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Abstract. A numerical method for accurately solving the incompressible Navier-Stokes equation in vorticity-velocity
formulation is presented. The governing equations are discretized using a sizth order compact finite differences scheme for
the spatial derivatives. The Poisson equation for the normal velocity component is solved by an iterative Line Successive
Over Relazation Method using a multigrid Full Approzimation Scheme to accelerate the convergence. Results are presented
for the spatial evolution of two-dimensional Tollmien-Schlichting waves on a flat plate boundary layer with a very small
disturbance amplitude. Growth rates, phase and eigenfunctions are compared with results from Linear Stability Theory,
providing a through check of the numerical method. Finite amplitude disturbances are also considered. The main interest
in a two-dimensional nonlinear instability analysis is to use it as a step toward a three dimensional code. Nonlinear
results are compared against results obtained from a code based on the Parabolized Stability Equations.
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1. Introduction

Laminar-turbulent transition is one of the areas in fluid mechanics which has a large number of unanswered
questions. Nevertheless, there are many scientific and industrial applications in which laminar flow stability
and transition to turbulence are relevant. Transition to turbulence may increase skin friction and wall heat
transfer, but also helps avoid boundary layer separation and increase fluid mixing between fuel and oxidizer in
combustion devices. Therefore, it is important to investigate the physics of stability and transition in order to
control, hasten or prevent it. A large effort has been made in recent years to advance the knowledge in this
area.

Among the most recent tools used to study laminar flow stability and transition problems, there are now
highly accurate numerical techniques based on the direct numerical simulation of Navier-Stokes equations (DNS)
that are able to capture all the relevant temporal and spatial scales. Different approaches have been presented
in the literature (Laurien and Kleiser, 1989; Biringen and Laurien, 1991; Spalart, 1989; Gmelin et al., 1999;
Meyer et al., 1999; Zhong, 1999; Whang and Zhong, 1999; Hu and Zhong, 1999; Guschin et al., 1999) and
the common factor among them is the need of high resolution discretization methods (Zang et al., 1989). The
approach based on the vorticity-velocity formulation and on the use of compact differencing schemes is adopted
in the current work (Bestek, 1980; Messing et al., 1999; Stemmer and Kloker, 1999; Wassermann and Kloker,
1999; Wassermann and Kloker, 1998; Zhang and Fasel, 1999; Fezer and Kloker, 1999). According to Davies
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et al., 1999, this choice of dependent variables has some advantages over other formulations and can be easily
implemented in a high order finite difference discretization necessary for the solution of instability and transition
problems (Farouk and Fusegi, 1985).

This work is part of an ongoing effort to develop a DNS solver that is able to simulate laminar flow in-
stability problems and transition to turbulent flow. The present stage in this development correspond to the
implementation of a two-dimensional Navier-Stokes solver capable of accurately represent the propagation of
nonlinear Tollmien-Schlichting (TS) waves in boundary layers.

The code is an extension of a previous implementation used to study linear stability of TS waves in a plane
Poiseuille flow (Souza et al., 2001). It is based on the vorticity-velocity formulation and on high order compact
differencing schemes (Souza et al., 2001, Kopal, 1961, Lele, 1992). The governing equation are discretized in
time with a fourth order Runge-Kutta scheme. In space a sixth order compact schemes is used (Lele, 1992;
Mahesh, 1998).

The same methodology used in Souza et al., 2001 is now used to compute the propagation of TS waves
in boundary layers considering both nonlinear and nonparallel effects (boundary layer growth). In order to
handle the more demanding nonlinear problem, and in preparation for the extension to the three-dimensional
formulation, a multi-grid scheme has been implemented to speed up convergence of the Poisson solver. Also, an
outflow buffer domain technique has been used to avoid wave reflections on the exit boundary.

Results are compared with linear stability theory (LST) (Mendonga, 2000) and with numerical results from
a Parabolized Stability Equation (PSE) solver (Mendonga, 2000). The use of nonlinear two-dimensional TS
waves is only meaningful as a stepping stone toward a fully three-dimensional simulation. The final objective
of this effort is to study boundary layer transition and control for flows over curved surfaces and to develop
transition models that can be used in industrial and aerospace applications. In the following sections first the
details of the formulation and of the numerical method are presented (Sections 2 and 3). Section 4 presents
comparisons with linear stability theory and with nonlinear and nonparallel numerical results obtained with a
PSE code for the evolution of Tollmien-Schlichting waves over a flat plate. The conclusions are presented in
Section 5.

2. Formulation

The Navier-Stokes equations are written in vorticity-velocity formulation in order to eliminate the pressure
terms from the governing equations (Fezer and Kloker, 1999).
The following nondimensional variables are adopted:

R e O/ _Ux
T=7, Y=7 Re, u_[joo, U_Uoo Re, t—tE, and Re = >

wll

1)

Where parameters with over-bar are dimensional parameters. L is the reference length, U, is the maximum
velocity, 7 is kinematic viscosity and Re is the Reynolds Number.
The vorticity in the spanwise direction, denoted by w,, is given by:

The vorticity transport equation is given by:
ow, _ _OQuw,  dvw, N 1 (62wz> 8211)2‘ 3)
ot Oz Oy Re \ 022 oy?

The continuity equation is given by:
g—z + g—: =0. (4)

From the vorticity equation (2) and the continuity equation (4) two Poisson-type equations for the velocities
can be derived:
1o ou_ou.
Redz?  0y2 Oy’
1 8%v n 0%v _ Ow,
Redx2  0y2 Oz

(5)

(6)

The governing equations are integrated in a rectangular domain as shown in Fig. (3). In the streamwise
direction g < < ez, and in the wall normal direction 0 < y < Ymaz- The fluid enter the domain at z = xg
and exit at T = Tymaz-
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The following boundary conditions are used for the above governing equations:
at the inflow boundary, the velocity and vorticity components are given by the laminar Blasius solution. At the
wall (y = 0), the no slip condition is applied and all velocity components are set to zero.

The vorticity at the wall is calculated using the Poisson equation (6). At the wall the second derivative of
v in the z direction is zero and the Eq. (6) results:

ow, 0%

% = oy (7)

At the upper boundary the flow is assumed to be irrotational (i.e. vorticity equal zero). The velocities are
calculated imposing an exponential decay away from the wall such that:

ou
% ®
ov
_8;1; = —aw. (9)

This boundary condition is similar to the boundary condition imposed for the solution of the Orr-Sommerfeld
equation in LST. According to Fasel (Fasel et al., 1990), the value of «, the wavenumber of the TS wave, does
not have a large influence on the results as long as the value of y,,4, is sufficiently large. The extent of the
domain in the normal direction, ¥4, has to be chosen in a way that these conditions are true.

At the outflow (z = Zymaz), We set the second derivative of the velocity components with respect to x equal
to zero. In doing so we obtain the following expressions:

8%y Ow, 8%v Ow,
= and =

ay: ~ By >~ Oz’

(10)

A damping zone near the outflow boundary is used in which all the disturbances are gradually damped
down to zero. This technique is well documented by Kloker et al. (Kloker et al., 1993), where the advantages
and requirements are discussed. Meitz and Fasel (Meitz and Fasel, 2000) adopted a fifth order polynomium in
their work, and the same function is used in present simulations. The basic idea is to multiply the vorticity by
a ramp function after each step of the integration method. This technique has proved to be very efficient in
avoiding reflections that could come from the outflow boundary conditions when simulating disturbed flows.

Equations (3) to (6) are solved numerically by the scheme described in the next subsection.

3. Numerical Method

The equations presented in Section 2 are discretized using compact finite differences for the spatial deriva-
tives. A 6" order scheme is used for the interior points and a 5" order scheme is used at the boundaries.

The details of the discretization scheme are as follows (Souza et al., 2001):

For points at the boundary, ¢ = 1:

fH+4f = ﬁ(—uﬁ + 162 + 72f3 — 16f4 + 2f5) + O(dz®). (11)

For the first point next to the boundary, i = 2:

1

705 (—406f1 = 300> + 7605 — 80fs + 305 — 4fs) + O(da®). (12)

fi+6f;+2f3 =
For the points near other boundaries, ¢ = N and ¢ = N — 1, similar approximations were used.
For the interior points, a 6!* order Padé approximation was used:

1

12da:(_f"72 —28f;_1 + 28fi11 + fira) + O(dz®). (13)

fia +3fi+fig=

The final implicit algebraic system of equations is presented below for the first derivatives in the streamwise
direction. Similar expressions are obtained for the derivatives in the normal direction.
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The second derivative, at the boundary, i = 1, were discretized using a 5! order asymmetric approximation:

13f) + 1371 = (9775f, — 20285 f5 + 111705 — 550f4 — 145 f5 + 36f5) + O(da®). (14)

1
120dzx?

The first point near the boundary, i = 2, used a 6! order asymmetric approximation:

"+ 12f) +3f) =

1
3602 (18341 — 8424 + 18903 + 2320f4 — 8105 + 216 f5 — 26 f7) + O(da®) (15)
The interior points used a 6" order Padé approximation:
1
2y U] 4 20l = 105 Bfia + 48051 = 102 + 4841 + 3figa) + O(de”). (16)

For the points near other boundaries, i = N and ¢ = N — 1, similar approximations to the ones used for
points ¢ =1 e ¢ = 2 are used.
The resulting linear algebraic system of equations in matrix form reads:

[ 13 137 11 £
1 12 3 5
2 11 2 ool =
3 12 1 "
I 137 13 | | fx

5oz (9775 f1 — 20285 fo + 11170 f5 — 550, — 145 f5 + 36 5)
s (4834 f1 — 8424, + 18903 + 2320 f4 — 810fs + 2165 — 26 1)

1z (Bfia +48fi1 — 102f; + 481 + 3fit2) -7

3601,”2 (4834 fn — 8424 fn_1 + 1890 fn—2 + 2320 fn—3 — 810 fn—4 + 216 fn_5 — 26 fn—)
T35z (9775 fn — 20285 fy—1 + 11170 fn_2 — 550 fn—3 — 145fn_4 + 36 fn_5)

The subscript i represents the grid position in the z direction, and varies from 1 to N.

To solve the Poisson equation, a Line Successive Over-Relaxation method (LSOR) is used. The method
used is a mix of a 4*" order explicit approximations in 2 direction and 6" order compact approximations in
y direction. Some tests were made using a full 6" order compact approximations method and no relevant
differences in the results were found. The full 6!* order compact method required a greater computational effort
and was abandoned.

In order to accelerate the convergence a Full Approximation Scheme (FAS) multigrid was implemented. A
v-cycle working with 4 grids was implemented. The number of cycles used varies according to the desirable
convergence criteria. The adopted criteria was that the residual should be last than 1 x 10~?. The residual of
the v-Poisson equation is:

1 8% 8% Ow,
Redx? 0Oy? Oz’

A classical fourth order Runge-Kutta scheme was adopted for the time integration. At each step of the
Runge-Kutta the following instructions are necessary:

def = — (18)
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1. Compute the Right Hand Side (RHS) of the vorticity transport equation (3);
2. Integrate the vorticity transport equation over one sub step;

Apply the buffer domain technique near the outflow boundary;

Calculate v velocity from the v-Poisson equation (6);

Calculate u velocity from the continuity equation (4);

S ok W

Calculate the vorticity generation at the wall using the new velocity distribution.

Steady State Simulation: The unsteady computation starts from a steady state laminar solution. A
Blasius solution could have been used to start the computation, but in order to avoid transients in the first
steps of the numerical solution the code itself was used to arrive at a steady state solution. The boundary layer
approximation would introduce an error of the order of 1/Re.

To integrate Eq. (3) to a steady state in time, a second order predictor corrector scheme was implemented.
Since this scheme is implemented to reach the steady state solution, where the time derivative is zero, any other
integration scheme can be used here.

Unsteady Simulation: To simulate the propagation of Tollmien-Schlichting waves in a boundary layer,
we must introduce a disturbance in the computational field. In order to do that it is necessary to change the
boundary conditions at the wall.

In experimental studies of Tollmien-Schlichting waves the disturbances are introduced in the flow through
a vibrating ribbon located shortly downstream of the leading edge (Medeiros and Gaster, 1999). In numerical
studies this waves can be introduced at the inflow, using for that the eigenfunctions obtained by an Orr-
Sommerfeld equation solver (Souza et al., 2001). The disturbances may be introduced at the wall, through a
periodic blowing and suction strip. According to Fasel (Fasel et al., 1990) the second method has proved to
be a very efficient method to introduce this kind of disturbance. In this work the second method was adopted.
The method consist of introducing a slot at the wall (i; < i < iy), where 4; and iy are the first and the last
point of the disturbance strip, respectively. The function used for the normal velocity v is:

v(i,0,t) = f(x); AV Resin(St + 6) for i1 <i<iy
and (19)
v(z,0,t) =0 for ip<i and <1

The values of A and 6 are real constants that can be chosen to adjust the amplitude and phase of the blowing
and suction disturbances. The constant g is the dimensionless frequency. The function f(z); adopted here is a
fifth order function, and was proposed by Zhang and Fasel (Zhang and Fasel, 1999). The function is:

1 1
flz); = 4—8(72965 —1701e* + 97263 if i <i< 5(z’l + ig)
where €= 2&
12 — 11
(20)
-1 1
flz); = 4—8(72965 —1701e* +972€%)  if 5(2'1 + i) < i < iy
where €= QQ
12 — 11

The shape of the function f(z); and its second derivative at the blowing and suction region are plotted in
Figs. (1) and (2).

Now we have a disturbance strip at the wall where the normal velocity component is different from zero.
The v velocity distribution at the wall is fixed at each time step according to Eq. (20). The vorticity calculation
at this boundary also changes, because the second derivative of the v velocity in streamwise direction has a
value in the disturbance strip region. This value can be evaluated analytically from Eq. (20).
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Figure 1: Normal velocity distribution at the suction  Figure 2: Second derivative of the normal velocity dis-
and blowing region. tribution at the suction and blowing region.

4. Numerical Results

In order to check if the code is able to simulate the propagation of disturbances in a flat plate boundary
layer, a very small amplitude disturbance was introduced. This allowed the comparison with Linear Stability
Theory, providing a through check of the numerical method. Then, a finite disturbance was introduced and after
performing a Fourier analysis, the results were compared to results obtained with a code based on parabolized
stability equations (Mendonga, 2000). In the computations discussed here, the following parameters were used:

Unt =30 m/s, L=5x10"2 m, v=1.5x10"° m?/s, and Re = 10°. (21)

The frequency F is defined as F = (8/Re) x 10*.

The integration domain used for all tests is shown in Fig. (3). It extends from z¢ = 0.683 t0 Zya, = 6.443
in the streamwise direction and from yg = 0 t0 Ymar = 32.39 in the normal direction. The number of points
used was 513 and 113 in z and y direction respectively. In time 50 steps were used per wave period. The
disturbances were generated between z; = 0.908 and z» = 1.133. The frequency used was F' = 10. After 24
periods, the data were Fourier analyzed to allow comparison with LST and PSE results.

4.1. Linear test case

For the linear test case the amplitude was set to A = 1 x 10~ and the phase to § = 0. In Fig. (4) the
amplitude distribution in the normal direction of the streamwise and normal velocity components are plotted at
the streamwise position z = 3.9905. The results obtained by DNS and LST are nearly the same. The maximum
amplitude, phase change and exponential decay are all in very good agreement with LST. The quality of the
results can also be observed in Fig. (5) where the phase relationships with respect to y at the same z position
are plotted. Both the phase distribution for the streamwise and normal velocity components are shown.

Figure (6) shows the streamwise distribution of the growth rate obtained with the DNS code and with a
LST analysis. The small deviation observed is attributed to non parallel effects that are not taken into account
when the Orr-Sommerfeld equation is solved. The growth rate distribution obtained with a PSE code, that can
also take into account nonparallel effects of boundary layer growth, is also shown. The same deviation from
LST is observed in the PSE results.

4.2. Non Linear Test Case

In order to simulate the propagation of nonlinear Tollmien-Schlichting waves, a finite amplitude disturbance
was introduced in the flow field. The propagation of finite amplitude TS waves may be described by a weakly
nonlinear theory such as a nonlinear PSE analysis. The propagation of TS waves is characterized by the
evolution of a fundamental wave accompanied by the growth of higher harmonics. In the following analysis,
DNS results for amplification of a fundamental and higher harmonics, as well as for the variation of the growth
rate and eigenfunctions for different harmonics are compared to PSE results.

In Fig. (7) the variation of the streamwise velocity amplitude in the streamwise directing for the fundamental
and 3 harmonics are plotted. The initial amplitude of the disturbance was set to A = 1x1073. A good agreement
between DNS and PSE results can be observed after the streamwise position = 3.0. The deviation that is
observed before this position is explained by the existence of a transient region where the disturbances introduced
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Figure 5: Comparison between DNS and LST results  Figure 6: Comparison between DNS, PSE and LST
for the phase distribution. results for the growth rate.

numerically in the flow field adjust to the nonlinear set of equations. In the PSE analysis a single fundamental
mode is specified as initial condition for the marching solution. Since the initial amplitude correspond already
to a nonlinear problem, the disturbance field has to adjust in a finite transient region where higher harmonics
are generated. In the DNS analysis the disturbances are introduced in a suction and blowing strip and this
signal has to be filtered by the governing equations such that, after the transient region the fastest growing TS
wave is the only wave remaining.

During the initial transient region the first harmonic is also an unstable mode and has its own growth rate
according to LST. In this region the growth of this mode is governed by both the nonlinear forcing and its
linear exponential growth. As a result the amplification does not correspond to a purely nonlinear growth or to
a purely linear growth of a single TS wave with twice the frequency of the imposed fundamental.

The comparison between the growth rate variation in streamwise direction for three different initial ampli-
tudes are shown in Fig. (8). The Three different values of amplitude tested were A =1 x 1073, A = 5 x 107%,
A =1 x 10~%. The last test case correspond closely to a linear problem. It can be observed that as the dis-
turbance amplitude increases, the streamwise position corresponding to the second branch of the neutral curve
moves forward as a consequence of the nonlinear effects.

Figures. (9) to (12) present the streamwise and normal velocity profiles for the amplitude A = 1 x 1073
at the streamwise position z = 3.9905. Figure (9) corresponds to the amplitude of the fundamental mode and
Figs. (10) to (12) correspond to the first, second and third harmonics respectively. The results show a very
good agreement between DNS and PSE results. The distance from the wall where the maximum amplitude is
observed, the position of phase change, as well as the maximum amplitude itself are all captured with very good
accuracy. The amplitude of all modes have been normalized by the maximum amplitude of the fundamental
streamwise component.
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at x=3.9905. at x=3.9905.

5. Conclusions

In the present paper a numerical method for solving a two-dimensional incompressible flow that is applicable
to investigation of laminar turbulent transition phenomena in a spatially growing boundary layer was presented.
The code was verified against linear stability theory results for the propagation of small amplitude Tollmien-
Schlichting waves. Nonlinear results obtained with the code were compared to PSE results. The nonlinear
evolution of the fundamental mode and higher harmonics were investigated and very good agreement with
nonlinear PSE results were obtained.

The next step in the development of a three-dimensional code is to introduce a spectral approximation in
the spanwise direction that will allow the simulation of oblique waves propagation. The resulting code will be
used to study transition to turbulence in boundary layer and shear layer flows.
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