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Abstract. Non-Newtonian materials respond differently when submitted to shear or extension. A constitutive equation
in which the stress is a function of both the rate of deformation and on the type of the flow is proposed and analyzed
theoretically. It combines information obtained in shear, extension and rigid body motion in all regions of complex flow.
The analysis has shown how to insert some elastic effects in a constitutive equation that depends only on the present
time and position. One advantage of the model is that all the steady rheological functions in simple shear flow and in
extensional flow are predicted exzactly. Another important property that is included is the split of the extensional viscosity
in two parts: one dissipative part that is related to the shear viscosity and an elastic part that is related to the first
and second normal stress coefficients in shear. A discussion involving the dimensionless numbers that relate elastic and
viscosity effects is also given.

Keywords: viscoelastic fluid, constitutive model, flow-type classifier, elastic extensional viscosity, dissipative extensional
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1. Introduction

Some industries such as petroleum, food, cosmetic, have a huge influence on economy. There are a number
of processes in these industries in which Non-Newtonian materials are essential components. The need for
controlling the rheological properties during these processes is being more and more recognized. Flow simulations
are one of the tools to help understanding these problems and to improve efficiency. The choice of the constitutive
model to be employed on this simulations is of central importance.

Constitutive equations for non-Newtonian materials can be roughly divided into two categories: one in which
the stress tensor is a function of the present time and position and another in which it depends on the past
history of the deformation of the material. The first category would give an explicit equation for the stress
tensor while the second one needs a differential (or an integral in time) constitutive equation.

In this second group one has to work with a rather complex set of hyperbolic differential equations that
require approximation methods that numerically preserve the ellipticity of the saddle point problem formed by
the momentum and the continuity equations to give stable and accurate numerical solution. This complexity
does not necessarily grant excellent predictions for the material functions. One limitation is that they are
generally based on a single characteristic time (a relaxation time). For example, the Oldroyd-B model predicts
a constant first normal stress coefficient and zero for the second normal stress one. This problem has a worse
consequence when calculating flows where a strong elongational component is expected. One good attempt to
address this problem is the PTT model as one of its coefficients is more related to shear flows and the other
is more related to extensional ones. However, the material functions predicted by this model are not totally
independent.

Another feature of constitutive equations is that some have material functions that are inputs of the model
while for others the material functions depend on their intrinsic parameters. In this later case, the material
functions are obtained by a curve fitting of experimental data but are restricted to the type of function predicted
by the constitutive equation. This is an important issue that makes, for example, the GNL a better model than
the Lodge-Maxwell when the role of the shear viscosity is the most important in a given problem, because in
the former, shear viscosity is a material function given as input.

The present work is a part of a research program which introduces the flow-type classifier proposed by
Astarita (1979) in the development of new constitutive equations. The idea was first proposed by Schunk and
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Scriven (1990) when they proposed a new viscosity function dependent both on the second invariant of D, the
rate-of-deformation tensor and on the second invariant of W, the relative-rate-of-rotation tensor defined by
Drout and Lucius (1976). With this assumption, they could fit extensional and shear viscosities separately.
Souza Mendes et al. (1995) have further developed this idea by making the stress tensor a function of D and
W? (two symmetric tensors) and was able to predict non-zero second normal stress coefficient. Thompson et
al. have modified the previous assumption by making the stress dependent on the skew-symmetric tensor W
and could also predict non-zero first normal stress coefficient.

The goal of this paper is to present a new explicit constitutive equation for plane and axisymmetric flows,
in which the material functions for simple shear flow and for extensional flow are inputs for the equation and
therefore they are predicted exactly. An analysis is given to insert some viscoelastic properties that were present
only in constitutive models based on the history of deformation. This is done by choosing how the rheology
behavior on the simple limiting kinematic cases, namely, shear, extension and solid body motion, influence
complex flows.

2. Theoretical analysis
2.1. Governing equations
The mass equation for incompressible materials is given by:
V.v=0, (1)
The momentum equation for steady flow and negligible external forces is:
pV.(vv) =V.T (2)

where T, the stress tensor is related to kinematics by the constitutive model that is developed on the present
work.

2.2. Relation between the R-E tensors and T = T(D, W)

The Rivlin-Ericksen (R-E) tensors are a set of kinematic tensors defined by:

—_Cy(r)| ,n=0,1,2,3... (3)

T=t

where Ci(7) is the Right-relative-Cauchy-Green-strain-tensor, and Ay = I. Oldroyd has shown that the R-E
tensors are related by the following recursive formulae:

Apnyi = A+ A L+LTA, (4)

where L is the velocity gradient.

For steady flows, one assumption that can be made is that the memory of the viscoelastic material is of
instantaneous duration, instead of assuming that the material has a memory which fades in time. Therefore,
the extra stress tensor is a function of all the R-E tensors:

T=7(An),n=1,2,3.. ()
or in a reference frame Ry
T = ClAl + CQA.Z + C3A3 =+ ... (6)

where the coefficients ¢; are functions of the invariants of the R-E tensors. Therefore, this is a generalization
of the Retarded-motion-expansion. The model is objective, since all the R-E tensors are. So, if one wants to
describe the problem in another reference frame, R} defined by:

e = Qe (7
where Q is an orthonormal tensor, would find for the stress tensor:

T =c1A1" + A" +c3 Azt + ... (8)
where the R-E tensors in this new frame are given by:

An* = QAH QT (9)
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It is known that the vorticity tensor, the skew-symmetric part of the velocity gradient, has the following
relation between the two reference frames:

wW* =QQ" + QWQ” (10)

To continue the analysis it is important to define the tensor €2, related to the rate of rotation of the
eigenvectors of Aj:

& = Qe (11)
The following equations show how the tensor £2* in the reference frame R} is related to €2
" = Qe = & = Qei + Q& = 'ei” = QQTer” + QQT ey (12)
and
2" =QQ" +QaQ” (13)

Now, it is assumed that there exists a length scale I; above which the advection of €2 is very small. Describing
the problem in a neighborhood of diameter [; of the material particle of interest, we can change our reference
frame to the reference of the eigenvectors of A;. The rotation related to the original frame is such that, in this
new reference £2* vanishes so, Q = —QQ or Q7 = QQ”. Applying this transformation to the vorticity (10),
we get:

W* = QWQ’ - QQQ” = QWQ” (14)

where W = W — Q. Now we apply the same transformation to the material derivative of the R-E tensors:

Ay =QALQ" = A} = QALQ" + QALQT + QALQT (15)
Ay =Q(An+A.02-04,) Q7 (16)
But, from the recursive formulae we have that
Abir = QA+ ALL+L7AL) QT (a7)
Thus, comparing equations (16) and (17) we can write:
D% T T
Aia = Q| DrAnt AL -2+ (L- 974, Q (18)

where the operator %ZM denotes the frame indifferent time derivative of a generic second order tensor M,
defined as :

D% .

—M=M-+MQ - OM (19)

Dt

This time derivative is a measure of the variation, following the motion, of the components of the tensor M

with respect to the basis of the eigenvectors of D. This result shows that:
D% = =
TiAnt A (D+W)+(D-W)A, (20)

Then, by induction, it can be shown that if:

An+1 -

D% -

Equation (6) would reduce to 7 =7 (D, W) An interesting thing to notice is that for %YZAH =0, Q is the
solution of the Zorowaski problem and the flow is steady in the frame of the eigenvectors of D. This particular
case is a MWCSH (Motion with Constant Stretch History).
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2.3. The constitutive equation

It can be shown that a symmetric tensor-valued isotropic function of a symmetric (D) and a skew-symmetric

(W) tensor has the following general form:

T = aogl +a1D + asW? + agD® + ay (DW — WD) + as (WDW)+

+a (D*W —WD?) + a7 (WDW? — W2DW) (22)
where the coefficients &; are functions of scalar invariants:

a; = a;(trD, trD?, trD?, trW?, trDWZ, trD?W2, trD*W?DW) (23)
2.4. Simplifications for two-dimensional incompressible flows
2.4.1. Plane flows

Equation (22) is significantly simplified for plane incompressible flows (Pope, 1975; has done this for W in
the place of W).

Tensor W2 can be expressed as a function of D?, trW? and tr D?.

Tensor WDW = —1(trW?)D.

Tensor D*°W — WD? = 0.

Tensor WDW?2 — W2DW = —1(trW?)(DW — WD).
Furthermore,
trD = trD? = trDW” = trD?W2DW = 0 (24)

Hence, equations (22) and (23) reduce to:
T = agl + a1D + azD? + ay (DW — WD) (25)
a; = o (trD? trW?) (26)
2.4.2. Axisymmetric flows

_ If we considered axisymmetric incompressible flows, however, the only simplification is that tensor WDW?2 —
W2DW reduce to —1 (trW?)(DW — WD).

2.5. Performance in shear and extension

Every viscometric flow is locally a simple shear flow. For simple shear flow (v = Yxse;, where + is the shear
rate), Eq.(25) gives the following expressions for the material functions:

T 1
=T 1 27
Y 5 51 (27)
Ty, — T
\:[115%:@4 (28)
v
Too —Tyy 1

For extensional flows (v = éxie; — %é (1+b)xoeq — %é (1 —b)zzes where 0 < b < 1 and ¢ is the extension
rate), Eq.(25) gives the following expressions for the material functions:

_ T =Ty 3+0b 4—(1+0b)?
= = o

n ¢ 2 ! 4

T33 — Tho

€

Oégé (30)

M = = ba; — bagé (31)

Extensional flows, have three possible cases for plane and axisymmetric geometries: planar elongation (b =
1), uniaxial elongation (¢ > 0 and b = 0) and biaxial stretching (¢ < 0 and b = 0). For the first case, the
material functions are given by:

Th — T2

g =2a (32)

m=
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_ T33 =Ty
n=————

=1 — agé (33)
é

For the second case, the second viscosity vanishes and we can define a function 7, as one-third of the
extensional viscosity:

Ti1 — T2 1 1
s s = Z Z 34
3 - 5N + 1 3¢ (34)

um

All steady material functions are defined with the deformation rate as the independent variable. Another
variable is needed to classify the type of the flow. With these two variables, using Eq.(25) we can obtain (27)
to (34) independently. So, for this reason, the result concerning the dependence on the scalar invariants (26),
obtained for plane flows, are extended to axisymmetric flows. Therefore it will be considered that for plane
and axisymmetric flows, o; = a;(trD?, trW?) or in an equivalent form that shows explicitly the idea at the
beginning of the paragraph:

ai = a,(3, R) (35)

where 4 = (2trD2)% is the deformation rate and R = — tt:‘%z is a flow-type classifier.

2.6. Flow-type classifier

In order to characterize the flow, the criterium presented in Astarita, 1979, based on the invariance of
the relative-rate-of-rotation tensor, is used here. The deformation rate parameter (s?) and the rotation rate
parameter (w?) are defined respectively as:

$2 = t1(S?) = SymSum and w2 = —t1(W°) = —Woun W (36)

Defining R as the ratio between these two quantities:

=5 =-——7"_""
S SmnSnm
which take values from 0 to co.
This kind of parameter can be used to classify flows. It is local, objective, is not restricted to a class of flow
and is entirely kinematic (there is no material property involved). It is a measure of how much the material
avoids stretching by means of a rotation (relative to the principal directions of stretching). In this sense, it
is expected that at one side of the limiting cases stands the extensional kinematics, because the material is
not avoiding to be stretched at all; while at the other side is the rigid body motion, when the material is not
stretched. In fact, it can be shown (Astarita, 1979) that for pure extensional flow, R = 0 and as the flow
approaches to a solid body motion, R — oo. Every other kind of flow lies in between, including pure shear
flows, where R = 1, which is considered to be another limiting case (on a 2-D Cartesian flow the value R =1 is
the supremum for elliptical flows (Astarita, 1991), and a infimum for strong flows, (Tanner and Huilgol, 1975)).
This parameter was firstly used in constitutive models first in Schunk and Scriven, 1990, where extensional
and shear viscosity effects were decoupled; in Souza Mendes et al., 1995, where a new weight function for the
viscosity was proposed and the prediction for the second normal stress difference was included and in Thompson
et al., 1999, where all the rheological functions for stationary flow, in shear (including the first normal stress
difference) and extension are being carried to regions of complex flows.
This quantity can be normalized to avoid numerical problems when R — oo:

(37)

_1-R

The scalar D will take values between -1 and +1. For pure shear flow, D = 0; for pure extensional flow, D
= +1 and as the flow approximates to a solid body motion, D — —1. With this map that places the type of
kinematics that the fluid is going through an excellent tool for the interpretation of results is provided.

2.7. Second law of thermodynamics
2.7.1. Rate of work done by the stress tensor

The rate of work done by the stress tensor that contributes to the change of internal energy is T : Vv.
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When T is given by Eq.(25), this quantity can be written as:
T : Vv = trfa; D? + a3 D3] (39)

For a GNL fluid, second law of thermodynamics would require that T : Vv > 0. This is equivalent to
assuming that the rate of work is always dissipative. This happens because a GNL fluid is a substance whose
thermodynamic state is defined by two intensive thermodynamic properties. It can not predict any elastic
material function or behavior. Since we can make any tensor between D? and D? dominant, this condition
would result in:

trfa;D?] > 0 (40)
trlasD?] > 0 (41)

Some conclusions would be that a; > 0, and a3 has the opposite sign of trD?3. These restrictions do not
necessarily apply to the present model, despite the fact that the stress is a sole function of the present time and
position.

For a perfect elastic material, if we have uniaxial elongation, it is expected that this material will store
energy, and for a biaxial stretching, its internal energy would decrease (in this case, this would require that
ag > 0). For a viscoelastic material a dissipative and an elastic rate of work exists together. It can be stretched
(increasing its internal energy) without changes on density and temperature. For an incompressible material
and isothermal flow, the second law of thermodynamics becomes (Mackay and Astarita, 1996):

D

where a is the Helmholtz free energy. Therefore, the rate of Helmholtz free energy indicates the elastic part of
the stress power. For a perfect elastic material, Eq.(42) holds as an equality. For a GNL fluid, the right side
vanishes.

Another important observation lies on one of the main differences between simple shear flow and extensional
flow. In simple shear, normal stresses are decoupled from viscous stresses. First and second normal stresses
differences in shear are strictly related to elastic effects while shear viscosity is dissipative. On extensional flow
there are only normal stresses and therefore on its material functions there are dissipative and elastic effects
coexisting. So the change of a viscoelastic material from an extensional kinematic to simple shear can be seen as
a filter that separates dissipative from elastic espectra. Therefore, it does not seem appropriate to use, for the
normal stresses differences in extension, the term “extensional viscosities". The origin of the name is probably
related to the Newtonian fluid, where there is no elasticity and therefore extensional material functions involve
the shear viscosity only.

One way of formulating this idea (see Thompson, 2001) is to separate elastic and dissipative effects of
extensional viscosity by using a parameter 3 (0 < 8 < 1), the extensional dissipative coefficient:

Nu = (nu)diss + (nu)elast = ﬂnu + (1 - ,3)77“ (43)

One case of interest, for viscoelastic materials, is when the dissipative part of the extensional viscosity 7,
(for axisymmetric flows) is exactly the shear viscosity. Defining Tx as one-third of the usual Trouton ratio, the
extensional dissipative coefficient is:

1
= 44
=7 (44)
Consequently, the elastic part of the extensional viscosity is:
Tr —1
(nu)elast = n (45)

This assumption (44) relates the Trouton ratio with the elasticity of the fluid. The higher is the Trouton
ratio, the more elastic is the fluid as the literature reports. For GNL fluids, T = 1 = 8 =1 and (1) etast = 0,
which means that the extensional viscosity is totally dissipative.

Because of the difficulty in reaching steady state in many extensional flows of polymeric liquids, transient
data are very important. Bird et al., 1987 reports some measurements made by (Meissner, 1984) with a
polyisobutylene at T = 296K on the elongational stress growth function 7+ with respect to time. These data
are normalized as follows: for planar elongation, the data for 7" is divided by 4, 75 is divided by 2 and for
uniaxial elongation and biaxial stretching, 77 is divided by 3. This is done so that the sets should equal 5™,
the shear stress growth function in the linear viscoelastic limit.
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These results are in accordance with that assumption. For small ¢, 7 is a little bit higher for uniaxial
—+
elongation then 77 and for biaxial stretching 7 is a little bit lower then 7}, (see 34). For plane flows, "I~ have
-+
the same behavior of 7 and “Z is lower then " (see 32 and 33).

Another case of interest is when non-spheric rigid particles are added to a Newtonian solvent. There are
cases in which this procedure would result in a difference of the shear behavior making the fluid shear-thinning
without changing significantly the extensional viscosity. In this case Tr > 1 does not imply the presence of
elastic effects. This is a complex behavior to model. The problem is that simple models predict similar behavior
between extensional and shear viscosities while complex models predict different behavior due to elasticity. The
present model is able to predict different behavior between these quantities in inelastic fluids.

2.8. The «; functions

On Thompson, 2001 there is detailed information about the choices for the a; functions.
The coefficient « is such that makes the extra-stress tensor deviatoric, or:

1
ap=—p— gagtrD2 (46)

Examination of Equations (27) to (34) indicates that coefficient o is related to dissipative phenomena while
a3 and oy are related to elastic effects.

The coefficient o is multiplying D and therefore it has a strong relation with viscosity. For simple shear
flows is the shear viscosity and for extensional flows is related to the extensional viscosity. Schunk and Scriven,
1990, proposed a viscosity function that was the arithmetic mean between that two viscosities. As generally
Tr > 3, this formulation would give a negative viscosity for flows in which 1 < R < oo and they included the
condition R < 1. Astarita, 1991, examining streamline elliptical flows concluded that for a Maxwell fluid the
viscosity function decreases with the increase of deformation rate. An assumption of a geometric mean between
the two viscosities (in shear and extension) and the permission of an extrapolation to values of R higher than
1 would give to the present formulation that feature. Another thing to notice is that an interesting property of
the geometric mean is its indifference to a change of variable y = % or:

1 11

G =Vab= Z=\:3 (47)
This means that had we written momentum equation based on the fluidity instead of the viscosity, we would
find the same final result for the property for intermediate values of R (this is not true for the arithmetic mean).
Based on the ideas presented in the last section, in the present work is proposed a generalization of the viscosity
function proposed by Souza Mendes et al., 1995. It makes the coupling between shear viscosity and extensional
dissipative part of extensional viscosity. It is a “dissipative function":

For plane flows:

ar = 2. (np)' " (48)

where 7, = in}
For axisymmetric flows:

ar = 2nF(Bnu) (49)

The coefficient a3 makes the coupling between shear and extensional elastic effects. The geometric mean
would give a formulation in which there is no possibility for a material to have an elastic behavior in one type
of flow and a non-elastic behavior on the other, what is physically reasonable:

For plane flows:

a5 = (241 + 4ahy) " {M] (50)
For axisymmetric flows:
A(1— By, 1"
ag = (20 +4Wy)* [(f)n} (51)

However, the arithmetic mean gives the possibility to study shear and extensional elastic effects separately:
For plane flows:

a3 = (201 + 46)R + [”f”ﬂ (1-R) (52)

N[
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For axisymmetric flows:

A1 B)n,

€

as = (20, + 40,)R + (1-R) (53)

The only information that we have for the coefficient a4 is that, in shear, it is equal to the first normal stress
difference coefficient. It is given by:

0o = 0l R, (54)
3. Dimensionless relations between elasticity and viscosity

Next step is to adopt an equation to fit extensional and shear rheological data. For shear viscosity one can
model as a “power-law" fluid, or a viscoplastic model such as Bigham or Herschel Bulkley, etc. Carreau model
is a choice common in literature for viscoelastic materials. So the viscosities are represented by the following
equations:

ng—1

00

2o 1+ )] (55)
Mo — 75

77 7700 My —1

u_u:1+/\.2]2 56
e = 1 ) (56)

where 7y viscosity plateau for shear and the normalized extensional viscosity when ¥ — 0. A\ e )\, are charac-
teristic times of the fluid in shear and extensional flow respectively. The parameters n, (0 < ngs < 1) and n,
(0 < ny < 1) are the power-law exponents. If ny, = n, = 1, then the fluid is Newtonian. Shear-thinning and
extensional-thickening behavior (common in viscoelastic fluids) is attained for 7y — 72 > 0 and 7y — nS° < 0.
Even in this case, one could model a Boger fluid by imposing ny —n$® = 0. For the mentioned case A = A\, = A4
would be an extensional characteristic time, since it would be of no influence in shear.

There are some experiments that indicate that the characteristic times and exponents are equal for the same
fluid. Analyzing the time spectrum of the fluid, one could choose the higher value to input in a constitutive
equation.

It is a good assumption to say that complex flows are governed by more than one characteristic time. The
consequence of modelling a fluid with only one characteristic time, is a lack of the prediction capability of
general phenomena. To increase the capability of prediction of complex phenomena, on the present work it
is proposed two different dimensionless numbers relating elastic and viscous effects: one based on shear and
the other on extensional parameters. Both consist of a product A%. The first is a Deborah number, in which
the characteristic time of the fluid is, as usual, based on the ratio between two shear functions when 4 — 0:
A= ‘I'—“(’) The other can be called a Weissenberg number and is based on the extensional characteristic time of
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the Carreau equation.

4. Final remarks

We have presented a theoretical discussion about a new constitutive equation, which is based on the as-
sumption that the stress tensor is a function of both the rate-of rotation-tensor and the relative-rate-of-rotation
tensor (T = T(D,W)). We have discussed the relation between this assumption and the assumption used
to develop the retarded motion expansions, namely, that the extra-stress is a function of the Rivlin-Ericksen
tensors. We showed that for plane flows the coefficients arising in the representation theorem for T = T(D, W),
the ay‘s, are scale functions of the deformation rate, 4, and of the flow-type classifier, R. Finally, we analyze
the a; coefficients in light of the second law of thermodynamics, and propose to split the extensional viscosity
into two additive terms, namely, a dissipative term and an elastic term.
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