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Abstract. In this work some correlations for the Dispersion and Tortuosity thermal conductivity 
tensors are obtained for laminar and turbulent flows in porous media. These correlations are 
obtained simulating the flow in the porous medium through an infinite array of unit cells with 
periodic boundary conditions for the flow and an imposed temperature gradient through the unit 
cell. The solutions obtained for the hydrodynamic and thermal fields inside the unit cell for a broad 
range of Reynolds number based on the cell dimensions are then utilized to obtain the above 
mentioned correlations. Two types of boundary conditions for the thermal field are investigated and 
compared to the results of Nakayama and Kuwahara (1999). It is found that only one type of 
boundary conditions is suitable due to the repeatability of the temperature pattern in successive 
cells. 
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1. INTRODUCTION  
 

Due to the growing interest on the applications of porous media in several areas of engineering 
and science, a better understanding of the phenomena occurring in laminar and turbulent flows as 
well as heat transport in porous media is desirable. As examples of applications, one can mention 
filtration, catalytic reactors, combustion in porous matrices, electronic device cooling, oil 
engineering, etc. 

The aim of this work is to explore a methodology to obtain the thermal conductivity tensors due 
to dispersion and tortuosity. These tensors arise in the heat transport equation for porous media and 
are due to the presence of the porous matrix. These conductivity tensors are present in both laminar 
and turbulent flows. 

Here, the porous medium is represented by an infinite array of unit cells and the calculations are 
performed for one unit cell with periodic boundary conditions for the flow and an imposed 
temperature gradient. Two types of boundary conditions for the temperature are considered, namely 
a) prescribed temperatures at the cell boundaries; and b) prescribed temperature difference between 
the cell boundaries. The results are then compared with the ones obtained by Nakayama and 
Kuwahara (1999) and some conclusions are drawn. 
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2. MATHMATICAL MODEL  
 

To arrive at the macroscopic one-equation model for the heat transport in a porous medium, one 
starts with the microscopic energy equations for the fluid and the porous matrix (solid) and then one 
applies the time average procedure followed by the volume average operator, or vice-versa, making 
use of the local thermal equilibrium hypothesis. 
 
2.1. Microscopic Energy Equations  
 

For an incompressible flow in a rigid, homogeneous and saturated porous medium, without 
internal sources, one can write: 
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where Eqs.(1) and (2) refer to the fluid and solid, respectively. Here ρ  is the density, pc  is the 
specific heat, k  is the thermal conductivity, T  is the temperature, u  is the fluid velocity and the 
subscripts f)(  and s)(  refer to the fluid and solid matrix, respectively. 
 
2.2. Macroscopic Energy Equation  
 

Applying the time average followed by the volume average, or vice-versa, to the microscopic 
energy equations for the fluid and the solid, using the double decomposition concept introduced by 
Pedras e de Lemos (1999a) and taking into account the local thermal equilibrium hypothesis, one 
gets: 
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where use has been made of the fact that ii

s
i

f TTT 〉〈=〉〈=〉〈  and i
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Equation (3) is the macroscopic one-equation energy model for the heat transport in a porous 
medium. In order to use this equation to calculate the temperature field in a porous medium, the 
underscored terms on the right hand side need to be modeled in terms of the macroscopic velocity 
and temperature, Du  and iT 〉〈 . This is accomplished using a gradient type diffusion model for each 
term as follow: 
 



 

I) Tortuosity- 
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II) Turbulent heat flux- 

 
( ) ( ) i

t
i

f
i

fp TKTc 〉∇ 〈⋅=〉′〈〉′〈− uφρ  (5) 

 
III) Thermal dispersion- 
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IV) Turbulent thermal dispersion- 

 
( ) ( ) i

tdisp
i

f
ii

fp TKTc 〉∇ 〈⋅=〉′′〈−
,

uφρ  (7) 

 
Thus, using the diffusivity models given above, the macroscopic one-equation model for the 

heat transport in a porous medium can be written as: 
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where the effective thermal conductivity tensor,  

eff
K , is given by: 
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2.3. Obtension of the Thermal Conductivity Tensors  
 

The thermal conductivity tensors due to the turbulent heat flux and turbulent thermal dispersion, 

t
K  and 

tdisp
K

,
, given in Eqs. (5) and (7), respectivelly, are modeled through the macroscopic eddy 

diffusivity concept, as presented in Rocamora and de Lemos (2001), as: 
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where  

φ
ν t  express the macroscopic version of the eddy viscosity, 

φφ
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To obtain the dispersion and tortuosity conductivity tensors, 

disp
K  and 

tor
K , which are present 

in both laminar and turbulent flows, a unit cell like the one shown in Fig. 1 is used. 
 



  

 
 

Figure 1 - Unit cell for microscopic calculation. 
 

For the microscopic calculations of the velocity and temperature fields in the unit cell, periodic 
boundary conditions for the flow and an imposed macroscopic temperature gradient are used. These 
boundary conditions are defined in the equations bellow: 
 

Hyy

Hxx

==

==

=

=

uu

uu

0

0  (12) 

 

θ

θ

sinHdxvdxv

Hdyudyu

v

Hy

H

y

H

v

Hx

H

x

H

〉〈==

〉〈==

==

==

∫∫

∫∫

u

u

000

000

cos

 (13) 

 
and 
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From the microscopic unit cell results the dispersion and tortuosity thermal conductivity tensors’ 

components are then calculated through the expressions obtained from Eqs. (4) and (6) [Nakayama 
and Kuwahara (1999)], which read: 
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for the longitudinal components, and 
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for the transversal components. 
 
3. RESULTS  
 

The unit cell used to obtain the correlations for the thermal conductivity tensors’ components is 
composed of square rods in order to compare with the results of Kuwahara and Nakayama (1998). 
Here, two types of boundary conditions for the energy equation are used. The first type is prescribed 
temperature at the cell boundaries and the second is prescribed temperature difference between the 
cell boundaries. Figure 2 shows the velocity fields obtained for Reynolds numbers, HRe , of 10 and 
1000 for θ =0o and φ=0.75. 
 

  
 a) HRe =10. b) HRe =1000. 
 

Figure 2 - Velocity Fields for the unit cell (φ =0,75; θ =0°). a) HRe =10 and b) HRe =1000. 
 

For the unit cell it was considered H=0.01 m, .2=fs kk 0 and CT o50=∇ . 
The corresponding temperature fields using both types of boundary conditions described above 

are shown in Fig. 3 bellow. 



  

 

  
 a) HRe =10. b) HRe =1000. 

 

  
 c) HRe =10. d) HRe =1000. 

 
Figure 3 - Isotherms for the unit cell (θ =0°, φ=0.75) for longitudinal temperature gradient (X 
direction): a) and b)- Specified temperature; c) and d)- Specified temperature difference. 

 
As can be observed from Fig. 3, the temperature fields for the two types of boundary conditions 

considered differ substantially. The correlations obtained for the longitudinal component of the 
dispersion thermal conductivity tensor, ( )

XXdisp
K , are shown in Fig. 4 bellow. Also shown are the 

results of Kuwahara and Nakayama (1998). 
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Figure 4 - Dispersion thermal conductivity tensor component in the X direction (φ=0.75; θ =0o): a) 

Specified temperature; b) Specified temperature difference. 
 

It is observed that the results obtained using the first type of boundary conditions, i.e., 
prescribed temperature, show a difference of about two orders of magnitude in the high Pe range 
compared to Kuwahara and Nakayama (1998) results. On the other hand, for the second type of 
boundary conditions, i.e., prescribed temperature difference, the results seam to match very closely 
Kuwahara and Nakayama (1998) results. In order to investigate the reason for this behavior, a run 



 

was made for two cells in a sequence for both types of boundary conditions. The results obtained 
are shown in Fig. 5 . 
 

 
a) 

 
b) 

 
c) 

 
Figure 5 - Velocity and temperature Fields for two cells in a row ( HRe =180.). Cases a) Velocity 

Field, b) Specified Temperature and c) Specified Temperature Difference. 
 

It is apparent from Fig. 5(b) that the temperature field obtained for the first type of boundary 
condition results in a very different pattern for the two consecutive cells. This would cause the 
conductivity tensor obtained for one cell to be different from the one obtained for the other cell. On 
the other hand, Fig. 5(c) shows that for the second type of boundary conditions the temperature 
pattern is just about the same for both cells. This would result in the same values for the 
conductivity tensors for both cells. As the idea is to simulate the porous medium as an infinite array 
of unit cells, this leads to the conclusion that the first type of boundary conditions for the energy 
equation is not suitable for calculating the thermal conductivity tensors’ components. Nevertheless, 
it should be pointed out that for both types of boundary conditions, a macroscopic temperature 
gradient is being imposed to a microscopic problem (unit cell). 
 
4. CONCLUSIONS  
 

In this work two procedures for obtaining the dispersion and tortuosity thermal conductivity 
tensors’ components using a unit cell to represent the porous medium were analyzed. It was shown 
that the imposition of a macroscopic temperature gradient through the specification of the 
temperatures at the cell boundaries is not suitable to calculate the temperature field in the cell. This 



  

was accomplished using two unit cells in a sequence and analyzing the temperature fields obtained 
by both procedures. It was also shown that for the second type of boundary conditions the results 
obtained for the thermal conductivity tensors’ components compared very well with the ones 
obtained by Kuwahara and Nakayama (1998). 
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