

Instituto Politécnico, Nova Friburgo August 30th- September 3rd, 2004

Paper CRE04 - TF29

Queda de Pressão num Prato Perfurado de uma Coluna de Destilação

Thiago Antonini Alves, Marcelo Ferreira Pelegrini, Cassio Roberto Macedo Maia, Ricardo Alan Verdú Ramos, Emanuel Rocha Woiski

Núcleo de Planejamento Energético e Cogeração (NUPLEN)
Departamento de Engenharia Mecânica, Faculdade de Engenharia, Campus de Ilha Solteira
Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP
Avenida Brasil, 56, Centro, Ilha Solteira, SP, Brasil, CEP: 15385-000
antonini@dem.feis.unesp.br, marcelo@dem.feis.unesp.br

Um dos principais inconvenientes relacionados ao uso de uma coluna de destilação é o grande consumo de energia que este equipamento traz à planta industrial onde está inserido. Para a diminuição destes gastos, o controle da queda de pressão na coluna é de grande importância, mais ainda nestes tempos de cogeração e vendas dos excedentes energéticos. Portanto, este trabalho trata do cálculo da queda de pressão em função da velocidade do vapor que atravessa os orifícios considerando-se diversos diâmetros d orifício na coluna de destilação de pratos perfurados.

A queda de pressão total (h_l) através de um prato perfurado de uma coluna de destilação é o somatório da queda de pressão através da unidade de dispersão (h_d) e da queda de pressão provocada pela massa de líquido aerada (h_l) , ou seja,

$$h_i = h_d + h_i \,. \tag{1}$$

A queda de pressão na unidade de dispersão é uma variação na pressão causada em função da passagem do fluxo de vapor através dos orifícios do prato, e esta queda de pressão é dada por:

$$h_d = K \frac{\rho_V}{\rho_I} U_h^2, \tag{2}$$

onde, ρ_V é a massa específica do vapor [kg/m³], ρ_L é a massa específica do líquido [kg/m³], U_h é a velocidade superficial do vapor [m/s] e K é uma constante. Para a determinação de K utiliza-se a correlação de Liebson (Ogboja & Kuye, 1990).

A queda de pressão através do líquido aerado em pratos perfurados é determinada usualmente pela correlação apresentada por Bennett *et al.* (1983). Esta correlação fundamenta-se na seguinte relação:

$$h_l = h_c + h_r \,, \tag{3}$$

onde, h_c é a altura de líquido retido no prato e h_r é a queda de pressão residual interpretada como a pressão adicional requerida para sobrepor as dificuldades impostas pela tensão superficial quando as bolhas são formadas nas perfurações. Um esquema das perdas de pressão é mostrado na Fig. 1.

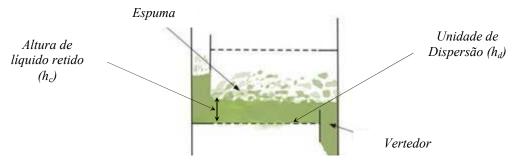


Figura 1 – Vista frontal de um prato perfurado numa coluna de destilação.

Portanto, a queda de pressão residual é fortemente influenciada pelo diâmetro dos orifícios (d_c) e pela tensão superficial (σ) e é calculada pela correlação de Ogboja & Kuye (1990) dada por:

$$h_r = 4773.5 \,\sigma \,\rho_L \left(\frac{\sigma \,d_h}{\rho_L - \rho_V}\right)^{-0.33},$$
 (4)

A altura do líquido retido no prato é determinada por:

$$h_c = \phi_e \left[h_w + 15,328 \left[0.0327 + 0.0286 \ e^{(-0.1378 h_w)} \right] \left(\frac{Q_L}{\phi_e} \right)^{\frac{2}{3}} \right], \tag{5}$$

sendo que, h_w é a altura do vertedor [mm], Q_L é a vazão volumétrica do líquido por unidade de comprimento [m³/s m²] e ϕ_e é a densidade da espuma, dada por $\phi_e = e^{-l2,55C_{SB}^{0,9l}}$, onde C_{SB} é a constante de Souders & Brown (Treybal, 1980) e varia usualmente entre 80 e 85%. A Fig. 2 mostra o comportamento destas grandezas:

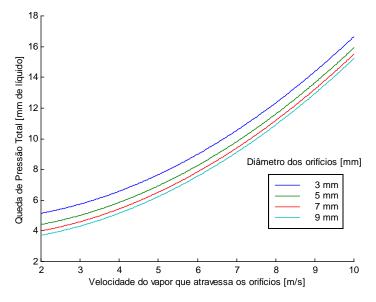


Figura 2 - Queda de pressão total em função da velocidade do vapor para diferentes diâmetros dos orifícios.

Um dos principais inconvenientes de uma coluna de destilação é a sua baixa eficiência termodinâmica, o que implica em um alto consumo de energia. Assim, neste trabalho, calculou-se a queda de pressão em função da velocidade do vapor que atravessa o prato para diferentes diâmetros dos orifícios, onde se observou um aumento das perdas de pressão com o aumento da velocidade.

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] Bennett, D. L., Agrawal, R. & Cook, P. J., 1983, "New Pressure Drop Correlation for Sieve Tray Distillation Columns", AIChE Journal, 29 (3), p.434.
- [2] Ogboja, O. & Kuye, A., 1990, "A Procedure for the Design and Optimization of Sieve Trays", Trans. I. Chem. Eng., Part A, 68 (9).
- [3] Treybal, R. E., 1980, "Mass Transfer Operations", 3a ed., McGraw Hill.