analysis techniques of parameter estimation have been used for the identification of thermophysical properties, by
utilizing minimization procedures involving transient measurements (Taktak et al, 1993, Dowding et al, 1995, 1996,
Orlande and Ozisik, 1994, Orlande et al, 1995, Guimaraes et a, 1997, Lima e Silva et a, 1999, Mgjias et al, 1999,
Oliveiraet al, 1999, Rey Silva et a, 2000, Rey Silva and Orlande, 2001).

In a previous paper Oliveira et al (1999) discussed the design of optimum experiments for the simultaneous
estimation of thermal conductivity and volumetric heat capacity of solids. Three possible arrangements for the
experimental setup, involving a heater placed between two identical pieces of the specimen with unknown properties,
were examined in such work. The arrangement resulting on smaller confidence regions for the parameters was that
involving a constant temperature boundary condition for the non-heated surface. The experiment was also optimally
designed with respect to the sensor location, heating time and duration of the experiment. The Levenberg-Marquardt
Method (Beck and Arnold, 1977, Ozisik and Orlande, 2000) was used for the minimization of the |least-squares norm.
The accuracy of such a parameter estimation approach was verified by using transient smulated measurements
containing random errors. Later, Rey Silva et a (2000) implemented and tested, by using transient simulated
measurements, the Sequential Estimation Procedure advanced by Beck and Arnold (1977) for the identification of
thermal conductivity and volumetric heat capacity. The experimental setup addressed was the same designed by
Oliveiraet al (1999).

The main objective of this paper isto use actual experimental datafor the identification of thermal conductivity and
volumetric heat capacity of solids, by using a recently built experimental setup based on the optimized experiment
described by Oliveira € a (1999). For the estimation of such physical properties the Levenberg-Marquardt Method
(Beck and Arnold, 1977, Oliveira et a, 1999, Ozisk and Orlande, 2000) and the Sequential Parameter Estimation
Procedure (Beck and Arnold, 1977, Rey Silva et a 2000) are used. The experimental setup, as well as the estimation
techniques utilized in thiswork, is described next.

2. Experimental setup

The experimental setup used in thiswork consists of a heater placed between two identical cylindrical specimens of
the material with unknown thermal conductivity and volumetric heat capacity, as depicted in Fig. (1). With such an
arrangement, half of the heat generated in the heater is expected to be conducted through each of the specimens.
Temperature measurements are taken at the center of the heated surfaces of the two specimens, as well as at the center
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of their non-heated surfaces, with type E thermocouples. The thermocouples are connected to a Cole-Parmer MAC-14
data acquisition system, which permitted an acquisition rate of 1 reading per second, for each of the four channels used.
Therefore, the symmetry of the problem can be monitored during the experiment by examining the temperature
recordings taken in each specimen, which are expected to be identical, for the two heated surfaces, as well as for the
two non-heated surfaces.

This work is basically concerned with the identification of thermal conductivity and volumetric heat capacity of
insulating materials. Therefore, in order to approximate a constant temperature boundary condition for the non-heated
surfaces, a material with high thermal conductivity is put in contact with the specimens. Two circular disks made of
aluminum, 30.4 mm thick and with 100 mm of diameter, were used with such a purpose. The constant temperature
boundary condition for the non-heated surfaces was chosen based on the optimum design of the experiment, aiming at
the estimation of properties with high accuracy (Oliveiraet al, 1999).

The heater, as well as the specimens, have a diameter of 100 mm. Such a diameter was chosen in such a way that,
even if lateral heat losses are significant, the temperature at the center of the heated surfaces deviates by less than 4%
from the one-dimensional case. For such a design, a strict case was taken into consideration, involving heat |osses by
convection through the lateral surfaces to the surrounding air with a heat transfer coefficient of 5 W/m?°C. However,
the heater, specimens and aluminum disks have their lateral surface thermally insulated with styrofoam, with inner
diameter of 100 mm and outer diameter of 200 mm. A photo of the disassembled experimental setup is presented in
Fig. (2).

The specimens are 4 mm thick and the heater is2.3 mm thick, with measured el ectrical resistance of 273 + 3 Q. The
heater was connected to a DC font. The electrical voltage applied to the heater is measured with a Techmaster DM 8300
AW multimeter made by Sperry from Instruments Inc. The heater is turned on for a period 0 <t <t,. Transent
temperature measurements taken at the heated surface of the solid in the period 0 < t < t;, wheret,, < t;, are used for the
estimation of the properties, as described below. We note that the thickness of the specimens is different from that
presented in Fig. (1). Such thickness was chosen in the optimum experimental design discussed by Oliveiraet al (1999).
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Figure 1. Geometry of the experimental setup.

Figure 2. Disassembled experimental setup.
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2. Mathematical Formulation

By taking into account the symmetry of the experimental apparatus, the mathematical formulation of the physical
problem examined hereis given in dimensionless form as:

2
C*@zk*ae2 in 0<X <1, for 1>0 (La)
0t 0X
.00 _
-k —=0Q(1) a X=0, for 1>0 (1.b)
oX
6=0, a xX=1, for t>0 (1.0
6=0 at=0, in0<X<1 (1.d)

where the following dimensionl ess variabl es were defined:

L’ C* :i’ 0= kR
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In Egs. (2), x isthe dimensional space coordinate, t is the dimensional time coordinate, L is the thickness of the
specimen, k and C are the thermal conductivity and the volumetric heat capacity of the specimen, respectively, kr and
Cr arereference values for thermal conductivity and volumetric heat capacity, respectively, qo is a reference heat flux,
T is the dimensional temperature, Ty is the initial temperature in the region, Tp is the constant temperature at the
boundary x = L, and q(t) isthe applied heat flux during the experiment.

The problem defined by Egs. (1), with known thermophysical properties and known boundary and initia
conditions, constitutes a Direct Heat Conduction Problem. The objective of the direct problem isto obtain the transient
temperature field in the specimen. For the solution of the direct problem, we use the finite-volume method.

3. Inverse problem

For the Inverse Problem considered here, the thermal conductivity k* and the volumetric heat capacity C* are
regarded as unknown quantities. For the estimation of such properties, we consider available for the inverse analysisthe
transient readings Y taken at timest;, i = 1,...,| of one temperature sensor located at the heated surface of the solid with
unknown properties. Since we have a symmetrical experimental assembly, the measurements used for the inverse
analysis described bel ow are taken asthe average of the temperatures measured at the heated surfaces of each specimen.
Similarly, the boundary condition at the non-heated surface (see Eq. (1.c)) is taken as the average temperature of the
two sensors located at the non-heated surfaces.

In the present paper, two different estimation techniques are used: the Levenberg-Marquardt Method (Beck and
Arnold, 1977, Oliveira et al, 1999, Ozisk and Orlande, 2000) and the Sequential Estimation Procedure (Beck and
Arnold, 1977, Beck, 1999, Rey Silva et al, 2000). The main steps of both techniques are shown bel ow.

3.1. The Levenberg-Mar quar dt M ethod

For the estimation of the unknown parameters with the Levenberg-Marquardt method, let us assume that the
temperature measurement errors are additive, normally distributed with zero mean and known and constant standard-
deviation. We also assume that all the other quantities appearing in the formulation of the problem are exactly known
for the inverse analysis and that there are no errors in the independent variables. In this case, the least-sguares norm
becomes a minimum variance estimator (Beck and Arnold, 1977). Therefore, for the estimation of the unknown
parameters we consider the minimization of the least-squares norm, written in matrix form as:

sP)=[Y TP [y -T(P)] (3a)
where

[Y -T(P)] =Y, - T.(P).Y, —T,(P).....Y, - T,(P)] (3.b)
and

P =[k*,C*] (3.0

The estimated temperatures T;(P) are obtained from the solution of the direct problem given by Egs. (1) by using
estimated values for the unknown parameters.
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We usein this paper the Levenberg-Marquardt Method (Beck and Arnold, 1977, Ozisik and Orlande, 2000) for the
minimization of the objective function given by Eqg. (3.a). Theiterative procedure of such method is given by:

PRt = PX 4+ (373 + QK) LIT[Y = T(PY)] (4)

where ¥ is the damping parameter and Q¥ is a diagonal matrix, which can be taken as the identity matrix or as the
diagonal of J'J. The sensitivity matrix J is defined as:

[oT, oT, |

dk* 9C*

T | 0T, 9T,
J("){%} = a|:<* ac::* )

aT, T,

| 0k* 9C* |

The elements of the sensitivity matrix are denoted as the sensitivity coefficients. They provide a measure of the
sensitivity of the estimated (or measured) temperatures with respect to changesin the unknown parameters. Clearly, the
solution of inverse problems involving sensitivity coefficients with small magnitudes is extremely difficult, because the
choice of very different values for the unknown parameters would result in basically the same value for the measured
variables. Also, the columns of the sensitivity matrix are required to be linearly independent in order to have the matrix
J"J invertible, that is, the determinant of J'J cannot be zero or even very small.

3.2. The Sequential Parameter Estimation Technique

We also examine in this paper a second estimation procedure, where the parameters are estimated by using the
transient measurements Y, for t;, i = 1,...,I, sequentialy in time (Beck and Arnold, 1977, Beck, 1999).

The starting point for the Sequential Parameter Estimation Technique advanced by Beck and Arnold (1977) and by
Beck (1999) is the minimization of the Maximum a Posteriori objective function. Such objective function, for the
estimation of the vector of unknown parameters P = [k*,C*], is defined as (Beck and Arnold, 1977):

P =[Y -TPE]'W[Y -T(P)]+@-P)"V(u-P) 6.3)
where W isaweighting matrix and
[Y -TP)]"=[Y, -T.(P).Y, - T,(P)....Y, - T,(P)] (6.b)

isthe vector containing the differences between measured (Y;) and estimated (T;) temperatures.
The use of the maximum a posteriori objective function involves the following statistical assumptions (Beck and
Arnold, 1977):
» theerrorsare additive and normally distributed with zero mean;
» thedatistical parameters describing the errors are known;
» thereareno errorsin the independent variables, such astime;
+ Pisarandom vector with known mean p and known covariance matrix V. P is distributed normally and P
and V are uncorreated.

We note that the above hypotheses do not involve any assumptions regarding the errors being uncorrelated or not,
and the covariance matrix of the errors being constant or not. Also, note that prior information available for the
parameters can be taken into account on the inverse analysis, through the vector p and the covariance matrix V.

The minimization of S(P) requiresthat its gradient be null. Thus,

OS(P) = —23"W[Y -T] -2V (u-P) =0 ©)

By linearizing the vector of estimated temperatures with a Taylor series expansion around the estimated parameters
at iteration k, that is,

T(P)=T(P)+J*(P-P" (8)

we can write an iterative procedure for the estimation of the parameters P in the form (Beck and Arnold, 1977):
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P =P +[JTWI+ VT HITWLY = T(P)] +V ™ (n-P)} 9)

where J is the sensitivity matrix defined by Eq. (5) above. For convenience in the analysis, we rewrite the sensitivity
matrix here as

J
J(P) = :2 (10.9)
‘]I
where
J, = ﬂﬂ (10.b)
ok* oC*
If we make the additional assumption that the measurement errors are uncorrelated, the weighting matrix is given
by
W, 0 - 0
0 W :
W =| . 2 (118.)
0
0 0 W,
where
W =1/c? for i=1,.., (11.b)

and o; is the standard-deviation of the measurement ;.

For the sequential nonlinear estimation, such as the one under picture in this paper, Beck and Arnold (1977)
recommend that the parameters be initially estimated by using all measurements smultaneously. Afterwards, the
problem is solved once more, this time sequentially, by using the parameters estimated simultaneously and its
covariance matrix in the place of g and V, respectively.

In order to apply the sequential estimation approach, the linearization is performed around P¥, which is taken as

P°=p fork=0

(12)
Pk=Pf fork=12,..

where P is the vector with the values estimated sequentially for the parameters at iteration k, obtained by using all |
measurements.
The main steps for the computational algorithm of the sequential estimation approach can be organized as follows:

Step 1. Initialize the procedure with k = 0 and

P =p (13.9)
o=y (13.b)
D°=V7*'(u-P" (13.0)

Step 2. Compute the estimate for the vector of unknown parameters sequentially, for i = 1,...,1 with

IDik+1 = Pk + C;lDi (14.a)
where
C =C,+JTW,J, (14.b)
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D, =D, +J]W[Y, = T,(P“)] (14.0)

Step 3. Check convergence with the values estimated sequentially with all | measurements, that is,

| Pt =Pt <e (15.3)

If the criterion given by Eq. (15.a8) is not satisfied, increment k, make

Pk = pX (15.b)
and return to Step 2.

The above computational algorithm is not in a suitable form for computational implementation. A more convenient
form can be obtained by writing the sequential estimation explicitly, that is, the estimate for the vector of parameters
P obtained with measurements up to time t; at iteration k+1, is obtained directly from the estimate obtained with
measurements up to time t;.; at the same iteration, P,.,*** , instead of P* asin Eq. (14.a).

In order to derive such alternative form for the sequential estimation procedure we rewrite Eq. (14.a) for the (k+1)"
iteration, with measurements up totimei+1, as:

Plﬁl = Pk + [‘]Llwiﬂ‘]iﬂ + Ci]il{‘];rﬂwiﬂ[YHl - Ti+1(pk )] + D|} (168.)
or, aternatively,
[‘]Llwiﬂ‘]iﬂ + C|][P|511 - Pk] = JL1Wi+1[Yi+1 - Ti+1(pk )] + Di (16b)

By subtracting [J/,W,,,J,,, +C,]P“" from both sides of Eq. (16.b) and after performing some algebraic
mani pul ations we obtain:

F>I5;.1 = IDik +Vid iT+1Wi+1{ [Yia— Ti+1(Pk)] - ‘]i+1[Pik+1 -P)} (17.9)
where
Vi =[30aWindis +C 17 (17.b)

Vs isthe covariance matrix for the linear maximum a posteriori estimator using i+1 measurements, which is used
as an approximation for the nonlinear estimator (Beck and Arnold, 1977).
By using the following matrix identities (Beck and Arnold, 1977):

Via =V, -V, JiT+1(Ji+1Vi JiT+1 + Wi:i)_l‘]iﬂvi

T T T -1y -1 (18.ab)
Vi+1‘]i+1Wi+1 = Vi ‘]i+1(‘]i+1vi ‘]i+1 + Wi+1)

where Eq. (18.a) is referred to as the Matrix Inversion Lemma (Beck and Arnold, 1977, Beck, 1999), we can write the
following computational algorithm for the sequential estimation approach:

Step 1. Initialize the procedure with k = 0 and
Py (19)

Step 2. Compute the estimate for the vector of unknown parameters sequentially, for i = 0,...,1-1 with

A= Vi ‘]Ll (208.)
A=J A+W (20.0)
K=AAL (20.c)
Eii=Yia~ Ti+1(Pk) (20.d)
Pl = P+ KBy = J,, (R = PY)] (209
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Via =Vi—K 3,V (20.f)
where
V, =V (20.9)
P¥=n (20.h)
0

Step 3. Check convergence with the values estimated sequentially with all | measurements, that is,

[P -pt]<e (14
If the criterion given by Eq. (21.a) is not satisfied, increment k, make

Pk = pX (21.b)

and return to step 2.

A quiteimportant computational feature of the above algorithm isthat, if one measurement isadded at atime, such
as for the case involving transient measurements of a single sensor of this work, no matrix inversion is performed
because A and Wi,; are scalars. In fact, even if transient measurements of multiple sensors are used in the analysis,
they can be arranged so that one single measurement is added to the sequential estimation procedure at a time, so that
no matrix inversions need to be performed.

The above computational algorithm was derived for a case where previous estimates were available for the vector
of parameters and for their covariance matrix, obtained by using all measurements simultaneoudly, i.e., not sequentialy.
However, it can also be used for cases where no previous estimations are available, or if available, they have large
uncertainty. For such cases, we take i as any vector, say, with null components. Also, wetake V as a diagonal matrix
with large values on the diagonal as compared to the square of the expected values for the parameters.

3.3. Statigtical analysis

After the minimization of the objective function, given either by Eq. (3.8) or Eq. (6.8), a statistical analysis can be
performed in order to obtain confidence intervals for the estimated parameters. Confidence intervals at the 99%
confidence level are obtained as (Beck and Arnold, 1977, Ozisik and Orlande, 2000):

P -25760, <P <P +25760, (22.9)

where P are the values estimated for the unknown parameters, and o, are the standard deviations for the unknown
parameters, given by

o, = V. (22.b)

A ii

Vj is the | eement in the diagonal of the covariance matrix for the estimated parameters, V. Expressions can be
obtained for such matrix in linear estimation problems, by using either the ordinary least-squares norm or the maximum
a posteriori objective function (Beck and Arnold, 1977). These linear expressions can be approximately used for non-
linear cases, such as the one of this work. The covariance matrix of the estimated parameters for the ordinary |east-
sguares norm and for the maximum a posteriori objective function are given, respectively, by:

V=1J")"0? for the ordinary |east-squares norm (22.0)
V=0"WJ+v*hH™, for the maximum a posteriori objective function (22.d)

4. Resaults and discussions

We present below results obtained for the simultaneous estimation of the thermal conductivity and volumetric heat
capacity of Teflon, by using the experimental setup and the estimation techniques discussed above. This material was
chosen because of its applicationsin the space industry (Rey Silvaand Orlande, 2001) and because there were tabulated
values for the physical properties of interest here. We examined three different levels of heat flux applied to the
specimens, as shown in Tab. (1). The voltage applied to the heater in each experiment isaso shown in Tab. (1). For al
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three cases considered, the heating time was taken ast, = 232 sand thefinal experimental timeast; = 323 s(Oliveiraet
al, 1999).

Table 1. Applied voltage and generated heat flux in the experiments.

Experiment Applied voltage (volts) Theoretical heat flux (W/m°)
#1 100 + 1.5% 4664 + 147
#2 90 + 1.5% 3778 + 131
#3 70 + 1.5% 2285 + 100

Preliminary results, obtained for the estimated parameterswith the experimental data of the three experimental runs
shown in Tab. (1), were completely inaccurate. It was found that this behavior was caused by large uncertainties on the
actual functional form of the applied heat flux, which was assumed as a step function in the mathematical model
described above. It happens that, because of the large mass of the heater, the applied heat flux was actually very
different from such step function. As a result, the heat generated in the electrical resistance was not instantaneously
conducted into the specimen. Such behavior was also observed by Lima e Silva et a (1999) and Lima (2001).
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Figure 3. Experiment #1. (a) Estimated heat flux. (b) Measured and estimated temperatures.
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Figure 4. Experiment #2. (a) Estimated heat flux. (b) Measured and estimated temperatures.

By using tabulated values for the thermal properties of Teflon, k=0.35W/(m°C), p=2200kg/m® and
cp = 1050 J(kg °C) (Cengel, 1998), we used a procedure based on the conjugate gradient method of function estimation
with adjoint problem (Ozisik and Orlande, 2000), in order to estimate the actual applied heat flux at the surface of the
specimen. Figures (3), (4) and (5) present the estimated heat fluxes, as well as a comparison between the estimated and
measured temperatures, for each of the experimental runs, respectively. Note in Figs. (3a), (4a) and (5a) that the actual
applied heat flux is quite different from the theoretical step function, for all three cases considered. Note the small rate
of increase in the heat flux when the heater is turned on, aswell as the small rate of decrease of the heat flux when the
heater is turned off, because of the large thermal capacity of the heater, which is too thick for this application. It is
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interesting to note that, generally, the functional form of the actual applied heat flux is not affected by the applied
voltage to the heater. Also, note that the peak-value for the actual heat flux was smaller than the theoretical value for
each of the experimental runs. Estimated and measured temperatures arein excellent agreement, as shown by Figs. (3b),
(4b) and (5b).
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Figure 5. Experiment #3. (a) Estimated heat flux. (b) Measured and estimated temperatures.

We now use the temperature measurements, together with the estimated heat fluxes shown in Figs. (3)-(5), in order
to estimate the tabulated values of thermal conductivity and volumetric heat capacity of Teflon. Table (2) presents the
values obtained with the two estimation techniques examined in thiswork, for the three experimental runs. Confidence
intervals for the estimated parameters, at the 99% confidence level, are also shown in thistable. The standard-deviation
of the measurement errors, obtained during the calibration of the measurement system, was 0.31 °C. Such standard-
deviation was necessary to compute the confidence intervals for the estimated parameters, as given by Egs. (22.a-d). For
the sequential estimation technique, the vector i was taken as a vector with small components, and the covariance
matrix V was taken as a diagonal matrix with large values on the diagonal as compared to the square of the expected
values for the parameters. Note that no improvement was obtained for the estimated parameters with the sequential
estimation technique.

Table 2. Estimated parameters.

Levenberg-Marquardt Sequential Estimation
Experiment Parameter Estimated Confidence Intervals Estimated Confidence Intervals
Parameters Parameters

* [W/(m °C)] x 10 497 491 ; 3.5 497 491 ; 3.5
# k* [W/(m °C)] x 10 3.49 3.491 ; 3.503 3.49 3.491 ; 3.503
C* [J(m*°C)] x 10° 2.32 (2.30; 2.34) 2.32 (2.30; 2.34)

* [W/(m °C)] x 10 497 489 ; 3.5 497 489 ; 3.5
w0 k* [W/(m °C)] x 10 3.49 3.489 ; 3.504 3.49 3.489 ; 3.504
C* [J(m*°C)] x 10° 2.32 (2.30; 2.34) 2.32 (2.30; 2.34)

* [W/(m °C)] x 10 5! 48 ; 3.51 5! 48 ; 3.51

3 k* [W/(m°C)] x 10™ 3.50 3.48;3 3.50 3.48;3
C* [J(m*°C)] x 10° 2.34 (2.30; 2.37) 2.34 (2.30; 2.37)

The values estimated for each parameter, with the corresponding 99% confidence level, are shown in Figs. (6a,b),
for each of the experimental runs. Note in thesefiguresthe larger confidence interval for experiment #3. Also, note that
the values estimated for the parameters differ mostly from the tabulated values for this experimental run. This is
probably because of the smaller magnitude of the applied heat flux for this case, which result on smaller increases on
the measured temperatures (see Figs. (3b), (4b) and (5b)). Therefore, the measurement errors are more significant for
experimental run #3 than for the other runs.
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Figure 6. Estimated parameters with 99% confidence intervals when using Levenberg-Marquardit.
(8 Thermal conductivity. (b) Volumetric heat capacity.

Estimated Parameter, k [W/(m °C)]
Estimated Parameter, C [J/(m?°C)]

Figures (7a-c) present the residuals between measured and estimated temperatures, for each of the experimental
runs, respectively. Note the small values of the residuals, as compared to the magnitude of the measured temperatures
shown in Figs. (3b), (4b) and (5b). On the other hand, notein Figs. (7a-c) that the residuals are highly correlated. This
can be due to inconsi stenci es between the mathematical model and the actual physical problem, such asthe constant and
uniform temperature boundary condition for the non-heated surface, or the uniform heating. This can also be dueto the
correlation of the measurements, which was not taken into account for the estimation procedures examined in thiswork.
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Figure 7. Residuals for the estimation of the unknown properties with the Levenberg-Marquardt method.
(a) Experiment #1. (b) Experiment #2. (c) Experiment #3.
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The sequential estimation of the unknown parametersisillustrated in Figs. (8a,b), for experimental run #1. Notein
these figures that, after some oscillations for small times, the parameters converge fast to the tabulated values.
Therefore, the duration of the experiment, aswell as the number of transient measurements used in the inverseanalysis,
is appropriate to obtain accurate estimations for the parameters.
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Figure 8. Sequential Estimation of the parameters for experiment #1.

5. Conclusions

In this paper, we presented preliminary results obtained for the simultaneous estimation of thermal conductivity and
volumetric heat capacity of solids, with an experimental apparatus developed in LTTC/COPPE/UFRJ. Such apparatus
consisted of two identical specimens of the material with unknown properties, with a heater sandwiched between them.
The preliminary results were obtained for Teflon, because of known tabulated values for the thermophysical properties
of interest here. The properties were identified by using two different estimation procedures, namely: the Levenberg-
Marquardt Method and the Sequential Parameter Estimation Technique.

The results shown above reveal that the thermal capacity of the heater used was very large. As aresult, the applied
heat flux was quite different from the theoretical one. By using the estimated heat flux instead of the theoretical step-
function, we were able to obtain accurate estimations for the unknown properties, which were compared to the tabulated
values encountered in the literature.

We are currently changing the heater to one with smaller mass, which can provide heat fluxes closer to the
theoretical step-function. We are also using other experimental techniques for the identification of thermal conductivity
and volumetric heat capacity, in order to compare to the one now under development.

6. Dedication

Thiswork is dedicated to the memory of Professor Roberto de Souza, for his enthusiasm, dedication and substantial
achievements in the devel opment of experimental apparatus and techniques at the Laboratory of Heat Transmission and
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