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Abstract. This work presents the modeling of automatic compressor valves under turbulent flow condition. The valve dynamics and 
the time dependent flow field are coupled and therefore solved simultaneously. A system with one-degree of freedom is adopted for 
the valve motion whereas the turbulent flow is solved with the RNG k-ε model of Orzag et al. (1993), due to its capability to predict 
complex flow features such as those found in valves. In order to maintain the computational effort within available resources, the 
flow is considered to be incompressible, isothermal and axisymmetric. A numerical technique has been especially developed to take 
into account the time variation of the computational domain originated by the valve motion. Through a coordinate transformation a 
moving coordinate system is obtained so as to expand and contract according to the valve displacement. Results for flow quantities 
(streamline, turbulence intensity and length scale) and for the valve dynamics (resultant force and displacement) are obtained for a 
prescribed periodic mass flow rate at the valve entrance.   
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1. Introduction  
 

In most hermetic reciprocating compressors adopted in household refrigeration the valves are automatic, in the 
sense that they open and close depending on the pressure difference between the cylinder and suction and discharge 
chambers. Such valve systems are designed so as to guarantee fast response, large mass flow rate, low pressure drop 
when opened and good blockage when closed. These performance features are to a great extent affected by the flow 
through the valve and therefore a good understanding of parameters affecting the valve dynamics and its associated 
flow is required. 

The basic aspects related to the valve dynamics can be explained through Fig. (1), where a reciprocating 
compressor and a discharge valve are shown schematically. As can be seen, the discharge valve is reed represented by a 
circular disk parallel to the seat. In this type of valve the unequal pressure distribution acting on both sides of the reed is 
responsible for opening the valve and as a consequence for generating the flow. As illustrated in the figure, the fluid 
enters the valve axially through the feeding orifice and then due to the presence of the reed it is forced to flow radially 
for the rest of the valve passage. The pressure difference between the orifice entrance and the discharge chamber 
together with the valve lift govern the fluid flow throughout the valve. On the other hand, the flow dictates the pressure 
distribution on the reed surface and, consequently, the resultant force that will govern the valve dynamics and its 
displacement from the seat. 

Valve performance is a result of a very intricate problem where fluid mechanics and solid dynamics play a definite 
role. Some recent investigations on valve modeling and radial flows are those by Deschamps et al. (1996), Lopes and 
Prata (1997), Ezzat Khalifa and Liu (1998), Salinas-Casanova et al. (1999), Matos et al. (2000) and Myung and Lee 
(2000). Most works related to reed valves either model the valve dynamics in detail but pay little attention to the 
description of the flow field, or focus on the fluid mechanics without considering the coupling between valve motion 
and pressure distribution on the reed. 

 



Proceedings of the ENCIT 2002, Caxambu - MG, Brazil - Paper CIT02-0634 

2 

Deschamps et al. (1996) provided an experimentally validated numerical analysis of turbulent flow in reed type 
valves for the idealized radial diffuser geometry. The RNG k-ε  model of Orzag et al (1993) was applied in the analysis 
and the governing equations were solved using the finite volume methodology. Results for pressure distribution on the 
reed surface when compared to experimental data showed that the RNG k-ε model can predict important parameters 
required for valve design. 

Salinas-Casanova et al. (1999) extended the work of Deschamps et al. (1996) so as to include in the analysis the effect 
of the reed inclination with respect to the seat. Comparisons between numerical results and experimental data 
demonstrated that the RNG k-ε model is able to predict also this more complex class of flow. 

Lopes and Prata (1997) considered for the first time a numerical methodology to explore the interaction between 
valve dynamics and fluid flow. In their work a numerical solution was obtained for the laminar flow with a periodic 
flow rate prescribed at the feeding orifice entrance. From the pressure distribution on the reed the resultant force was 
determined and a one-dimensional dynamic model was employed to solve for the reed acceleration, velocity and 
displacement.  

An analytical model to analyze the dynamic behavior of reed valves in the presence of oil was proposed by Ezzat 
Khalifa and Liu (1998). The authors showed that the primary reason for stiction is the viscous force arising from 
dilating the oil film between the reed and its seat. 

Myung and Lee (2000) used a PIV (Particle Image Velocimetry) system to visualize the discharge flow  in a model 
of reciprocating compressor valve. Fundamental phenomena related to the feeding orifice and the valve were clearly 
shown in terms of velocity and vorticity fields.  

A three-dimensional numerical model to simulate the angular motion of reed type valves was proposed by Matos et 
al. (2000) for incompressible laminar flow. The velocity field and the resultant force on the reed were obtained for a 
harmonic motion prescribed to the piston.  

The present work prescribes a periodic flow rate through the valve as in Lopes and Prata (1997) but considers the 
more realistic condition of turbulent flow. To reduce the computational cost, effects of compressibility and heat transfer 
have been neglected at this stage. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                  (b)  
 

Figure 1. Schematic views of (a) reciprocating compressor (b) reed type valve. 
 

2. Physical models 
 

In the present section, details of the methodologies adopted to model the reed dynamics and the flow through the 
valve are given. A more comprehensive description is available in Matos (2002).    
 
2.1. Valve dynamics 

 
The dynamics of the reed can be modeled as 
 

KssCsmFF o ++=− &&&  (1) 
 
The reed is assumed to move parallel to the valve seat, with s being the instantaneous valve lift, as shown in Fig. 

(1b), and s&  and s&&  are the reed velocity and acceleration, respectively. The valve stiffness and damping coefficients, K 
and C, respectively, as well as the valve mass, m, are determined experimentally. Finally, Fo is a pre-load force not 
considered in the present work, but which can be modeled according to the proposal of Ezzat Khalifa and Liu (1998).  
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The resultant force F on the reed required to solve Eq. (1) is obtained from 
 

∫ π=
D/2  

0
rdr2pF  (2) 

 
where p is the pressure distribution on the reed surface determined from the numerical solution of the flow field. 
 
2.2. Turbulent flow 
 

The axissymmetric flow geometry shown in Fig. (1b) was solved considering the hypothesis of incompressible 
turbulent flow. The conventional statistical approach for stationary turbulent flow is to decompose the instantaneous 
flow properties into a time-averaged component and a fluctuating component. Due to the non-stationary character of the 
flow considered here, an equivalent definition is required and is based on ensemble averaging over a statistically 
acceptable number of cycles (Arcoumanis and Whitelaw, 1987). The Navier-Stokes equations written for such 
ensemble-averaged properties are closed using the concept of 'turbulent' or 'eddy' viscosity µt. Under the effect of no 
body force the equations of motion are: 
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where µeff = µ + µt is the effective viscosity, which takes into account the molecular viscosity, µ,  and the turbulence 
viscosity, µt. The latter is a measure of the turbulence transport mechanism in comparison with molecular diffusion and 
is evaluated in terms of the turbulence kinetic energy k and its rate of dissipation ε. Following the RNG k-ε model of  
Orzag et al. (1993), the effective viscosity is evaluated as  
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The kinetic energy k and the dissipation ε are obtained from their respective modeled transport equations, as follows: 
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where Cµ , Cε1 and Cε2 are equal to 0.0845, 1.42 e 1.68; respectively. The inverse Prandtl number, α, for turbulent 
transport and the rate of strain term, R, are given by the following relationships: 
 

eff

3679.0

o

6321.0

o 3929.2
3929.2

3929.1
3929.1

µ
µ=

+α
+α

−α
−α  (9) 



Proceedings of the ENCIT 2002, Caxambu - MG, Brazil - Paper CIT02-0634 

4 

( )
k1

/1C
R

2

3
0

3 ε
βη+

ηη−η
= µ  (10) 

 
with αo = 1.0, β = 0.012, ηo ≈ 4,38, η = Sk/ε and S2 = 2 Sij Sij in which Sij is the rate of strain tensor. The term R may 
change sign depending on whether the time scale ratio η is greater than the value ηo found in homogenous shear flows. 
In regions of small strain rate, the term R has a trend to increase µeff  somewhat, whereas in regions of elevated strain 
rate the sign of R becomes positive and µeff  is considerably reduced. This feature of the RNG k-ε is responsible for 
substantial improvements verified in the prediction of recirculating flow regions. The smaller value of Cε2 in the RNG 
theory compared to other k-ε models acts to increase ε and as a consequence to diminish µt.  

Equations (1)-(10) completely describe the problem and seven unknowns are to be determined: s, F, u, v, p, k and ε. 
Concerning boundary conditions, at the solid walls all velocity components are zero with the exception of the reed 
surface. There, the radial component, v, is zero but the axial velocity corresponds to the reed velocity s& , which is 
obtained from Eq. (1). The symmetry conditions at the valve axis implies that v = ∂u/∂r = 0. The computational domain 
was extended well beyond the valve exit and there a pressure boundary condition was prescribed. More details on the 
implementation of this type boundary condition can be found in Versteeg and Malalasekera (1995).  

No information is available for turbulence kinetic energy at the inlet boundary. However, numerical tests have 
shown that when the level of the turbulence intensity  
 

I =
inU

3/k2                (11) 

 
is increased from 3% to 6% no significant change occurs in the predicted flow. A value of 3% was used in the 
calculation of all results shown in this work. The dissipation rate at the entrance was estimated based on the assumption 
of equilibrium boundary layer, that is 
 

ε = λ3/4 k3/2 / lm             (12) 
 
where lm = 0.07d/2 and λ = 0.09.  

At the solid boundaries, the turbulence kinetic energy k was set to zero and for the dissipation ε, rather than being 
prescribed at the walls, its value was calculated in the control volume adjacent to the wall following a non-equilibrium 
wall-function. 
 
3. Solution methodology 
 
 A key issue in solving the governing equations is the required methodology to handle the physical domain that 
expands and contracts as the reed moves up and down, respectively. Following the practice adopted in Cato and Prata 
(1997), a moving coordinate system was employed, which transforms the physical domain into a computational domain 
and remains unchanged regardless the reed motion. In this moving coordinate system the axial coordinate, x, of the 
inertial system is replaced by a new axial coordinate, ξ, using the following transformation, 
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where the subscripts s and r represent seat and reed, respectively. The physical and computational domains are both 
shown in Fig. (2). Because the physical domain is composed of a variable region in the diffuser and a fixed region in the 
orifice, for computational reasons it was preferred to keep the reed fixed and let the seat move (this makes no difference 
regarding the physical model).  
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Figure 2. Physical and computational domains. 
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 Transforming the governing equations from the fixed system to the moving system yields 
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 The transport equation above is written for a generic property (mass, momentum, turbulence kinetic energy and 
turbulence dissipation). The appropriate φ, Γφ and Sφ to each property are shown in Matos (2002). In Eq. (14) the axial 
velocity u~  is that corresponding to the moving coordinate, ξ.  Once u~  is determined, the velocity u associated to the 
inertial system can be obtained from, 
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where ug is the instantaneous velocity of the coordinate ξ given by, 
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in which ur = s&  is the instantaneous reed velocity. 

The numerical solution of the governing equations was performed using a finite volume methodology. For this 
practice the solution domain is divided in small control volumes, using a staggered grid scheme, and the governing 
differential equations are integrated over each control volume with the use of Gauss's theorem. In the present work, the 
QUICK scheme was adopted in the solution of the momentum equations (Hayase et al., 1992). Yet, for the transport 
equations of turbulence quantities the Power Law Differencing Scheme (PLDS) was adopted since the unboundedness 
of the QUICK scheme usually introduces serious numerical instabilities. Nevertheless, there is some evidence that in 
the case of these equations the source terms are dominant, with the convective terms playing a secondary role. 

A segregated approach was employed to solve the equations and the coupling between pressure and velocity was 
handled through the SIMPLEC algorithm. A fully implicit scheme was adopted to discretize the unsteady terms.  

The solution domain had 37 x 32 (axial x radial) grid points in the orifice region and 33 x 80 grid points (axial x 
radial) in the region between the reed and the valve seat. A more refined grid was not feasible due to the already 
extremely high computational cost required for the solution. However, the grid employed in the computations was 
successful in capturing the main features of the flow field as will be discussed shortly in the presentation of numerical 
results.  

An interval of 2π/(360ω) was employed for the time step, with ω = 2πf [rad/s]. The differential equation governing 
the valve motion, Eq. (1), was solved analytically considering the resultant force on the reed to be constant during each 
time step. 

 
4. Results and discussion 

 
The first step in the numerical analysis was to validate the computational code written for a moving coordinate 

system. Ishizawa et al. (1987) obtained experimental results for the flow laminar through a radial diffuser with a 
geometry very similar to the one investigated here, except that in their work the diameter ratio was D/d = 10, which is 
much larger than typical values of compressor valves. A constant mass flow rate was set at the feeding orifice and a 
time varying gap between the disks representing the seat and the reed was externally imposed as follows: 
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where A is the amplitude and ω is the angular frequency. The resultant axial force on the frontal disk (reed) was 
measured using a load cell. 

Flow rate and frequency associated to the flow are expressed through the following Reynolds number definitions: 
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with ν being the fluid kinematics viscosity and π= 2qqs  a measure of the flow rate at the feeding orifice. 
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The flow geometry chosen for the simulation had d = 0,03m, e/d = 1, D/d = 10, d/s  = 1/15 and the working fluid 
was air (µ = 1.8 x 10-5 Pa.s and ρ = 1.2 kg/m3). Values for frequency ω e flow rate qs required to complete the 
formulation can be evaluated from the Reynolds numbers Rq e Rω, as given by Eqs. (18) e (19). 

In Fig. (3) experimental data of Ishizawa et al. (1987) for dimensionless force F* [= F (2 s /D)4
 /(ρν2)] are compared 

with numerical results obtained with the present methodology. In the experiment the gap between the disks is much 
smaller than the diffuser length and an analytical solution, also indicated in Fig. (3), can be obtained. The good 
agreement between experimental, numerical and analytical results yielded confidence on the present numerical 
methodology. 

The next step was to solve the reed dynamics coupled with the flow field through the valve. A crucial aspect of 
numerical flow simulation in compressor valves is that related to turbulence modeling. A number of works have 
examined different approaches to predict the main flow features in valves (see for instance Deschamps et al., 1996 and 
Salinas-Casanova et al, 2000) and concluded that the RNG k-ε model is best option. Therefore, this model has been 
adopted here. 

For all results to be presented, the main geometric parameters are the reed diameter D (= 9.0 mm), the orifice 
diameter d (= 6.0 mm) and the orifice length e (= 1.6 mm). The valve parameters used in Eq. (1) are K = 200 N/m, C = 
0.5 N s/m, m = 3.2 g and Fo= 0. In line with actual compressor discharge systems, a stopper was included in the 
computational model to limit the opening of the valve and positioned at s/d = 0,166.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Dimensionless force acting on the reed for a prescribed time varying valve lift: Rω=20,05, Rq =0,88 e A=0,43. 
 

Actually, the flow rate through the valve is a function of the instantaneous pressure drop between the cylinder and 
the discharge chamber. Here instead, the flow rate is set to vary harmonically according to the following expression for 
the Reynolds number: 

 
)]t(sin9.01[Re)t(Re ω+=  (20) 

  

with f = 60 Hz and Re = 25,000. The Reynolds number Re is defined with reference to the feeding orifice, i.e. 
Re=ρUind/µ. A pressure boundary condition equal to 1.0 × 105 Pa was prescribed at the discharge chamber. 

Results for valve lift and resultant force on the reed are presented in Fig. (4) as a function of time. For reference, in 
that figure is also shown the instantaneous Reynolds number prescribed at the valve feeding through Eq. (20). The 
figure shows that large mass flow rates bring about large values of resultant forces and valve lifts, as would be 
expected, and the exact moment when the reed reaches its maximum displacement. A very useful information that can 
provided by the present model is the velocity with which the reed hits the stopper. 

Figure (4) also shows a decrease in the resultant force just before the reed reaches the stopper and the local 
minimum then originated. This can be explained with reference to dimensionless streamlines Ψ* (= Ψ/ m& ) in Fig. (5) 
and dimensionless pressure distributions P* [=p/(ρu2/2)] on the reed in Fig. (6) for ωt = 4π/180, 20π/180, 25π/180, 
39π/180 and 45π/180. Such time positions are identified in Fig. (4) by letters a, b, c, d and e, respectively. As can be 
seen in Fig. (6), the presence of the reed creates a plateau on the central part of the pressure distribution (r/d < 0.5), 
whereas the sharp pressure drop at the radial position r/d ≈ 0.5 is associated with both the change in the flow direction 
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and the reduction in the flow passage area. The latter is particularly strong in the range of valve lift and Reynolds 
number considered here since a recirculating flow region is always present on the valve seat; see Fig. (5). The 
associated reduction in the flow passage area causes an increase in velocity and a decrease in pressure. After reaching a 
condition of minimum, the pressure level on the reed is increased as the flow progresses towards the valve exit. It is 
interesting to note that in all situations shown in Fig. (6) the pressure at the exit of the valve is higher than the pressure 
in the discharge chamber. 

The dimension h indicated in Fig. (4d) is a measure of the minimum flow passage area related to the recirculating 
region. For ωt=4π/180 in Fig. (4a) this minimum occurs at r/d = 0.635 (h = 0.30 mm) and originates the minimum in the 
pressure distribution shown in Fig. (6). As the reed moves from locations a to b in the cycle, the recirculating flow 
region becomes larger, but the height h is also increased (h = 0.38 mm) and the radial position for the minimum passage 
area happens at r/d = 0.678. This originates a smaller pressure drop on the reed surface and an increase in the resultant 
force.          
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Figure 4. Valve lift and resultant force on the reed in response to periodic mass flow rate. 
 

 
 

 
 
 
 
 
 
 

(a)ωt = 4π/180; s/d = 0,076     (b) ωt = 20π/180; s/d = 0,103 
 
 
 
 
 
 
 
 

(c) ωt = 25π/180; s/d = 0,117     (d) ωt = 39π/180; s/d = 0,166 
 
 
 
 
 
 
 
 

(e) ωt = 45π/180; s/d = 0,166 
 
Figure 5. Dimensionless streamlines Ψ* (=Ψ/ m& ). 
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Figure 6. Pressure distribution on the reed as the maximum lift is reached. 
 
 
 
 
 

 
As can be seen in Fig. (4c) for ωt=25/180π, as the valve opens the height h is increased even further (h = 0.41 mm) 

despite the presence of a larger recirculating flow region. This acts to lessen the negative pressure region on the reed 
surface but because the pressure level in the stagnation region (r/d < 0.5) becomes smaller (Fig. (6)), the overall result is 
a reduction in the resultant force (Fig. (4)). A similar reduction in the force takes place for ωt=39π/180, point d in Fig. 
(4), at the exact moment when the reed hits the stopper and h = 0.56 mm.  

Finally, for ωt=45π/180 (point e in Fig. (4)), the reed is totally open for some time and a flow configuration 
virtually identical to that for ωt=39π/180 is verified, with h = 0.55 mm. In spite of that and because the mass flow rate 
(represented by the Reynolds number) is increasing, the pressure level in the stagnation region becomes larger (Fig. (6)) 
and the same occurring with the resultant force.  

 
 

 
 
 
 
 

(a) ωt = 4π/180; s/d = 0,076     (b) ωt = 20π/180; s/d = 0,103 
 
 
 
 

 
 
 
 
 

(c) ωt = 25π/180; s/d = 0,117    (d) ωt = 39π/180; s/d = 0,166 
 
 
 
 
 
 
 
 

(e) ωt = 45π/180; s/d = 0,166 
 
Figure 7. Turbulent Intensity I (= [2k/3]1/2/ Uin). 
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         ωt=45π/180, Re=40910, F=1.117 N 
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Results for turbulence intensity I (= [2k/3]1/2/ Uin) contours are presented in Fig. (7) for time positions ωt considered 
above. A common feature in all valve lifts is the high level of turbulence generated by the recirculating flow regions. 
On the other hand, the decrease in the intensity observed for large valve lifts is a result of smaller strain rates due to 
larger flow passage areas. Fig. (8) shows estimates for dimensionless length scale L (= k3/2/ε). As one can see, levels of 
L are physically consistent if compared with values of valve lifts s/d indicated in Fig. (8). A more complete analysis of 
turbulence quantities would require further experimental evidence, which is not available at the present.  

                 
 
 
 
 
 
 
 

(a)ωt = 4π/180; s/d = 0,076    (b) ωt = 20π/180; s/d = 0,103 
 

 
 
 
 
 
 
 
 

(c) ωt = 25π/180; s/d = 0,117    (d)ωt = 39π/180; s/d = 0,166 
 

 
 
 
 
 
 
 
 

(e) ωt = 45π/180; s/d = 0,166 
 
Figure 8. Dimensionless length scales L (= k3/2/ε). 
 
5. Conclusions 

 
The present work considered the modeling of the dynamics of automatic valves commonly adopted in reciprocating 

compressors. The complex interaction between reed dynamics and gas flow was incorporated into the physical and 
mathematical models. Because the main focus of the work is to develop a numerical methodology to solve for the reed 
dynamics, at this stage a simple periodic flow rate condition was set at the valve entrance. The present methodology is 
capable of capturing some characteristics found in the dynamics of actual valves, such as the impact against the stopper 
for conditions of large mass flow rates. Despite some important insights provided by the present analysis, the work has 
to be extended so as to take into account important flow features found in compressor valves, such as compressibility 
effects. Additionally, the flow rate through the valve should be expressed as a function of instantaneous pressure drop 
between the cylinder and the discharge chamber.  
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