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Abstract. This paper presents various finite differences schemes and compare their ability to simulate instability waves
in a given flow field. The governing equations for two-dimensional, incompressible flows are derived in vorticity-velocity
formulation. Four different space discretization schemes are tested, namely, a 2™ order central differences, a 4** order
central differences, a 4t order compact scheme and a 6" order compact scheme. In time a classic 4" order Runge-Kutta
scheme is used. The influence of grid refinement in the streamwise and normal directions are evaluated. The results
are compared against linear stability theory for the evolution of small amplitude Tollmien-Schlichting waves in a plane
Poiseuille flow. Both the amplification rate and the wavenumber are considered as verification parameters, showing the
degree of dissipation and dispersion introduced by the different numerical schemes. The results confirm that high order
schemes are necessary for studying the hydrodynamic instabilities of this flow.

Key words: High resolution finite differences, Compact differences schemes, Vorticity-velocity formulation, Hydrody-
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1. Introduction

In many applications the ability to predict whether a given flow is laminar or turbulent is crucial, since
heat transfer rates and skin friction coefficients are much larger in turbulent flows. The knowledge of the flow
regime, laminar, transitional or turbulent, helps the correct design of aerodynamic surfaces or cooling systems.
In certain situations it is even desirable to control the evolution of a laminar flow in order to delay transition
and reduce viscous drag (Joslin, 1998b, Joslin, 1998a, Davies et al., 1999).

The Direct Numerical Simulation (DNS) of the Navier-Stokes equations to study stability and transition is
becoming more feasible with the increasing capacity of modern computational resources. Different approaches
have been presented in the literature (Laurien and Kleiser, 1989, Biringen and Laurien, 1991, Spalart, 1989,
Gmelin et al.,; 1999, Meyer et al., 1999, Zhong, 1999, Whang and Zhong, 1999, Hu and Zhong, 1999, Guschin
et al., 1999) and a common factor among them is the need for high resolution discretization methods (Zang et al.,
1989). This is because the numerical study of hydrodynamic stability and transition to turbulence requires the
correct representation of a range of spatial and time scales. Spectral methods can be used to assure that all
relevant scales are captured, but higher order finite difference are also able to represent short length scales with
good accuracy. Lele (Lele, 1992) emphasizes the importance of using high order methods for these flows and
shows schemes for first and second derivatives of 2"¢ to 10" order. Mahesh (Mahesh, 1998) shows higher order
finite difference schemes, introducing a method that is more accurate than the standard Padé schemes using
the same stencil. The disadvantage of this method is that it requires the solution of first and second derivatives
simultaneously. Hirsh (Hirsh, 1975) and Adam (Adam, 1977) also discusses some advantages of a fourth order
compact methods compared to standard methods.
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Another relevant aspect to be considered in direct numerical simulation of stability and transition problems
is grid refinement. Coarse-grid simulations can introduce both artificial dissipation and spurious oscillations in
the flow.

In the current study, a formulation based on the vorticity-velocity variables (Messing et al., 1999, Fezer and
Kloker, 1999, Stemmer and Kloker, 1999, Wassermann and Kloker, 1999, Wassermann and Kloker, 1998, Zhang
and Fasel, 1999) was adopted. The growth of instability modes in a two-dimensional Poiseuille incompressible
flow is simulated. The disturbances introduced in the flow field can grow, decay or stay constant depending on
the Reynolds number and frequency.

The emphasis in this paper is on inferring what degree of resolution is needed to capture reliably the in-
stantaneous structure of a disturbed flow. In Section 2 the governing equations are derived, and the details of
the numerical methods are described. The time and spatial discretization used is also shown in this section.
Four different schemes used to discretize spatial derivatives are presented, namely, 2"¢ order explicit central
derivatives, 4" order explicit central derivatives, 4" order implicit (compact) central derivatives and 6* or-
der implicit (compact) central derivatives. Section 3 presents details of the linear stability analysis for plane
Poiseuille flows. In Section 4 the propagation of a stable, a neutral and a unstable disturbances using a 6"
order compact method is given. Then, simulations using the other 3 approaches for spatial derivatives were also
given for a neutral disturbance. Section 5 presents the conclusions and final comments.

2. Formulation and numerical method

For the numerical solution, the Navier-Stokes equations were written in vorticity-velocity formulation. The
vorticity in the spanwise direction, denoted by w,, is:

ou Ov
Wy = 8—y - 6_,’1;' (1)

The vorticity transport equation is:

ow, N Suw, 4 dvw, 1 (0w, N 8%w, @)
ot Or 0y  Re \ 0z2 oy? )’
The continuity equation is:
Oou Ov
55y =0 (3)

From the vorticity equation(1) and the continuity equation (3) a Poisson-type equation for the v velocity
can be derived:
v 0% Ow
Fo Oy du, @)
Ox Oy ox

Equations (2), (3) and (4) were solved numerically by the schemes described below.
The solution was marched in time according to the following steps:

1. Impose initial conditions for u, v and w, compatible with each other;

2. Introduce disturbance at inlet boundary, using eigenfunctions obtained from solving the Orr-Sommerfeld
Equation for the Poiseuille flow;

3. Calculate the vorticity from the vorticity transport equation (2), for time ¢ + dt;
4. Calculate v velocity from the Poisson equation (4);

5. Calculate u velocity from the continuity equation (3);

6. Calculate the vorticity generation at the wall for the new velocity distribution;
7. return to the second step until the desired integration time is reached.

The time derivative in the vorticity transport equation is discretized with a classical 4" order Runge-Kutta

integration scheme (Ferziger and Peric, 1997). For each intermediate step in the Runge-Kutta integration it is
necessary to update the velocity field and the vorticity at the wall by taking steps 4 to 6 in the scheme described
above.
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For the spatial derivatives four different schemes were used. Bellow the discretization used for each method
is presented, taking the derivative in x direction as an example, since it is analogous for the y derivatives. The
letter ¢ represents the grid position in z direction, which varies from 1 to V.

2nd grder derivatives: For 1 < i < N:

ﬂ fz+1 fz 1

Ori 2dx O(dz?) (5)

f  fipn—2fi+ fia 2

P s + O(dz?) (6)
For ¢ = 1:

of _ 3fit+4fa—fs 2

dr1 2dx +0(dz") (7

O’f _ 6fi—15f2+12f3 —3f4 )

Bat, = = +0(ds*) ®
For i = N:

of _3fn—4fn-1+ [N 2

dxN 2dx +0(dr’) ©)

O*f  6fn—15fN_1+12fN_2—3fn_3 9

9N a2 + O(dz*) (10)

4th order explicit derivatives: For 2 <i < N — 1:
Of _ fiea —8fic1 +8fix1 — fito

Bri 12dz +0(dz’) -

%i _ —fia+16fi ;23;;2 +16fi1 = firr | 00 (12)
For ¢ =1:

%1: —50f1 + 96 —2;33{3+32f4—6f5 O(dz") (13)

g%f - 225f; — T70fs + 10706f03d;2780 fa+305f5 —50fs (do) (14)
For ¢ = 2:

g_;fz —6f1 — 20> +2?::;J;3 —12f4 +2f5 + O(dz") (15)

227];2:50}‘1 75f2_20£36c;270f4_30f5+5f6 O(dz") (16)

(;1}; 11f, —20f21-|2-d6xj;3+4f4 il L 0(dz*) (17)

The use of a 4" and 37¢ order approximations for 4 = 2 and i = N — 1 is discussed in the section considering
the numerical results. The approximations for ¢ = N, and ¢ = N — 1 are analogous to the approximations for
i =1 and 7 = 2, the only change is the sign of the first derivative, as one can observe in the approximations of
second order accuracy.

4th order implicit derivatives: To find the values of implicit derivatives a matrix must be solved, where
all the derivatives in a grid line are solved simultaneously. The matrix for the first derivatives is:
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[1 3 | T [ = (=1Tf1 +9fo + 9fs — fu)
1 4 1 . o= (—=f1 + f3)
1 41 fi | = (= fic1 + fig1) . (18)
141 lel—1 . %(_fN—Q + fn)
L 3 1] [ v | | 6z 17N —9fn_1—9fN_2+ fN_3) |
The matrix for the second derivatives is:
(1 11 17 A7 T 55 (39f1 — 8f2 + 45f3 — 3f4) |
1 10 1 s L2 (fr—2f2+ f3)
1 10 1 I = 2 (fic1 — 2fi + fiy1) . (19)
1 10 1 "y 1= (N2 —2fN_1+ fN)
i 1 1] f& ] | 55=(39fn —81fn_1+45fn—2 —3fn-3) ]

6! order implicit (compact) derivatives: The differences between the scheme used in this work and
the 6" order approximations shown by Lele (Lele, 1992) is in the discretization of the boundary and near
boundary points. At the boundaries, a 3"? order approximation is proposed by Lele, whereas for points near
the boundaries he proposed a 4t* order approximation. In the current work a 5t* order approximation for the
boundary points is adopted. For points near the boundaries, a 6* order approximation was used.

The details of the discretization scheme were as follows.

For points at the boundary, ¢ = 1:

flafl = ﬁ(-mh + 165 + T2f3 — 16f4 + 2f5) + O(dz®). (20)

For the first point next to the boundary, i = 2:

fl46f+2f, = (—406f, — 300> + 7603 — 80f4 + 30f5 — 4f5) + O(dz®). (21)

120dx

For the points near other boundaries, i = N and ¢ = N — 1, similar approximations were used.
For the interior points, a 6t* order Padé approximation was used:

L 2 — 28fi 1+ 28fi11 + fir2) + O(da®). (22)

fia+3fi+fig= %(— i

The resulting linear algebraic system of equations in matrix form reads:

- f o= (—TAf1 + 16f2 + 72f3 — 161 + 2f5)
L 6 9 1 5o (—406 f1 — 3002 + 7603 — 80 f1 + 30f5 — 4f5)
13 1 flo]= 1a0a (—fim2 = i1 +28fis1 + fise)
2 6 1 fJIV—l (406fN+300fN—1—760fN1—220'5m80fN—3—30fN—4+4fN—5)
L 4 1| [ v | | mu(T4fn —16fn—1 — 12fN—2 + 16 fN_3 — 2fN_4) |
(23)

The second derivative, at the boundary, i = 1, were discretized using a 5! order asymmetric approximation:

1
13f' +137f) = m(gm’) f1 — 20285 f5 + 11170 f3 — 550 f4 — 145f5 + 36 f5) + O(dz®). (24)



Proceedings of the ENCIT 2002, Caxambu - MG, Brazil - Paper CIT02-0804

The first point near the boundary, i = 2, used a 6 order asymmetric approximation:

"+ 12f) +3f) =

1
S0z (1834f1 — 8424, +1890f5 + 2320, — 8105 + 2165 — 26f7) + 0(dz%) (25)

The interior points used a 6!* order Padé approximation:

2f 1+ 11f” + 2fl (3fi—2 +48f;—1 — 102f; + 48 ;11 + 3fizr2) + O(dl‘ ). (26)

_4d2

For the points near other boundaries, i = N and ¢ = N — 1, similar approximations to the ones used for
points ¢ = 1 e 4 = 2 are used. The resulting linear algebraic system of equations in matrix form reads:

(13 137 1

1 12 3 2
2 11 2 "o =

1;, 12 1 "

I 137 13 | | f¥

e T3z (9775 f1 — 20285 fo + 111703 — 5504 — 145 f5 + 36 f5)
soors (4834f1 — 8424 + 18905 + 2320 f4 — 8105 + 216 f5 — 26f7)

T (3fima +48fio1 — 102fz~ + 48fip1 + 3fir2) .(27)

e (4834fN 8424 fn_1 + 1890 fNn_o + 2320fN 3 —810fn_4+216fn_5 — 26fn_¢)
120dw2 (9775fN - 20285fN 1 + 11 17OfN 2 — 550fN 3 — ].45fN 4 + 36fN 5)

To solve the Poisson equation, a Line Successive Over-Relaxation method (LSOR) was used. The method
is a combination of a 4** order explicit approximations in z direction and 6* order compact approximations
in y direction. Some tests were made using a full 6'* order compact approximations method and no relevant
differences in the results were found. The full 6" order compact method required a larger computational effort,
therefore, in this simulations, the combination method was adopted.

Three types of boundary conditions needed to be specified: inflow boundary condition, wall boundary
condition and outflow boundary condition.

At the inlet, the boundary condition was specified by superposing a small disturbance on top of the laminar
Poiseuille flow velocity U(y) and vorticity W, (y) distributions.

u(m()?y?t) = U(y) —}—u'(mmy,t),
’U(.Zg,y,t) = UI(anyat)a (28)
w;(20,y,t) = Wz(y)-l_wlz(manat)'

The small disturbance was given by the solution of a linear stability analysis. The Orr-Sommerfeld equa-
tion was solved, as described in the next section, and the disturbances were calculated from the resulting
eigenfunctions and eigenvalues.

At the wall, no-slip boundary conditions were imposed:

u=v=0. (29)

The vorticity at the wall is calculated from the Poisson equation for the normal velocity component, Eq. 4,
applied at the wall, where the second derivative of u vanishes:
ow, __ o
or  Oy?’

(30)

At the outflow boundary, the following approximations were used:
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o
Oy?

A &% o*w
= —aZu/, 92 —a2v, 8y2z = —aZw!,. (31)

where the terms v/, v' and w/, are the perturbations at the outflow. This boundary condition represents a
periodic disturbances at the outflow with wavenumber «,, since the second derivative of the mean flow is
zero. This boundary condition allows the disturbances to pass through the boundary without reflections. The
wavenumber can be computed from the interior solution or, for small wave amplitudes, from a linear stability
analysis.

3. Linear stability theory

In order to test the numerical method described above, results for plane Poiseuille flow perturbed by small
amplitude periodic disturbances were tested against linear stability results given by a local normal mode analysis
based on the Orr-Sommerfeld equations. The problem is illustrated schematically in Fig.(1). The characteristic
length scale L is half the channel height H, and the characteristic velocity scale is U(j = H).

The linear stability theory assumes that the disturbances propagate n the flow as wave structures with
wavenumber a,., frequency w, wave speed ¢ = w/a, and growth rate «;, such that:

V' (@,y,t) = v(y)elrrriamivt (32)

where, v'(z,y,t) represents the normal component of velocity and v(y) is the complex amplitude distribution.
The vorticity disturbance is represented likewise. The Navier-Stokes equations are simplified assuming that
the instantaneous velocity can be decomposed into a parallel mean components U(y) and a disturbance. The
resulting equation is the Orr-Sommerfeld equation:

a(U —c)(v" = a*v) = U"aw = —é(vlv — 200" + otv). (33)

The Orr-Sommerfeld equation is an eigenvalue problem which leads to the stability diagram presented in
Fig.(2). The neutral curve, for a; = 0 separates the unstable region (a; < 0) from the stable region (a; > 0).

In the present formulation the disturbances grow or decay spatially in the downstream direction. The
temporal analysis, where the disturbances grow or decay in time, is much less computationally intensive, but
the spatial approach adopted in the present work is more consistent with the flow physics.

Three different test cases where considered. An asymptotically stable case, a neutrally stable case and an
unstable case. This cases are indicated in Fig.(2) by points ‘A’, ‘B’ and ‘C’ respectively. The frequencies,
wavenumbers and growth rates for these three cases are presented in Table 1.

Table 1: Eigenvalues for the test cases

Re | 5000 | 10000 | 10000
ar | 1.157 | 1.095 | 1.000
a; | 0.010 | 0.000 | -0.010
w | 0.330 | 0.270 | 0.2375

In order to carry out the numerical experiments the laminar Poiseuille flow velocity distribution was per-
turbed at the inlet boundary. The disturbances initial amplitude was equal to 5 x 10~%. The spatial evolution of
theses disturbances were compared to the corresponding linear stability results at downstream positions. The
results are presented in the next section.

4. Numerical results

To carry out the numerical experiments a rectangular domain extending over 8 wavelengths in the streamwise
direction was set. The number of grid points taken per wavelength and the number of points in the normal
direction were different in each simulation in order to see the results obtained with different spatial discretization
methods. The number of grid points per wavelength tested were 7, 8, 16 and 32. In the normal direction 65,
81, 161 and 321 grid points were used. The number of time steps per wave period used was 50 when using 7 or
8 grid points per wavelength and 100 when using 16 or 32 grid points per wavelength.

First the Poiseuille flow was simulated, with a stable, a neutral and an unstable disturbances using a 6t"
order compact approximation for the spatial derivatives. Fig.(3) shows the comparison of the amplification
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Figure 2: Neutral curve for Poiseuille flow

rates with Linear Stability Theory. The results obtained shows that the 6! order compact approximations is
accurate for these cases even with only 7 grid points per wavelength and 65 grid points in the normal direction.
The CPU time for this run, in a Silicon Graphics R-10000 workstation, was 1 minute and 39 seconds. Other
simulations lowering the number of points in both direction were made, but the results were not accurate. The
disturbance velocities and vorticity are plotted in Figs. (4), (5) and (6) for the neutral case.
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(lines) and LST (dots) tion - Numerical results - Test case B

Since the 6t order approximation gives almost the exact answer, the result obtained with this approximations
as a reference was taken to access the results obtained with the other discretization schemes. The grid used for
the comparisons had 16 points per wavelength and 81 points in the wall normal direction. The test case used
to compare the different spatial derivative approximations was the neutral case.

In order to compare the results, the normal component of the disturbed velocity in the middle of the channel
was plotted for each test case. There were 8 wavelengths in this computational domain and the amplitude had
maximum values equal 5 x 10, since this is a neutral disturbance and this was the amplitude used to disturb
the flow.

2"? order approximation. The best result obtained using this approximations were obtained using 32
points per wavelength and 321 points in the normal direction. The total computing time for this simulation
was 2 hours 32 minutes and 11 seconds (same workstation Silicon Graphic R-10000). In Fig.(7) one can see
that even using this number of points the result obtained was not accurate. This method showed a dissipative
behavior. In Fig.(8) 3 other simulations are plotted with different number of points per wavelength and in the
normal direction. The plots are shown as N X M where N is the number of points used per wavelength and M is
the number of points used in the normal direction. Lowering the number of grid points in the normal direction
from 321 to 161, with the same number of grid points per wavelength, results in a stronger dissipation of the
wave structure. If the number of grid points per wavelength is reduced to 16 the scheme does not have enough
accuracy to resolve the wave structure and a dispersion effect can be observed. The lower the number of grid
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4th order explicit approximation. The first interesting result that was found was that using a 4"
order non-centered approximation for the 2"¢ derivative for points near the boundary, (i = 2andi = N — 1),
an instability was obtained. In Fig.(9) one can observe that the amplitude of the disturbance grow in space
when it should remain constant, since a neutral disturbance were simulated. After investigating the possible
reasons for this instability, it was found out that replacing the 4** order approximation for the second derivative
by a 3"? order approximation this instability was eliminated. Fig.(10) presents the results using a 3"® order
approximation for the second derivative near the boundary using 16 points per wavelength and 161 points in
the normal direction and the result obtained were in good agreement with the 6* order compact differences
results.

In Fig.(11) the results of simulations with different number of points per wavelength and in the normal
direction were plotted. Again, one can observe that the number of points per wavelength is related to the phase
error of the disturbances and the number of points in the normal direction is related to the accuracy of the grow
rate. In order to avoid dispersion error it was necessary to use at least 16 points per wavelength, about twice
as much as the number of grid points necessary to have a good resolution with the 6t* order scheme.

4t order implicit (compact) approximations results. In these simulations one can see that this
method was accurate with as little as 8 points per wavelength as shown in Fig.(12). This result was obtained
using 161 points in the normal direction. Lowering the number of grid points in the normal direction to 81
introduces dissipation in the solution as shown in Fig.(13). Using the 6" order scheme the number of points in
the normal direction can be cut in half to obtain results that are in agreement with LST.

The main advantage of this method, when compared with 4" order explicit method is that one can use less
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points per wavelength to capture the correct wavelength.
5. Conclusions

In this paper, the influence of the order of spatial derivative approximations on the evolution of stability
waves was investigated. The 2" order approximations was too dissipative and the grid refinement required to
obtain reliable results turns this method economically inviable for this kind of study. The result obtained with
the finest grid tested with this method took more then 90 times the computational effort of the coarsest grid
using 6t order compact approximations, and the result was not good yet.

For the 4" order explicit approximations simulations, one can observe that the number of points required
per wavelength was greater then in 4¢® order compact approximations. Other observation was that non-centered
approximations can introduce false flow instability in a simulation, introducing a false amplifications, and this
has to be checked when implementing an explicit scheme. In these simulations one can also see that the number
of points used per wavelength has a direct connection with the accuracy of the wavelength and the number of
points in the normal direction was connected with the accuracy of the growth rate.

The 4" order compact scheme tests shows that the required number of points per wavelength in the case
tested (linear grow) can be almost the same as the 6!* order compact approximations, but the number of points
required in the normal direction was greater, 161 for 4** order compact approximations against 65 for 6t* order
compact approximations.

The 6 order implicit method employed here shows good agreement with Linear Stability Theory, even
using a ’coarse’ grid - 7 points per wavelength and 65 points in wall the normal direction.

The main conclusion was that using compact high order schemes for DNS can reduce computational effort
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and these methods should be used in transitional and turbulent flows simulations were a wide range of length
and time scales have to be accurately solved.
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