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Abstract. The Generalized Integral Transform Technique (GITT) is employed in the solution of the momentum equations in
hydrodynamically developing laminar flow of non-Newtonian power-law fluids inside circular ducts. Results for the velocity field
and friction factor-Reynolds number product are computed for different power-law indices, which are tabulated and graphically
presented as functions of the dimensionless coordinates. Critical comparisons with previous results in the literature are also
performed, in order to validate the numerical codes developed in the present work and to demonstrate the consistency of the final
results.
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1. Introduction

The analysis of the hydrodynamically developing laminar flow inside ducts of cylindrical geometry has been
subject of great interest as demonstrated by the available literature, mainly to the case of flows inside a concentric
annular region which is more represented by concentric circular ducts. Therefore, a correct prevision related to the heat
transfer between the channel wall and the fluid studied is extremely important in equipment design and thermal devices
in general. Heat transfer to purely viscous non-Newtonian fluids is frequently encountered in various industries (e.g.,
chemical, petrochemical and food processing). These fluids are commonly processed under laminar flow conditions
because of their high apparent viscosities and also the small hydraulic diameters employed in compact heat exchangers.
An important feature of most purely viscous non-Newtonian fluids is that some of their rheological and thermophysical
properties are very sensitive to temperature. This variation can have a large effect on the development of the velocity
and temperature profiles, consequently on the pressure drop and heat transfer rates.

A brief literature survey indicates that Lin and Shah (1978) have studied the heat transfer problem of power-law
fluids with yield stress, flowing in the entrance region of a circular duct and parallel plates channel, they used a forward
marching procedure to solve the related momentum and energy equations. Cuccurullo and Berardi (1998) investigated
the simultaneously developing of velocity and temperature profiles in the entrance pipe flow. The flow was assumed to
be steady-state for a non-Newtonian fluid in incompressible laminar pipe flow. The fluid behavior was assumed to
follow the Ostwald-de Waele power-law model. The developing velocity and temperature profiles were solved by the
integral method. Results were presented and discussed in terms of axial and radial velocity profiles, Fanning friction
factors and Nusselt numbers for different fluid properties and thermal boundary conditions.

In this context, the present study is motivated to employ the Generalized Integral Transform Technique (GITT) in
the solution of the momentum equations for non-Newtonian power-law fluids flowing in the entrance region of circular
tubes, and for this purpose, the boundary-layer formulation in terms of primitive variables is adopted. Numerical results
for the velocity field and local Fanning friction factor are obtained considering the effect of the power-law index, and
the results for velocity profile are compared with those reported in the literature. The GITT approach is an extension of
the Classical Integral Transform Technique, which is based on eigenfunction expansions yielding to solutions where the
most features are the automatic and straightforward global error control and an only mild cost increase in overall
computational effort for multidimensional situations. The Most recent contributions are aimed at the accurate solution
of non-linear heat and fluid flow problems, which include problems with variable properties, moving boundaries,
irregular geometries, non-linear source terms, non-linear boundary conditions, Navier-Stokes equations and boundary
layer equations (Machado and Cotta, 1991). In recent works, Quaresma (1997), Magno (1998), Nascimento (2000) and
Chaves (2001) have been carried out important studies related to the GITT application in different kind of problems. A
detailed compilation dealing with the advances of this technique on diffusion-convection problems can be find out in
Cotta (1993, 1998) and Cotta and Mikhailov (1997).
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2. Analysis

Within the range of validity of the boundary layer hypothesis, the continuity and momentum equations in the
primitive-variables formulation for this problem are written in dimensionless form, respectively as:

VL2 Ry)=0; 0<R<l; Z>0 (1)
iz "RR
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with the following inlet and boundary conditions:

Z=0: UR,Z)=1; V(R,2)=0; (4a,b)

R=0: IRD_. yr z-0; (4c,d)
R

R=1: UR,Z2)=0; V(R,2)=0; (4e,)

The dimensionless groups employed in equations above are defined as:

pug "1y

= (5a,9)

For improving the computational performance in the solution of the velocity field, with respect to the direct
procedure (Cotta and Carvalho, 1991), the fully developed flow situation is separated from the complete potential, in
the form:

UR.2)=Uy(R) + U;(R,2) ©)
Uu(R) =21 (1_R“§j ™

This is a commonly used strategy in the integral transform approach (Cotta and Serfaty, 1991; Cotta, 1993),
equivalent to the separation of the steady-state solution in a transient problem, which acts by filtering the equation
source terms responsible for the slower convergence rates in non-homogeneous problems. Then, after the substitution of
the splitting-up scheme, Eq. (6), the problem formulation is rewritten as:
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and the inlet and boundary conditions become:

Z=0: U,(R,2)=1-UyR); V(R,Z)=0 (11.a,b)

R=0: MR2D 4. yrz-0 (11.c,d)
OR

R=1: U,(R,2)=0; V(R,Z)=0 (11.e,)

The next step in the solution of Egs. (8) to (10) is the elimination of the transversal velocity component, V(R,Z),
and the pressure gradient, (-OP/0Z). First, the continuity equation (8) is integrated, to yield:

V(R,Z)z%J. &%d& (12)

while the momentum equation is integrated over the channel cross-section to provide an expression for the pressure
gradient:

oP ! ou 2| (du, ouU
-—=4| R(Uy +Uy)—=—LdR —=—|n L +—L 13
7 _L Ua+ Uil ReH @R 8RH ()

Equations (12) and (13) relate the transversal velocity and pressure gradient to the longitudinal velocity field, as
required for completion of the integral transformation process. Following the formalism in the generalized integral
transform technique, to construct the eingenfunctions expansions, an auxiliary eigenvalue problem is selected as:

%(R%]+u3Rwi(R):0; em 0<R <1 (14a)
dy;(R)

SN 20, w,(R). . =0 14b
o A (14b.0)

The eigenfunctions and the transcendental expression to calculate the eigenvalues are given, respectively, by:
Vi(R)=Jo(R)5 Jo(u;)=0 (14d.e)
The eigenfunctions of this eigenvalue problem enjoys the following orthogonality property:

L - 0, i#]
j Ry, (R)(R)dR =5, = { (14)

I, i=j

and the normalization integral is defined as:

1
N :J. RWiZ(R)dR:%Jf(Hi) (14g)
0

The problem given by Egs. (14) allows the definition of the following integral-transform pair:

U,(Z)= I i(\T;i(R)UF(R,Z)dR , transform (15)

U,(R,Z) = Z T.RU.(2), inversion (16)
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In terms of the transformed potentials defined by Eq. (15), the transversal velocity component and pressure gradient
are rewritten as:

V(R,Z)= Z—AilgR) _dliéz) (17)
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where
Ai<R>=L% R = )R 1) (19)
B~ | OIRde(Rmm aR (19b)
C = J.Ol RuA (R)dR (19¢)
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Equation (9) is now integral transformed through the operator I Ol\ui(R) / N} /2 4R , to yield the transformed ordinary

differential equations:

> { Z[Dukw ~ 47,018, U, + Fy - (3“;1]%—2Ai<0)[8tuk—(3“n”jck} }%ﬂi (20)

k=1

The inlet condition, Eq. (11a), is similarly integral transformed to provide:
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0

where the various coefficients in Eq. (20) are given by:
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The inversion formula, Eq. (15), and Eq. (6) are recalled to construct the original potential for the longitudinal
velocity component, in the form:

UR,2)=Uy(R) + Y H(R)T(Z) 23)

where NC is the truncation order for the velocity eigenfunction expansion.
Quantities of practical interest can be analytically evaluated from their usual definitions, such as the local Fanning
friction factor:

n-1
e 2||(euY P au] . au
Re OR OR ’ OR

R=1

_ [Z \T,;(l)ﬁi(Z)J - (3“; 1] (24.25)
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3. Results and discussion

Numerical results for the velocity profiles and Fanning friction factors were produced for different values of power-
law indices, namely n == 0.5; 0.75; 1.0; 1.25 and 1.5, at entrance region of a circular tube. The computational code was
developed in FORTRAN 90/95 programming language and implemented on a PENTIUM-IV 1.3 GHz computer.

First, the numerical code was validated for the case n = 1.0 (newtonian situation) against those results presented by
Hornbeck (1964) and Liu (1974), which employed the Finite Difference Method for the solution of the same problem.
The routine DIVPAG from IMSL Library (1991) was used to numerically handled the truncated version of the system
of ordinary differential equation (20), with a relative error target of 10™ prescribed by the user, for the transformed
potentials. These results were produced for Re = 2000, but it should be noted that the dimensionless axial coordinate X"
makes the results independent of the apparent Reynolds number. The definition of X" is written as:

V4
X+ == 26
Re (26)

Table (1) shows the convergence behavior of the longitudinal velocity component at the centerline of the circular
tube, as well as its comparison with the results presented Hornbeck (1964) and Liu (1974) demonstrating a good
agreement, which provides a direct validation of the numerical code here developed. This same analysis is also shown
in Fig. (1), where it is observed a monotonic convergence for the longitudinal velocity component at the centerline of
the circular tube, U,.

Table 1. Convergence behavior of the longitudinal velocity component at the centerline of the circular tube for power-
law index n = 1.0.

X NC=20 | NC=40 | NC=60 | NC=80 | Hornbeck (1964) | Liu(1974)
0.0002116 1.015 1.033 1.067 1113 - 1.100
0.0005000 1.096 1111 1.127 1.145 1.150 -
0.001058 1.169 1.183 1.192 1.200 - 1210
0.001250 1.187 1.201 1.209 1215 1.227 _
0.005000 1.393 1.408 1.414 1.415 1.433 -
0.005288 1.405 1.420 1.429 1.427 - 1.439
0.01204 1.607 1.625 1.631 1.631 - 1.644
0.01250 1.618 1.636 1.642 1.642 1.660 -
0.04924 1.906 1.933 1.945 1.946 - 1.971
0.05000 1.907 1.935 1.946 1.947 1.970 _
0.06250 1.923 1.949 1.960 1.961 1.986 -
0.06281 1.923 1.949 1.960 1.961 - 1.989
0.07634 1.933 1.957 1.968 1.969 - 1.996
0.08993 1.941 1.962 1.972 1.972 - 1.999
1.0 2.000 2.000 2.000 2.000 - -
5.0 2.000 2.000 2.000 2.000 _ _
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Figure 1. Convergence behavior of the U, component velocity for power-law index n = 1.0.
Figures (2) and (3) bring a convergence behavior of the U, component velocity for the cases of power-law indices

n=0.5 and 1.25, and the same observations are verified as for the case of n = 1.0, i.e., a monotonic convergence for this
component velocity.

0 0.02 0.04 0.06 0.08
x*

Figure 2. Convergence behavior of the U, component velocity for power-law index n = 0.5.
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Figure 3. Convergence behavior of the U, component velocity for power-law index n = 1.25.

Figure (4) illustrates the development of the longitudinal velocity profiles for different power-law indices, namely,
n = 0.5; 0.75; 1.0; 1.25 and 1.5, as function of the transversal coordinate R, at specific axial positions X*. From this
figure it can be noticed that when the power-law index increases there is an increase in the value of the centerline
velocity. In regions near the tube wall, it is verified that the velocity gradient diminishes as n increases, this is due to an
increase of the apparent fluid viscosity, and consequently an increase of the wall stress. For practical engineering
considerations, this effect leads to an undesirable increase of the pumping power to promote the flow of this type of

fluids inside circular tubes.
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Figure 4. Development of the longitudinal velocity component along the entrance region of the circular tube for
different power-law indices.
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Results for the product Fanning friction factor-apparent Reynolds number are shown in Fig. (5) as function of the
axial positions X', for n = 0.5; 0.75; 1.0; 1.25 and 1,5. It can be observed that the product fRe diminishes until to be
reached the fully developed region, in which this parameter assumes a constant value. For higher power-law indices,
fRe increases, and this fact can be explained by an increase of the apparent fluid viscosity in regions near to the tube
wall as n increases. Also, it is noted that the product fRe presents higher values in the entrance region of the circular
tube due to higher velocity gradients experimented by these fluids in this region.

280
240 —|
200 —|
—————— n=15
- n=1.25
n=1.0
160 — n=0.75
° —— - - -n=05
5 —
120 —
80 —
40 —
0 T IIIIIII| T IIIIIII| T IIIIIII| T IIIIIII| T T TTTT
0.0001 0.001 0.01 0.1 1 10
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Figure 5. Development of the product Fanning friction factor-apparent Reynolds number in the entrance region for
different power-law indices.

Finally, Tab. (2) shows a comparison of the present results for the product fRe in the fully developed region against
those of Quaresma and Macédo (1998). It is verified an excellent agreement between the two sets of results, once again

validating the numerical codes developed here.

Table 2. Comparison of the product fRe in the fully developed region for different power-law indices.

fRe
n
Present work Quaresma and Macédo (1998)

0.5 6.3246 6.32455
0.75 10.102 10.1023

1.0 16.000 16.0000
1.25 25.238 -
1.50 39.718 39.7175

4. Conclusions

Numerical results for the velocity field and product Fanning friction factor-apparent Reynolds number were
produced by using the GITT approach in the solution of the momentum equations for the flow of non-Newtonian
power-law fluids in circular tubes. Results for velocity profiles indicate that an increase of the power-law index
promotes an increase of the centerline velocity in order to obey the mass conservation principle, this way demonstrating
the strong influence of the viscous effects on the characteristics of the fluid flow. It was also observed that the product
fRe is higher for the cases of dilatant fluids (n > 1) than for those of pseudoplastic ones (n < 1) due to an increase of the
apparent fluid viscosity in regions near to the tube wall.
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