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Abstract. Turbulent flow simulations are presented in this paper. A 3-D finite difference numerical code, written for
general, curvilinear, body-conforming coordinate systems, is used. Simulations of turbulent flows over a flat plate are
compared to theoretical results in order to assess the correctness of the implementation of the formulation. Transonic
turbulent flows are then simulated about the Brazilian Satellite Launch Vehicle (VLS) configuration, currently under
development at IAE. Two eddy viscosity turbulence models are chosen for this numerical method, considering single-
and two-equation closures. These two models were natively developed for aerospace applications. In general, good results
within engineering error margins are obtained with the method presented here.
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1. Introduction

Launch vehicles are typically designed to fly at very low angles of attack. Nevertheless, even at such flight
condition, the lateral loads that arise in these vehicles are quite strong and they must be accurately determined.
Therefore, during the design process, one is required to determine the aerodynamics of these vehicles at angle
of attack because this will provide the loads required for the structural design of the vehicle as well as the
flight dynamics stability characteristics necessary for the control system design. Earlier works (Zdravistch and
Azevedo, 1990; Azevedo et al., 1991) has presented axisymmetric viscous simulations for flows over the VLS
with very good representation of the aerodynamics. Moreover, three-dimensional inviscid computations over
the VLS at low angles of attack with good agreement with experimental data were also performed (Azevedo
et al., 1996). This earlier work, however, considered fairly simple 3-D geometries and mesh refinement was less
than adequate due to computational resource limitations.

Further development in the computational resources in the country made possible the simulation of more
realistic flows and, thus, axisymmetric turbulent flows and 3-D laminar viscous flows simulations could be
performed with adequate mesh refinement. Furthermore, axisymmetric meshes could be made refined enough to
capture the dependency of the formulation with the Reynolds number, as shown by Azevedo and Buonomo, 1999.
The results presented in that work showed the influence of the turbulence modelling in the flow configuration.
Bigarelli et al., 1999, have shown 3-D results over general launch vehicle configurations. The calculations
emphasized that a laminar viscous formulation could not correctly capture some of the flow phenomena that
might occur in the simulations of interest at IAE. Obviously, this is what one should expect since the Reynolds
numbers of interest are of the order of Re = 107. Clearly, phenomena such as flow separation due to adverse
pressure gradients and shock wave-boundary layer interactions are poorly represented by a laminar formulation
at such high Reynolds numbers. Nevertheless, these phehomena play an important role in the flows over launch
vehicles and, therefore, should be adequately simulated.

The present work is aimed at addressing the implementation and validation of turbulent closures for the
computational tool under development at TAE. Hence, numerical results of the subsonic turbulent flow over a
flat plate are compared to known data in the literature in order to assess the correctness of the newly turbulent
formulation added to the code. Furthermore, the computational code is used to simulate 3-D transonic flows
about the first Brazilian Satellite Launch Vehicle (VLS). This vehicle is a four-stage satellite launcher built
with four booster attached to a main body. Since experimental data is available for this configuration, the
numerical results are compared to them such that the code effectiveness in the solution of realistic aerospace
configuration flows can be assessed. In the present work, computations were performed considering only the
vehicle central body. The solver used is a 3-D finite-difference code written for general, body-conforming,
curvilinear coordinate systems and it solves the thin-layer approximation of the compressible Reynolds-averaged
Navier-Stokes equations.
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2. Theoretical Formulation

The numerical code used solves the thin-layer approximation of the 3-D, compressible, turbulent, Reynolds-
averaged Navier-Stokes equations. The equations can be written in strong conservation-law form for general,
body-conforming, curvilinear coordinates (Pulliam and Steger, 1980) as
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where the vector of conserved quantities, @, is defined as
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The inviscid flux vectors, E, F and G, can be written as
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and the viscous flux vectors, E,, F, and G, can be defined as
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One should observe that all cross derivative terms have been eliminated in the above expressions of the viscous
flux vectors. The computational grids utilised in the simulations do not give support for capturing the neglected
viscous terms. Furthermore, for the Reynolds number of interest here, these terms can really be neglected if
compared to the ones already considered in this formulation, without limiting the validity of the resulting set
of equations. Hence, the equations actually implemented should be regarded as some form of the thin-layer
approximation to the Navier-Stokes equations.

The Reynolds number, based on the freestream speed of sound, a, density, poo, viscosity, fteo, and vehicle
diameter, d, is given as Re = pooaood/pheo- The Boussinesq hypothesis is used in this work in order to include
the turbulent effects in the formulation. Thus, in the viscous terms previously presented, the dynamic viscosity,
W, can be written as pu = pg + pg, where py is the laminar viscosity and p; is the eddy viscosity, obtained
throught the turbulence models chosen.

In the usual CFD nomenclature, adopted in the present work, p is the density, u, v and w are the Cartesian
velocity components, p is the pressure and e is the total energy per unity of volume. The pressure is obtained
from the equation of state for perfect gases, written as

~~

p=(-1) e—%p(u2+v2+w2) ; (5)
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where + is the ratio of specifics heats. The contravariant velocity components, U, V and W, were defined as

U = €t+§mu+§yv+€zw7
V = m+mnut+nu+nuw, (6)
w = Ct+CmU+CyU+Czw-

Throughout this work, the curvilinear coordinate system is defined such that ¢ is the rocket longitudinal direc-
tion, positive downstream, 7 is the wall-normal direction, and ( is the circumferential direction. Expressions
for the Jacobian of the transformation, J, and for the various metric terms can be found in Pulliam and Steger,
1980. As already pointed out, one should note that, despite the inclusion of the viscous terms in the £ and
¢ directions, cross derivative terms are not considered in this formulation. Moreover, the meshes used in the
simulations do not give support to viscous dissipation in those directions. Therefore, the formulation should be
referred as a thin-layer model.

3. Numerical Formulation

The governing equations are discretised in a finite difference context. The spatial discretisation adopted uses
a central difference algorithm plus explicitly added artificial dissipation terms in order to control nonlinear
instabilities. The equations, fully discretised in space, can be written as

()~ s .
The right-hand side operator of Eq. (7) is defined as
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where A{ = A = A = 1 for the general curvilinear coordinate case. An anisotropic scalar artificial dissipation
method, as described in Turkel and Vatsa, 1994, was used. This scheme is nonlinear and allows a selection
between artificial dissipation terms of second and fourth differences, which is very important in capturing shock
waves in the flow.

Time march uses an explicit, second order, five-stage Runge-Kutta scheme, derived from the ideas presented
in Jameson et al., 1981, which can be written as
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Numerical values for the oy parameters can be found in Jameson and Mavriplis, 1986. In the previous expres-
sions, At stands for the time step, and n and n + 1 refer to the property values at the start and at the end of
each time step. Equation (9) also indicates that a local time step option is being used in order to accelerate
convergence to steady state calculations.

4. Boundary Conditions and Computational Grids

For the configurations of interest here, the types of boundary conditions that should be considered include
upstream (entrance), solid wall, far field boundary, symmetry, upstream centerline and downstream (exit)
conditions. For the wall, the velocity vector is set to zero, and a zero-order extrapolation of the pressure and
the density is performed. The rocket upstream centerline is a singularity of the coordinate transformation and,
hence, an adequate treatment of this boundary must be provided. In the present case, the approach consists
in extrapolating the property values from the adjacent longitudinal plane and in averaging the extrapolated
values in the azimuthal direction in order to define the updated properties at the upstream centerline. At the
exit plane for both configurations, and at the entrance plane for the flat plate, the boundary conditions are
implemented through the use of the 1-D characteristic relations for the 3-D Euler equations. The interested
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(a) VLS (b) Flat plate

Figure 1: Overall view of a plane from the computational grids used in the simulations performed.

reader is referred to the work of Azevedo et al., 1995, for further details on the use of 1-D characteristic relations
for boundary condition implementation. Freestream properties are assumed at the far field boundaries.

In order to reduce computational costs, the grid used in the numerical simulations for the rocket configuration
are generated for half a body in the azimuthal direction. This simplification is valid for the cases assessed in this
work because low angles of attack are considered. This condition implies a symmetric flow about the pitching
plane, as indicated by Ying, 1986. Hence, symmetry is applied in this pitching plane using two auxiliary planes.
Those extra elements are added, respectively, before the leeside and after the windside pitching planes. In the
case of the flat plate, spanwise symmetry boundary condition is applied to these planes.

Furthermore, in order to correctly simulate the complicated turbulence dynamics that occur inside the
boundary layers, a good mesh refinement in these regions is strongly recommended. In a straightforward prac-

tical way, the turbulent dimensionless parameter y*, defined as y* = y %g—;,

distance to the wall of the first mesh point away from it, should be kept around 1. This condition is very impor-
tant in turbulent simulations in order not to spoil the balance between turbulent production and destruction
inside the viscous sublayer. The resulting grid for the VLS main body configuration, to which numerical results
are mesh independent, had 156 x 85 x 21 points. For this study, the number of points is the three directions were
varied from coarse to refined grids. The numerical solutions were compared to each other until the differences
fell below a small value. It was observed that, for very coarse grids in the normal direction, the turbulence
model practically spoiled the solution due to the already discussed unbalance of turbulence variables in the
boundary layer. For grids with 4™ < 3 the numerical solution was grid independent. A view of a longitudinal
plane of the VLS grid is shown in Fig. 1. The final mesh for the flat plate configuration had 121 x 90 x 10
points. A view of a longitudinal plane of this grid is shown in Fig. 1. The flat plate length comprises the last
3/4 part of the total computational domain length. For the first 1/4 section, symmetry boundary condition is
used.

where y is the dimensionless

5. Turbulence Models

As already discussed, turbulence models based on the Boussinesq hypothesis were chosen for this numerical
code. Previous work, such as Azevedo and Buonomo, 1999, among others, has shown that advanced turbulence
closures are required to correctly address the flow phenomena that may occur about the geometries of interest
for the group. Thus, a single- and a two-equation turbulence models, which were originally designed to aerospace
applications, were chosen for this work.

The single equation model chosen is the one proposed by Spalart and Allmaras, 1994. This model, rewritten
for a compressible flow and considering a general, body-conforming coordinate system, is given in its dimen-
sionless form by
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The variable solved by this equation, i, is defined as ji = J~'fi, where ji = p¥. Variable ¥ relates to the eddy
viscosity by
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where v is the laminar kinematic viscosity, p is the laminar dynamic viscosity previously defined as u, and
z; = (z,y, z) are the cartesian coordinates. The production term, S, is given by

1 v X
- 7 R I S
+ Re k2d2 Fox s foz L+ xfor

where S is the magnitude of the vorticity vector
1 /0u; Ou;
= /20, Q.. == - 1
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and u; = (u,v,w) are the Cartesian components of velocity. Variable d represents the distance to the closest
wall. The wall function, f,, is

S=8 (12)
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Boundary conditions are 7 = 0 at the wall and # < {5 at freestream boundaries. A 0-th order extrapolation is
chosen for other boundaries. Initial conditions are the same of the freestream values. The model constants are
cpy = 0.1355, 0 = 2, cpp = 0.622, £ = 0.41, ¢y = 2t + T2 0 ) — 0.3, ¢,3 =2 and ¢,y = 7.1.

The two-equation closure chosen is the baseline model (BSL) proposed by Menter, 1993. This model is
derived from both the famous k — w (Wilcox, 1993) and the standard k — € models. It solves some reported
problems of the k — w closure regarding freestream value dependency (Menter, 1994) while keeping the better
numerical behaviour of this model at the wall when compared to k& — € closures. The BSL model, rewritten
for a compressible flow and considering a general, body-conforming coordinate system, can be given in its
dimensionless form as
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The turbulent variables solved by this set of transport equations are given by

k=J"pk, o=J " pw, (17)

where k is the turbulent kinetic energy and w is the turbulent dissipation. The eddy viscosity is defined by
k
pe = Re~ | (18)
w

and the production term is given by

Ou; Ou;\ Ou; 2 (Ou 2 2 ou
P, = J S — ~Repk —~ . 19
k= l(axj + 6:1:,) Oz; 3 (8mm) 3P 0xy, (19)
The following choice of freestream conditions was chosen
M, 1
Woo = 5T , Voo = 0.01vy , koo = Tg VtooWso (20)
where L is the approximate length of the computational domain. Wall boundary conditions considered were
1 v
k=0, w=60———, 21
Re B(Ay)? @)

where Ay, is the distance to the wall of the closest point away from it. Zero-th order extrapolation is performed
at other boundaries.

The F; variable is a blending function that turns on the k¥ — w closure near walls and the standard k — e
outside boundary layers. It is given by

(22)
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where

(23)

1 .
CDy, = max <2p0w2 Ok 3_(,0 10_20> .

; 6—.7:'] 6xj ’
Any model constants are generally calculated as
¢p=Fip+(1-Fi)é, (24)

where ¢; represents the set of constants for the £ — w model and ¢- the set for the standard k — € model. The
following sets were used:

2
ok =05, 00, =05, 81 =0.075,8* =0.09, k=041, 3, = B ouik
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Since a measure of the turbulent kinetic energy is used in this model, this should be included in the viscous
terms of the Navier-Stokes equations. Therefore, the static pressure is given by

(25)

Oka = 1.0, 0y = 0.855, B = 0.0828 , B* = 0.09 , vz, = (26)

1
p=(y-1) e—ip(u2+v2+w2)—pk , (27)

and the new viscous flux arrays are redefined, already considering the thin-layer approximation of the derivatives,
as
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where A=FE,, F,or G,y =& nor ( and C =U, V or W, respectively.

The turbulence equations of both models are solved in a decoupled fashion from the Navier-Stokes system.
An ADI method, similar to a Beam-Warming scheme (Warming and Beam, 1978), is chosen for the time stepping
of the turbulence equations. Artificial viscosity to control non-linear instabilities is added through an upwind
discretization of the advective terms of the turbulence equations. This approach is used for both right- and
left-hand side operators of the system. The upwind discretization chosen is a flux-vector splitting-type approach
similar the Steger-Warming method (Steger and Warming, 1981).

6. Results and Discussions

In this section, the numerical results obtained with the formulation presented here are compared to known data
in order to verify the correctness of the implementation and assess the quality of the results that can be obtained
with the computational tool under development.

6.1. Flat Plate Results

Figure 2 presents zero pressure gradient flat plate turbulent boundary layer profiles. This flow is an excelent test
case for a solver validation since it allows the comparison of the numerical results with an analytical solution.
This avoids the uncertainty associated with experimental results, which are another option for validation. One
can observe in Fig. 2 the numerical curves obtained with the turbulence closures discussed before, namely, the
single-equation Spalart-Allmaras (SA) and the two-equation Menter (BSL) models. The theoretical log-layer
profile is also shown in this figure in order to compare with the numerical results. The numerical Reynolds
number of the test was Re = 1 million. However, the results presented in Fig. 2 are independent of this
parameter. It can be clearly seen in this figure that both numerical solutions compare very well with the
theoretical solution. This theoretical curve is given by small circles representing the mesh spacing along the
normal direction to the wall. One can verify that the first grid point away from the wall has about y™ = 0.4,
which is, by far, enough to correctly simulate a turbulent boundary layer with the closures discussed in this
work. Small differences can be found between the two models in the intermediate sublayer region. The BSL
model estimated a smoother velocity profile than that of the SA closure. However, both estimated very well
the viscous and inertial sublayers as well as the external layer. The results presented in Fig. 2 are indicative of
the quality of the data that can be obtained with this numerical formulation.
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Figure 2: Turbulent boundary layers for a zero pressure gradient flat plate. Numerical Reynolds number is
Re = 1 million.

6.2. VLS Results

In this section, numerical results for the transonic flow about the VLS second-stage flight configuration, at
freestream Mach number M., = 0.90 and angle of attack a = 0 deg., are presented. The numerical results are
compared to available experimental data, obtained through numerous wind tunnel testings, in order to address
the correctness of the numerical method implemented. These experimental data were presented in Augusto
Neto, 1991, and no information about experimental uncertainty was available in this work. Nevertheless, these
are reliable results and they were used for the aerodynamic design of the first VLS.

It should be stated here that the inviscid and the laminar viscous formulation of the computational code
presented here were extensively studied in previous work, as can be seen in Bigarelli et al., 2001. In that
paper, a large range of flow conditions, such as transonic to supersonic speeds and various angles of attack,
was simulated. As a general assessment, good results within engineering error margins could be obtained. It
is important to note, however, that these simulations were not correct in the sense that high Reynolds number
were considered, for which the real flow is actually turbulent. Nevertheless, these computations were done in
order to validate the numerical tool. In the present work, inviscid and laminar simulations are also performed
for such high Reynolds numbers. Thus, the reader must keep in mind that these are just intermediary solutions
towards a turbulent flow simulation capability, which is the correct flow representation.

The turbulent simulation results presented here were obtained with the newly implemented turbulence
modelling capability added to the code. Furthermore, the transonic flight condition was chosen due to its
physical complexity which results in a more difficult simulation case. In this flight condition, a strong shock wave
builds over the vehicle payload fairing and other flow regions are still transonic, as will be seen in the forthcoming
results. Besides the known mathematical complexity that this situation may impair to the simulation, this strong
shock wave may interfere with the boundary layer in that region, interacting with it in a very complicated fashion.
Previous axisymmetric results (Azevedo and Buonomo, 1999; Strauss, 2001) showed that turbulence modelling
is required to correctly capture the flow configuration in this region. As will be seen, the flow complexity is
large enough to prevent the laminar formulation from converging to a steady-state solution.

Figure 3 presents experimental and numerical Mach number contours over the VLS central body at freestream
Mach number M, = 0.90 and angle of attack & = 0 deg. Various approximations to the Navier-Stokes equations
were used to simulate the transonic flow over the VLS second-stage flight configuration, including an inviscid,
a laminar viscous (Re = 30 million) and two turbulent (Re = 30 million) closure approaches. For the latter
computations, the two turbulence models described in the last section were used. A less refined mesh than
presented in Fig. 1 was used in the inviscid simulation. One can see in Fig. 3 that the inviscid and the turbulent
results are qualitatively alike the experimental data (Re = 25 million). The presence of a strong shock wave
that builds over the vehicle payload fairing region is clear. For the inviscid case, however, shocks and expansions
are obviously stronger since a boundary layer is not present in the solution. One can also verify that the laminar
result is much different from the experimental one. The laminar flow separates at the first expansion corner due
to the weakness of the laminar boundary layer at such a high Reynolds number. The separated flow, in this
simulation, had an unsteady behaviour and kept the computations from converging to a steady-state solution.
This statement is corroborated by the oscillating residue history curve that can be seen in Fig. 4. This figure
presents the residue history for the four methods considered in Fig. 3. The maximum density residue field value
was used as the measure of convergence of the method. The inviscid and the turbulent simulations converged
to a steady-state solution. Furthermore, the non-symmetrical results observed in Fig. 3 are also indicative of a
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(a) Experimental (Schlieren).

(c) Laminar. (d) Turbulent (SA). (e) Turbulent (BSL).

Figure 3: Experimental and numerical Mach number contours over the VLS second stage configuration at
Mo = 0.90 and o = 0 deg. Numerical Reynolds number was Re = 30 million and the experimental one was
Re = 25 million.

transient numerical solution. One should observe, however, that since a variable time step option is used in the
present, simulations, such an unsteady solution does not represent the actual physical transient behaviour.
Figure 5 presents pressure contours for the VLS main body at the same flight condition of Fig. 3. This result
was obtained with the laminar formulation. In this figure, streamlines are also included to indicate the vortex
structures that build due to the flow separation. These seem to be convected by the mean flow in a similar
fashion as a von Karman vortex street. This is corroborated by the fact that the simulation was characterised
by a transient solution, as seen before. Furthermore, the results presented in Fig. 6 relate to these statements.
This figure presents Cp distributions along the vehicle wall for both lee- and windside pitching planes. It should
be noted the oscillatory and non-symmetrical behaviour of the curves. The results presented so far corroborate
the statement that a good turbulence modelling is necessary to correctly simulated such a complicated flow.
Figure 7 presents the numerical and experimental C'p wall distributions for the geometry described before
at freestream Mach number M., = 0.90 and angle of attack o = 0 deg. This figure shows numerical results
obtained with the inviscid and the two turbulent approximations discussed before. The laminar results were not
included for obvious reasons. It can be seen in Fig. 7 that the inviscid simulation presents overshoots at high
gradient regions, such as the shock wave and sharp corners along the geometry. This behaviour is well known
for this formulation. It can also be seen that the turbulent simulations followed much better the experimental
pressure distribution, if compared to the inviscid computations. Both turbulence models performed in a very
similar way in this simulation, which is indicative of the quality of the numerical solution that can be expected
with the newly implemented turbulence modelling capability. However, a small difference between the numerical
solutions and the experimental data can be seen at the shock wave position over the payload fairing region.
The turbulent solutions estimated the shock position further downstream than shown in the experimental data.
Some aspects may explain this difference observed. The first one regards the difference between the numerical
and the experimental Reynolds number considered. In such a complicated case as this transonic flow, this
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Figure 4: Residue histories obtained with different approximations to the Navier-Stokes equations.

Figure 5: Pressure contours and streamlines over the VLS central body at M, = 0.90 and o = 0 deg. Numerical
Reynolds number was Re = 30 million and experimental one was Re = 25 million.

can be extremely important to the flow configuration since the shock wave position is fully determined by the
formulation itself and, therefore, is not attached to any geometric discontinuity. Another aspect is related to
the mesh refinement along the longitudinal direction. A detail of the mesh with the pressure contours in this
region, obtained with the simulation with the Spalart-Allmaras model, can be seen in Fig. 8. One can verify in
this figure that the mesh may not be refined enough in the longitudinal direction in order to correctly capture
the purely viscous phenomena that occur when the shock wave interacts with the boundary layer. Finally, the
experimental model used in the wind tunnel tests was tested with the four boosters attached to main body.
This fact may have an influence in the shock wave position and the flow configuration since, in subsonic flight
conditions, what happens downstream can influence the flow upstream. As already stated, the computational
model simulated considered only the vehicle main body configuration. Hence, the slight differences observed
in Fig. 7 between numerical and experimental results over the vehicle payload fairing may be explained by the
various reason presented. One should further observe that in the afterbody cylindrical section, all numerical
results tend to return to the freestream pressure values, i.e., Cp = 0. This is not true for the experimental data,
which present small, but higher C'p values in this region. This is clearly the influence of the strap-on boosters
which are not included in the numerical simulations.

The aspects discussed above will be addressed in future work, but the results presented so far are repre-
sentative of the behaviour and the quality of the turbulent solutions that could be obtained with the present
formulation. The last aspect, specially, that concerns the influence of the boosters can be addressed only with a
multiblock capability in order to include these geometries in the computational model. This certainly will be a
future step for the development of this numerical tool. Preliminary results with a laminar viscous formulation
and a multiblock capability were already obtained, as can be seen in Basso et al., 2000.

Another important aspect that should be emphasized which regards the turbulence modelling is the increase
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Figure 6: Experimental and numerical Cp distributions over the VLS second stage configuration at M, = 0.90
and a = 0 deg. obtained with a laminar formulation. The numerical Reynolds number was Re = 30 million and
the experimental one was Re = 25 million.
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Figure 7: Experimental and numerical C'p distributions over the VLS second stage configuration at My, = 0.90
and a = 0 deg. obtained with various formulations. The numerical Reynolds number was Re = 30 million and
the experimental one was Re = 25 million.

in the computational resources necessary to address the new equations added to the formulation. A simulation
of a laminar flow costs 25% more then an inviscid one, while the same simulation with a single- and a two-
equation turbulence modelling costs, respectively, 45% and 50% more then the laminar computations. Added
to this is the fact that, as already stated, a turbulent simulation requires more refined and/or stretched grid in
order to satisfy the y7 = 1 condition for the first grid point away from the wall. This increases the stiffness of
the problem rendering lower convergence rates to the code. This can be observed in the results of Fig. 4. One
should note in this figure that the inviscid simulation, with a less refined and stretched grid, converges much
faster then the turbulent cases. Finally, one can observe in Fig. 9 the residue histories of the turbulence model
equations. This figure presents the maximum residue field value of the turbulent variable been solved. In the
case of the SA model, the eddy viscosity variable, ji, was used, while, for the BSL model, the turbulent kinetic
energy variable, k, was chosen. It can be seen in Fig. 9 that the turbulent equations converge when the governing
equations converge to a steady state solution. This is a good indication that, for typical C F'L numbers that can
be used with the explicit numerical method presented here, the ADI time marching procedure of the turbulence
equations, together with the upwind discretization of the advective terms of this system, are enough to control
nonlinear instabilities of these equations. In other words, the turbulence equations do not spoil the convergence
of the governing equations, which results in a more robust numerical tool for the applications of interest.

7. Concluding Remarks

This work presents the assessment of the newly implemented turbulent 3-D flow solver capability at IAE. This
numerical tool is aimed at solving three-dimensional flows over complex aerospace configurations at angle of
attack to determine important aerodynamic loads required at the design stage. Previous results showed the
need for incorporating robust turbulent closures to the computational code in order to correctly address the
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Figure 9: Residue histories for the turbulent equations of the SA and the BSL turbulent models.

transonic and supersonic flow about such complicated geometries. A computational code which solves the
compressible Reynolds-averaged Navier-Stokes equations for general, body-conforming, curvilinear coordinates
was used. The Spalart-Allmaras single-equation model and Menter’s baseline two-equation turbulence closure
were implemented into the code in order to include the turbulent influence into the governing equations. The
numerical code was used to simulate the subsonic flow about a flat plate and transonic flows about the VLS
central body configuration at freestream Mach number of 0.90 and zero angle of attack.

A previous verification analyses involved the comparison of the zero pressure gradient flat plate turbulent
boundary layers with the theoretical log-layer law. Very good agreement between the numerical and the theo-
retical results was obtained. The numerical results for the simulation of the VLS at a transonic Mach number
were, then, compared to experimental data in order to further assess the quality of the computational tool.
In general, good results were obtained, which showed the capability of this code to adequately address the
flows of interest at TAE. An analysis of the computational resources necessary to simulate the turbulent flow
showed that one turbulent iteration costs about twice that of an inviscid step for the problem under study.
Furthermore, the condition of satisfying y* = 1 for the first point away from the wall yields more stretched and
refined computational meshes. This results in much slower convergence rates. The CFD group at TAE is already
working to implement a multigrid method into the code to accelerate convergence to steady-state solutions.

Finally, it can be stated that much more results would be necessary to completely validate this solver.
However, this work is an account of the evolutionary process towards the complete flow simulation capability
desired. The results presented here are a good indication of the level of accuracy that can be attained with the
computational tool even at the present stage of development.
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