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Abstract. The two-dimensional vortex shedding behind a square cylinder at high Reynolds numbers has been simulated in this work. 
Three different turbulence models − Smagorinsky (LES), k-ε standard and k-ε realizable − have been employed, and their respective 
performance was evaluated by a comparative way. Numerical calculations have been carried out by means of a finite-volume 
method employing a structured grid. An incompressible SIMPLEC algorithm has been employed for the velocity-pressure coupling, 
and a third-order QUICK scheme has been used for the treatment of convective terms. Particularly in the LES case, the influence of 
Smagorinsky constant on the flow field has been investigated. The numerical results, expressed in terms of quantitative parameters 
as Strouhal number and time-averaged velocity, are compared with experimental and numerical data from other authors. A 
qualitative study of the flow patterns is also evaluated by means of streamlines and vorticity contours analysis. 
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1. Introduction 
 

In principle, it is possible to simulate any turbulent flow by solving directly the Navier-Stokes equations with 
appropriate boundary conditions and using a suitable numerical procedure. In this case the calculation is called Direct 
Numerical Simulation (DNS), but it is rarely done because in the most times the computational effort is prohibitive, 
especially for high Reynolds numbers. In front of this difficulty, two alternative ways have been developed for 
predicting turbulent flows encountered in practical engineering applications: Classical Turbulence Modeling and Large 
Eddy Simulation (LES). The first approach implies in mathematical manipulation of the governing equations by means 
of average − or filtering − process, and employs a set of relations and equations to determine the unknown turbulent 
correlations, which have arisen from this treatment. On the other hand, the LES method involves direct simulation of 
large turbulent structures, and the use of sub-grid models to represent the effects of the smallest scales presents in the 
flow field. 

In the last decades due to intensive research activity on turbulence in fluids, various types of models have been 
created or improved. For testing the new developments in this area some canonical flows are frequently used. In this 
context, the turbulent flow past around cylinders is a particularly adequate problem to validation of numerical models. 
In fact, the nature highly complex of the interaction among shears layers and large-scale periodicity of the vortex 
shedding becomes this kind of flow a challenge for the numerical prediction of the fluid motion. 

In the literature, some authors present studies about the performance of different turbulence models employed in the 
numerical solution of the flow past around square cylinders, as the notable works of Franke & Rodi (1991), 
Murakami (1993) and Rodi (1993). 

Lee (1997) presents a numerical prediction of unsteady aerodynamic force on a square cylinder using k-ε 
turbulence models. In this study, the classical and improved k-ε models have been used and different numerical effects 
have been investigated as temporal and spatial resolutions, convection scheme choice and employ of distinct turbulence 
models. In summary, the author concluded that not only the turbulence model determines the quality of unsteady 
turbulence simulation, but also equally the numerical parameters associated.  
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Murakami & Iizuka (1999) presents an analysis of turbulent flow past square cylinder using dynamic LES three-
dimensional. A comparison between the Smagorinsky (S) and Dynamic models (DS) is accounting in order to identify 
advantages and disadvantages of DS model. The results obtained for lift and drag force and velocity distributions from 
the various sub-grid-scale models (SGS) were compared with experimental data showing some discrepancies among the 
methodologies employed. 

Recently, special attention has been given to application of Large Eddy Simulation and k-ε turbulence models in 
structural and wind engineering, considering the turbulent flows past bluff bodies. Yu & Kareem (1997) investigated 
numerically, using LES, both two-dimensional and three-dimensional flow surrounding a rigid rectangular prism for 
high Reynolds numbers. Their results are based in the velocity distribution and pressure fields, showing a very good 
agreement with available experimental data. In this work, the authors concluded that the refinement of mesh in 3D LES 
simulation is a very important factor to obtain physically consistent results. The use of a coarse mesh, in this case, gives 
inferior results to the 2D LES simulation with refined meshes. 

The purpose of the present work is to compare and to test the three more utilized models in numerical simulations 
of turbulent motion − sub-grid-scale Smagorinsky model, k-ε standard and k-ε realizable − to predict the 2D flow past 
around a square cylinder at high Reynolds numbers (1.4 × 104 and 2.2 × 104). The numerical results are compared with 
experimental ones from Durão et al. (1988) and Lyn et al. (1995) showing some relevant discrepancies among the 
models investigated. 

 
2. Numerical Methodology 

 
2.1 Problem Formulation 

 
In this work, the flow was assumed to be turbulent, unsteady and two-dimensional, with constant fluid properties. A 

rectangular domain structured on the Cartesian coordinate system with meshes non-uniformly distributed forms the 
computational grid. The numerical simulations have been accomplished by the numerical code FLUENT 5.3 
employing the Smagorinsky LES, k-ε standard and k-ε realizable turbulence model. In all simulations, it have been 
utilized an incompressible SIMPLEC finite-volume algorithm (Patankar & Spalding, 1972) associated to QUICK 
scheme (Leonard, 1979) for discretization of the convective terms in the Navier-Stokes equations. A second-order 
central differences scheme has been used for the diffusive terms. 

Figure 1 shows the computational domain and mesh resolution. The domain dimensions were accomplished taking 
into account the characteristic length of the cylinder (B). The boundary conditions have been set as follows: At the 
upstream boundary, the inlet flow has been assumed to be uniform for all cases. At the outlet, a zero gradient boundary 
condition for U and the prescribed velocity zero for V has been used. At the upper and lower boundaries the symmetry 
conditions have been used, simulating a frictionless wall (V = ∂U/∂y = 0).  

A marching time step of ∆ t  = 10-4 s was used employing a second-order fully implicit scheme for the unsteady 
terms. A non-dimensional time was defined by BUtt /* ∞⋅= , where t is the computational time. The solution has 
advanced until the fully developed vortex street has been obtained characterized for a periodic variation in the average 
variables of the flow field. The simulations were conducted in a PC 700 MHz (0.88 Gflops peak performance) taking 
about 90 CPU hours for each case. 

 

 
 
 

Figure 1. Computational grid (240 × 160) mesh resolution − (21B × 13B) domain dimension. 



Proceedings of the ENCIT 2002, Caxambu - MG, Brazil - Paper CIT02-0587 
 

 

For the calculation of Strouhal number, it was placed a numerical probe in the wake of the cylinder on the 
centerline at position-distanced 4B behind the obstacle. The temporal evolution of the y-component velocity was 
registered in the fully periodic regime of vortex formation and the numerical signal was processed by means of the Fast 
Fourier Transform (FFT), resulting in the fundamental frequency of vortex shedding.  

 
2.2 Near-Wall Treatment  

 
In the bluff bodies simulations at high Reynolds numbers the use of different approaches have been tested for 

handling the near-wall region, where there is large velocity gradients. In fact, very close to the wall, viscous damping 
reduces the tangential velocity fluctuations, while kinematics blocking reduces the normal fluctuations. In order to 
represents a correct velocity distribution near-wall the well known near-wall treatment has been frequently used for 
turbulent flows.  

In this study, the all simulations were accomplished with the standard wall functions in FLUENT, proposed by 
Launder & Spalding (1974). The law-of-the-wall for mean velocity yields: 
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with the von Kármán constant (k) equal to 0.42 and the constant empirical (E) equal to 9.81. The variables UP, kP and yP 
are respectively the mean velocity of the fluid at point P, turbulent kinetic energy at point P and distance from point P 
to the wall. The logarithmic law for mean velocity is known to be valid for y* > 30 ~ 60. In FLUENT numerical code, 
the log-law is employed when y* > 11.225. It is important to emphasize that the logarithmic law is not well adequate to 
predict recirculating flows with shear layer interactions and that it was used in this work as a baseline approach. Further 
analysis of this problem needs to be made with improved wall functions. 

 
3. Turbulence Models 

 
3.1 Smagorinsky sub-grid-scale model (LES) 

 
The incompressible governing equations employed for LES are obtained by filtering the time-dependent Navier-

Stokes equations. As showed by Silveira Neto (1991), this approach leads to follows equations: 
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where ijτ is the sub-grid-scale stress, defined by: 

 

jijiij uuuu −≡τ  (5) 

 
The sub-grid-scale stresses resulting from the filtering operation are unknown, and require modeling. In this work, 

the Smagorinsky model is used to evaluate the sub-grid-scale viscosity through the Boussinesq hypothesis: 
 

ijtijkkij Sµδττ 2
3
1 −=−  (6) 

 
where tµ  is the sub-grid-scale turbulent viscosity, and ijS is the rate-of-strain tensor for the resolved scale defined by: 
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where SL  is the mixing length for sub-grid scales and ijij SSS 2≡ . The value SL  is computed using: 

 
( )3/1,min VCkdL SS =  (9) 

 
where k = 0.42, d is the distance to the closest wall, and V is the volume of the computational cell. The parameter 
CS ≅  0.2 is the Smagorinsky constant determined analytically by Lilly in 1966. 

 
3.2 k-εεεε standard  

 
The standard k-ε model is a semi-empirical turbulence model based on model transport equations for the turbulent 

kinetic energy (k) and its dissipation rate (ε) obtained from the following equations: 
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In these equations, Gk represents the generation of turbulent kinetic energy due to the mean velocity gradients: 
 

2SG tk µ=  (12) 
 

where µt is the turbulent viscosity and S is the modulus of the mean rate-of-strain tensor.  
 
In this model C1ε, C2ε, are empirical constants having the following default values: 
 

44.11 =εC  92.12 =εC   (13) 
 
The terms σk and σε are the turbulent Prandtl numbers for k and ε, respectively with the following default values: 
 

0.1=kσ  3.1=εσ  (14) 
 
In the k-ε standard model the turbulent viscosity, µt is calculated combining k and ε: 
 

ε
ρµ µ

2kCt =  (15) 

 
with 09.0=µC . 

 
3.3 k-εεεε realizable 

 
The k-ε realizable model, proposed by Shih et al. (1995), was intended to improve some deficiencies in the k-ε 

standard model, as a fundamental defect to neglect rotation, anisotropy and non-equilibrium effects. Basically, in this 
model, two important characteristics were incorporated. A new eddy-viscosity formula involving a variable Cµ 
originally proposed by Reynolds (1987) and a new model equation for dissipation (ε) based on the dynamic equation of 
the mean-square vorticity fluctuation.  

The transport equations for k and ε in the k-ε realizable are, respectively: 
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with εη /Sk= . 

The values 1C  e 2C  are constants and kσ  e εσ are the turbulent Prandtl number for k and ε respectively. Note that 
the k equation (Equation 17) is the same as that in the standard k-ε model, except for the models constants. However, 
the form of the ε equation is quite different from those in the standard k-ε models. One of the noteworthy features is that 
the production term in the ε equation does not involve the production of k; i.e., it does not contain the same Gk term as 
the other k-ε models. It is believed that the present form is a better way to represent the spectral energy transfer. 

As in other k-ε models, the eddy viscosity is computed from Equation 16. The difference between the realizable k-ε 
model and the standard k-ε models is that Cm is no longer constant. It is computed from: 
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where:  
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and 
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where ijΩ  is the mean rate-of-rotation tensor viewed in a rotating reference frame with the angular velocity kw . The 
model constants 0A  and sA  are given by: 

 
04.40 =A  φcos6=sA  (22) 

 
where: 

( )W6arccos
3
1=φ , 

S
SSS

W kijkij
~= , ijij SSS =

~  (23) 

 
The model constants 2C , kσ  and εσ , have been established to ensure that the model performs well for certain 

canonical flows. The model constants are: 
 

44.11 =εC , 9,12 =C , 0.1=kσ , 2.1=εσ  (24) 
 

4. Numerical Results 
 
The numerical results are presented in terms of dimensionless parameters, such as the Reynolds number: 
 

ν/BURe ∞=  (25) 
 
where U∞ is the free stream velocity, B is the characteristic length of the cylinder and ν is the kinematics viscosity of 
fluid; and the Strouhal number, defined by the relationship: 
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∞= UfBSt /  (26) 
 
where f is the fundamental frequency of vortex shedding. 

 
4.1 Flow Regime at Re = 1.4 ×××× 104 

 
Two simulations were conducted for this Reynolds number employing the Smagorinsky constant equal to 0.1 and 

0.15. The results indicates a better performance with Cs = 0,1, however both simulations provided satisfactory data 
when compared with the experimental and numerical results in the literature. Table 1 presents the numerical calculus 
for the Strouhal number obtained with the different turbulence models. It worth noting that the values obtained with 
LES methodology were about 20% more than the data of Durão et al. (1988). In the same table, is evident that the 
results provided by the simulation without turbulence model is longer to predict correctly the value of the Strouhal 
number. Although the k-ε simulations have provided a closest value to experimental data for the parameter investigated, 
the further calculus not reveals the same trend. 

 
Table 1. Strouhal number of a square cylinder at Re = 1.4 × 104. 
 

Configuration Strouhal 
Without turbulence model 0.2015 
k - ε standard 0.1359 
k - ε realizable 0.1425 
LES − Cs = 0.1 0.1668 

Present work 

LES − Cs = 0.15 0.1834 
Durão et al. (1988) − Experimental 0.1390 

 
Figure 2 shows the longitudinal velocity distribution on the centerline at upstream and downstream of the cylinder. 

At the upstream, the velocity distribution is practically the same for all simulations under predicting the experimental 
values in the entry region. In this case, this discrepancy can be associated to turbulent decay (dissipation) before the 
cylinder. However, the major discrepancies are verified in the recirculation region behind the cylinder. The k - ε results 
were incapable to predict the length of recirculation bubble and the recovering of velocity at downstream. On the other 
hand, it is observed a much better prediction of this flow dynamics with the Smagorinsky model with Cs = 0.1. 
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Figure 2. Longitudinal velocity distribution on the centerline at Re = 1.4 × 104. 
 

Figure 3 displays the longitudinal ( 2u ′ ) and normal ( 2v′ ) velocity fluctuations also on the centerline. Here, it is 
most evident the better results provided by LES methodology, as compared with both standard and realizable k-ε 
simulations. Again, the numerical results are closest to experimental data for the Smagorinsky constant equal to 0.1. 

Figure 4 shows the energy spectrum obtained from the transversal velocity fluctuation v ′ signal captured in the 
wake for the simulations with and without the Smagorinsky model. This plot illustrates also an inertial zone’s 
inclination of the kinetic energy spectrum in according with the Kolmogorov’s law (k-5/3) valid for 3D flows. The curve 
obtained with the Smagorinsky model posses a similar slap, showing the capacity of the 2D model to predict the energy 
distribution from the great to the minor scales presents in the flow.  
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 (a) Longitudinal velocity (b) Transversal velocity 
 
Figure 3. Longitudinal and normal fluctuation velocity distribution on the centerline at Re = 1.4 × 104. 
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Figure 4. Energy spectrum obtained from the velocity signal acquired in the wake at Re = 1.4 × 104. 

 
4.2 Flow Regime at Re = 2.2 ×××× 104 

 
This section presents the results obtained exclusively with Smagorinsky model for a Reynolds number equal to 

2.2 × 104. The results with Cs = 0,1 were compared with another numerical and experimental ones. 
Table 2 includes the computed values for the Strouhal number and mean drag coefficient. The simulation of 

Bouris & Bergeles (1999)  is closer to the experimental value from Lyn et al. (1995) than the present work. However, in 
that work the grid size is more refined, with 300 × 350 resolution. In spite of this discrepancy, the other flow field 
variables were well predicted by the simulations of this work. 

 
Tabela 2. Strouhal number of a square cylinder at Re = 2.2 × 104. 
 

Configuration Strouhal dC  
Bouris & Bergeles (1999) LES − Cs = 0.1 0.134 2.18 

Present work LES − Cs = 0.1 0.168 2.28 
Lyn et al. (1995) − Experimental 0.135 − 0.139 2.05 − 2.23 

 
Figure 5 shows the longitudinal velocity and the total kinetic energy distribution on the centerline only at 

downstream of the cylinder. For comparison effects other numerical results obtained with the LES methodology were 
inserted in this plot, as the tridimensional data of Murakami et al. (1992) and Breuer & Pourquie (1996). 
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It is interesting to observe that the results of present work in the Figure 5(a) are better than 3D LES calculations of 
Murakami et al. (1992), when compared with experimental data from Lin et al. (1995). In according with 
Bouris & Bergeles (1999) the 3D LES on its own does not guarantee good results. On the other hand, fine resolution in 
the two dimensional plane is still very important. 

Figure 5(b) illustrates the total kinetic energy (periodic + turbulent) distribution on the centerline. Again, the 
present calculations show a closer agreement to the experimental measurements than the 3D calculation of 
Murakami et al. (1992). The results obtained with the k-ε model yielded a steady state solution for the flow field, as will 
be seen later by means of flow visualization results. 
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Figure 5. Longitudinal velocity and total kinetic energy distribution on the centerline at Re = 2.2 × 104. 
 

Figure 6 shows the energy spectrum obtained from the normal velocity fluctuation v ′ signal captured in the wake 
for the simulations with and without the Smagorinsky model. It is can be observed again that curve obtained with the 
Smagorinsky model concord very well with the inclination (k-5/3) of the Kolmogorov’s law.  
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Figure 6. Energy spectrum obtained from the velocity signal acquired in the wake at Re = 2.2 × 104. 
 
4.3 Flowfield Visualization 

 
The numerical visualization of the square cylinder's wake is showed, through the isovorticity plots, in the Figure 7 

for a Reynolds equal to 1.4×104. As seen in the Figure 7(a) and 7(b), the LES computation presents a continuous vortex 
paring which are convected to downstream along the domain. It can also be observed a smaller formation region of the 
vortices behind the square cylinder with a pair of vortices shedding near of trailing corners, as indicated by the 
quantitative results shown in the Figure 2. The presence of the vortex pairing in the wake leads to frequent oscillations 
in the velocity signal having a strong influence in the determination of the fundamental vortex shedding, as noted in the 
quantitative results presented in the Table 1.  
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Figure 7(c) and 7(d) shows the numerical prediction obtained with k-ε models. As observed in the other numerical 
simulations − Franke & Rodi (1991) − the k-ε model used with wall functions fails to predict the cylinder's wake with 
no vortex shedding arising. In this work, the vortex shedding in the k-ε standard model begun at a dimensionless time of 
approximately equal to 500. 

 

  
 (a) LES (Cs = 0.1) – t* = 311 (b) LES (Cs = 0.15) – t* = 311 

  
 (c) k-ε standard – t* = 311 (d) k-ε realizable – t* = 311 
 
Figure 7. The isovorticiy plots for the flowfield around a square cylinder with different turbulence models at 
Re = 1.4×104. 
 

The visualization of the wake for both k-ε models shows vortices regularly distributed along the von Kármán 
vortices street, as usually observed in the flow past around cylinders at low and moderate Reynolds number. In terms 
qualitative, the flow pattern obtained by LES simulations and k-ε models are quite different, although the quantitative 
results pointed to a better prediction of the flow field with the Smagorinsky LES model. 

 
5. Concluding Remarks 

 
This work presented the numerical bidimensional predictions of turbulent flow around a square cylinder at two 

relatively high Reynolds numbers. The calculations were carried out using Large Eddy Simulation (LES) methodology 
and classical modeling of turbulent flows via Reynolds average Navier-Stokes equations. In the LES case, the classical 
Smagorinsky model was employed setting the ad-hoc Smagorinsky constant for two different values. The k-ε 
simulations were accomplished with the standard and the realizable models. 

Quantitative and qualitative results were used for testing the performance of the models. In general, both LES and 
classical simulations have provided a convenient global analysis of the flow field around the square cylinder. However, 
results from LES were able to reveal more sharp details on the flow motion and the periodic vortex shedding 
mechanism. On the other hand, the employ of LES methodology is much more exigent in terms of time processing and 
computational storage capability, in contrast with classical techniques using the k-ε models. 

As a forecast, the notable advances in the computer’s technology and numerical methods will quickly allow the use 
of Large Eddy Simulation methodology as an important tool to analysis of complex flows in severe turbulent regimes, 
replacing with advantages the classical modeling of the turbulence. 
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