

Instituto Politécnico, Nova Friburgo August 30th- September 3rd, 2004

Paper CRE04 - TF21

PyTermo – Software para Simulação de Sistemas Termodinâmicos

José Luiz Gasche, João Alisson Mendes Reis, Marcos Antonio de Souza Lourenço e Rafael Sene de Lima

Faculdae de Engenharia de Ilha Solteira, FEIS, Universidade Estadual Paulista, UNESP CEP 15.385.000, Ilha Solteira, SP, Brasil gasche@dem.feis.unesp.br , jreis@dem.feis.unesp.br, lourenco@dem.feis.unesp.br, rafael@dem.feis.unesp.br

Neste trabalho desenvolveu-se um programa em Python para o cálculo do fator generalizado de compressibilidade, do coeficiente de fugacidade e dos desvios generalizados de entalpia e entropia.

A equação de estado generalizada de Lee-Kesler (1975) foi utilizada para representar o comportamento p_{r^-} v_r - T_r das substâncias puras.

$$Z = \frac{p_r \cdot v'_r}{T_r} = 1 + \frac{B}{v'_r} + \frac{C}{v'^2_r} + \frac{D}{v'^5_r} + \frac{c_4}{T_r \cdot v'^2_r} \left(\beta + \frac{\gamma}{v'^2_r}\right) \exp\left(-\frac{\gamma}{v'^2_r}\right)$$
 (1) onde:

$$B = b_1 - \frac{b_2}{T_r} - \frac{b_3}{T^2_r} - \frac{b_4}{T^3_r}, \quad C = c_1 - \frac{c_2}{T_r} + \frac{c_3}{T^3_r}, \quad D = d_1 + \frac{d_2}{T_r}$$

$$e \quad T_r = \frac{T}{T_r}, \quad P_r = \frac{P}{P_r}, \quad v'_r = \frac{v \cdot P_c}{RT_r}$$

Sabe-se que a Eq.1 representa muito bem o comportamento p_r- v_r'-T_r de fluidos simples, isto é, fluidos cujo fator acêntrico de Pitzer (1955), w, é nulo. Pitzer propõe as seguintes relações para a determinação das propriedades generalizadas:

$$z = z^{(0)} + wz^{(1)} \qquad (2) \qquad , \qquad \frac{h^* - h}{RT_c} = \left(\frac{h^* - h}{RT_c}\right)^{(0)} + w\left(\frac{h^* - h}{RT_c}\right)^{(1)} \qquad (3)$$

$$\frac{s^*_{P^*} - s_P}{R} = \left(\frac{s^*_{P^*} - s_P}{R}\right)^{(0)} + w\left(\frac{s^*_{P^*} - s_P}{R}\right)^{(1)} \qquad (4) \quad , \quad \ln\left(\frac{f}{p}\right) = \ln\left(\frac{f}{p}\right)^{(0)} + w\ln\left(\frac{f}{p}\right)^{(1)} \qquad (5)$$

No qual (0) implica no uso das constantes da Eq.1 para fluidos simples e a ordem (1) representa o ajuste linear entre as propriedades da ordem (0) e de um fluido de referência, sendo este a substância octano (r). Considerando z, obtém-se a Eq. 6, substituindo a Eq. 7 na Eq.2.

$$z = z^{(0)} + w \frac{(z^{(r)} - z^{(0)})}{w^r}$$
 (6), onde $z^{(1)} = \frac{(z^{(r)} - z^{(0)})}{w^r}$ (7) com $w^{(r)} = 0.3978$.

O mesmo tipo de ajuste se aplica para as demais propriedades.

Estas equações foram usadas para gerar resultados para estados de líquido comprimida e vapor superaquecido. A fig. (1) apresenta a interface gráfica do programa para apresentar os resultados fornecidos.

Geral	Saturação Gratico	ação Grafico								
	Substância	T(K)	P(MPa)	Tr	Pr	Z	(h*-h)/RTc	(s*-s)/RTc	In(I/p)	
1	CH4	57.120000	0.460000	0.300000	0.100000	0.029881	6.162322	9.503704	-11.037370	
2	H20	517.840000	2.212000	0.800000	0.100000	0.915148	0.240440	0.218656	-0.08189	
3	He	2,482500	0.068400	0.750000	0.600000	0.119841	1,923928	1.950882	-0.614355	
4	CO	93.030000	0.350000	0.700000	0.100000	0.016752	5.272648	7.281907	-0.290447	
5	NH3	385.225000	6.810000	0.950000	0.600000	0.668964	1,133256	0.910818	-0.282083	
6	- 0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	

Figura1 – Interface gráfica gerada pelo programa

Os resultados obtidos são excelentes quando comparados com aqueles divulgados pro Van Wylen (1994).

Estes resultados podem ser usados para o cálculo de propriedades termodinâmicas (p, v, T, Δh, Δs, f) para as substâncias incorporadas no programa (C₃H₈, CO, He, N₂, H₂O, CCl₄, CH₃CCl₂F, CH₄, NH₃). Além disso, por ser aberto, pode ser inserido em programas de simulação e otimização de sistemas térmicos que necessitam do cálculo de propriedades termodinâmicas.

REFERÊNCIAS

- [1] Lee, B.I., and M.G. Kesler, *AIChE J*, 21, 510 (1975).
- [2] Pitzer, K.S., J. Am. Chem. Soc., 77, 3427 (1955).
- [3] Van Wylen. Fundamentos da Termodinâmica Clássica. 4. Ed. São Paulo: Edgard Blücher Ltda., 1995.