
 

 
 
 

FULLY DEVELOPED LAMINAR FLOW IN CONCENTRIC CURVE 
CIRCULAR DUCTS WITH FOUR RECTANGULAR FINS  

 
Aluisio Viais Pantaleão 
aluisio@mec.ita.br 
Claudia Regina de Andrade 
claudia@mec.ita.br 
Edson Luiz Zaparoli  
zaparoli@mec.ita.br 
Instituto Tecnológico de Aeronáutica – Departamento de Energia – 12228-900 – São José dos 
Campos, SP, Brasil. 
 
Abstract. This work presents a numerical investigation about the secondary flow effect on the heat 
transfer and friction factor for fully developed laminar flow through curved concentric annular duct 
with four rectangular fins disposed orthogonally each other. The outer tube surface is thermally 
insulated and the inner tube and fins has a specified peripherally constant temperature as thermal 
condition. The mass conservation (Poisson equation), momentum and energy partial differential 
equations are numerically solved by the Galerkin finite element method. Numerical simulations are 
carried for the water flow (Prandtl number equal to 2.5) with a constant annular duct curvature 
ratio. The Nusselt number and friction factor are obtained as a function of the Dean number 
varying the fins angle position. In addition, the velocity and temperature fields on the tube cross-
section are also determined. 
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1. INTRODUCTION 
 
Technology has led to a demand for high-performance, light-weight, and compact heat transfer 

components. To accommodate this demand, finned walls configurations are commonly used to 
increase the heat transfer rate between an internal duct and the surrounding fluid in heat exchangers 
and refrigeration equipments. The finned surface efficiency effect is determined by the analysis of 
the heat transfer friction factor and finned region results. 

The first analytical investigation on flow in a coil tube was performed by Dean (1927). These 
results showed that the centrifugal forces induce a secondary circulation, represented by two 
vortices perpendicular to the main axial flow. 

According to Shah and Joshi (1987), the curved ducts have a higher heat transfer rates than 
equivalent straight ducts. It occurs due to secondary flows that increase the momentum and energy 
exchanges. A large number of works into curved ducts have been developed using the toroidal 
coordinate system. 

Kalb and Seader (1972) studied the viscous flow in curved circular tubes considering fully 
developed velocity and temperature fields under the thermal boundary conditions of axially uniform 
wall heat flux with peripherally uniform wall temperature. These results are showed to Dean-
number range from 1 to 1200. 
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Sillekens et al. (1998) studied the development of mixed convection in a coiled heat exchanger 
using a finite difference method. Their results showed that heat transfer process is highly influenced 
by secondary flow induced by curvature effect and buoyancy force. 

Several authors have focused heat transfer problem in straight annular ducts. Nieckele and 
Patankar (1985) present a numerical study of the fully developed laminar flow and heat transfer in a 
concentric annulus, in which the heating from the inner cylinder leads to significant buoyancy-
induced secondary flow. 

Xin et al. (1997) present an experimental investigation in annular helicoidal pipes. The coil 
geometry and flow rates effects on single-phase and two-phase flow pressure drop were 
experimentally studied. After, they establish correlations and compared with the Lockhart-
Martinelli parameter for the two-phase flow case. 

Silva et al. (1997) reported the flow rate influence on the flow and heat transfer in fully 
developed region in a steady laminar annular flow. Authors considered two immiscible liquids 
inside horizontal and slightly curved tube with constant circular cross-section and the solution is 
obtained by the finite volume method. 

An analytical study of heat transfer in fully developed laminar annular ducts with peripherally 
varying heat flux has been carried out by Buyruk et al. (1999). The axsymmetric temperature 
distribution is imposed and the perturbation temperature solution is numerically obtained using a 
point-matching method. 

An theoretical-numerical analysis of longitudinal and annular fins and spines was presented by 
Laor and Kalman (1996). These authors present a study using rectangular, triangular and parabolic 
profiles for the fins and cylindrical, conical and parabolic for the spines.  

Braga and Saboya (1999) determined experimentally average heat transfer coefficient and 
frictions factor results for turbulent flow through annular ducts with continuous longitudinal 
rectangular fins. In addition, the fin efficiency was also determined by means of a numerical two-
dimensional heat transfer analysis. These data are presented in a dimensionless form, and the of the 
average Nusselt number, friction factor and fin efficiency are plotted as functions of the Reynolds 
number.  

Pantaleão et al (2001) studied the secondary flow influence on the heat transfer and pressure 
drop results for the fully developed laminar flow in curved concentric annular ducts. It was 
observed that the secondary flow induced by the annular duct curvature increases the heat transfer 
rate and the pressure drop. This effect is more accentuated for small radii ratios due to a stronger 
secondary flow in the cross-section free-flow area. 

The purpose of the present work is to analyze the heat transfer rate and friction factor for the 
fully developed laminar flow in concentric annulus. Rectangular fins are disposed orthogonally 
each other at the inner duct and the centrifugal force influence will be also considered.  

Numerical solution is obtained employing the Galerkin finite element technique with an 
unstructured and adaptative mesh. Nusselt number and friction factor results are presented as a 
function of the Dean-number parameter, varying the fins angle position for different angle (0, 30°, 
45° and 60°). Four fins are attached to the internal tube wall and their thicknesses are maintained 
constant. 

 
2 MAHEMATICAL FORMULATION 
 

Steady-state laminar incompressible water-flow in a curved annular duct with fins is analyzed 
using a toroidal coordinate system showed in Fig. (1). The flow is both hydrodynamically and 
thermally fully developed, with negligible viscous dissipation and axial conduction. All fluid 
properties are considered constant. 

The fully developed flow and the constant axial temperature gradient assumptions result in the 
following conditions for velocity and temperature profiles: 
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where z is the axial coordinate (main flow), w is the velocity component in the z direction, u and v 
are the velocity components in the transversal section (secondary flow), Tw is the wall temperature 
and Tb is the fluid bulk mean temperature. 
 

 
R – coil radius  

ri – internal tube radius 
re –external tube radius 

Figure 1. Schematic representation of the curved annular duct with four rectangular fins. 

 
The total pressure field P’(x, y, z) is decoupled in an axial contribution and in a part corresponding 
to the transversal one as: 
 

)y,x(P)z(P)z,y,x('P +=  (2) 
 

The governing equations (continuity, energy, x, y and z-momentum) are represented by: 
 

0
)R/x(1

1
R
u

y
v

x
u =









+
+

∂
∂+

∂
∂  (3) 

 

( )

( )

















∂
∂+

∂
∂

∂
∂+

+
−


















∂
∂+

∂
∂

+
+

∂
∂−=









+
−

∂
∂+

∂
∂

y
u

x
v

y)Rx(
u2

x
u2Rx

x)Rx(
1

x
P

)R/x1(R
w

y
uv

x
uu

2

2

µµ

µρ
 (4) 

 

( ) 








∂
∂

∂
∂+

















∂
∂+

∂
∂+

∂
∂

+
+

∂
∂−=









∂
∂+

∂
∂

y
v2

yy
u

x
v)Rx(

xRx
1

y
P

y
vv

x
vu µµρ  (5) 

 



  

( )

( ) 








∂
∂

∂
∂+


























+∂
∂+

∂
∂

+
+

∂
∂

+
−=









+
+

∂
∂+

∂
∂

y
w

yRx
w

x
Rx

xRx
1

z
P

)Rx(
1

)Rx(
uw

y
wv

x
wu

3

2

µµ

ρ
 (6) 

 










∂
∂

+
+∇=

+
+

∂
∂+

∂
∂

x
T

)R/x1(R
1T

C
k

dz
dT

)R/x1(
w

y
Tv

x
Tu 2

p

b

ρ
 (7) 

 
 
where: R is the duct curvature radius,  ρ is the fluid density, µ  is the fluid viscosity, Cp is the fluid 
constant pressure specific heat and k is the fluid thermal conductivity. From the fluid properties the 
Prandtl number (Pr) can be defined as: 
 

k
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The boundary conditions for the problem are: 

 
u = v = w = 0   and  wTT = at *rrrr ei ==  (9) 

 

u = v = w = 0   and  0
dn
dT = at err =  in the fins external surface. (10) 

 
where n is the normal surface outward unit vector; ri and re are the radii of the inner and outer tubes, 
respectively. 

After numerically determining the axial velocity (w) and the temperature field (T), the average 
velocity (wm) and the Reynolds number (Re) are calculated as: 
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where A is the net free-flow area and Dh is the hydraulic diameter given by:  
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The Dean number (De) and the duct curvature ratio (RC) are calculated as follows: 
 

R
DReDe h= and  

hD
RRC =  (13) 

 
The Nu (Nusselt number) is obtained as: 
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where the convection coefficient h is defined as:  
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The fRe parameter (the friction coefficient and Reynolds number product) is expressed by: 
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where rm is calculated by: 
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2 SOLUTION METHODOLOGY  
 

The numerical solution is obtained employing a program based upon the Galerkin finite element 
method with an unstructured mesh as presented in Fig. (2). It has an adaptive mesh refinement that 
can be controlled by default or a user refinement control parameter (tolerance). This parameter 
represents an error limit obtained by the following manner: as each iteration is completed the 
program calculates the error limit each patch and subdivides only those patches where the error 
exceeds the tolerance value.  

The mass conservation restriction for the annular tube cross-section secondary flow is imposed 
by the pressure Poisson equation that is derived by combining Eq. (4) and Eq.(5). 

The problem was solved using a quadratic interpolation polynomial to convert the continuous 
partial differential equations, represented by the equations (4) to (7) and the Poisson equation, into 
discrete nodal equations. The algebraic equations system has been solved through the iterative 
conjugate-gradient method. The mesh refinement is automatically processed and presents more 
intense refinement in regions which have large curvature or that are subjected to high temperature 
gradients. Fig. (2) presents the curved concentric annulus cross-section and an intermediary mesh in 
the solution process. This program allows the velocity field visualization, identifying the regions 
where the secondary flow is more intense (Fig. (3)). 
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Figure 2. Computational domain and an 

intermediary  mesh in the solution 
process. 

  Figure 3. The average velocity ( )mww  for 
Dean number = 127 and fin 
angle = 0. 

 
 
4 RESULTS AND CONCLUSION 

 
To validate the numerical code a comparison with the literature data (Shah and Joshi, 1987) for 

straight tube concentric annular duct was presented in Pantaleão et al. (2001) and showed a good 
agreement. At the present work the curved concentric annulus case is analyzed with four 
rectangular attached to the internal tube wall. It was verified that the solution convergence is 
reached for a tolerance parameter smaller than 1.0 10 –6.  

The numerical simulations were carried out for water flow with Pr = 2.5 (Eq. (8)) and a constant 
duct curvature ratio R/Dh = 10 indicated in Eq. (13). The internal to external radii ratio r* = ri/re was 
considered equal the 0.2.  

Fig. (4) shows the secondary flow patterns for four different fin angles at the curved duct cross-
section and Dean number =70. 
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Figure 4a. Secondary flow in the curved annular 

duct cross- section at Dean number = 70 
and angle = 0° 

   Figure 4b. Secondary flow in the curved 
annular duct cross- section at Dean 
number = 70 and angle = 30° 
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Figure 4c. Secondary flow in the curved annular 

duct cross- section at Dean number = 70 
and angle = 45° 

   Figure 4d. Secondary flow in the curved 
annular duct cross- section at Dean 
number = 70 and angle = 60° 

 
The results presented in Fig (4) show the secondary flow induced by the centrifugal force. In 

Fig. (4) is observed the formation of two counter-rotating cells in the secondary flow between two 
adjacent fins. Such cells are induced by the duct curvature and enhance the momentum transfer at 
the duct cross-section. The fin angle variation only displaces the secondary flow position but 
doesn’t change significantly its intensity. The flow is maintained weaker close to the fin tip.  

Fig. (5) presents the temperature field for four different fin angles and Dean number =0.9. The 
temperature gradients are concentrated near to the fins surface, where the high temperature value is 
prescribed. The low temperature region is located between two adjacent fins close to the external 
tube wall. It is observed that these temperature fields are similar for all inclination angles 
considered. 
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Figure 5a. Temperature field at Dean 

number = 0.9 and angle = 0 

   Figure 5b. Temperature field at Dean 
number = 0.9 and angle = 30° 
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Figure 5c. Temperature field at Dean 

number = 0.9 and angle = 45° 
   Figure5d. Temperature field at Dean 

number = 0.9 and angle = 60 

 
The Nusselt number and friction factor results are plotted respectively in Fig. (6) and Fig. (7) as 

a function of the Dean number. For De < 30 the Nu and fRe values are practically constant. As the 
De number increases these results also elevate for the four configuration angle simulated. When 
De = 120, the heat transfer rate is almost six times more intense than the straight concentric annulus 
without fins, where the Nusselt number is equal to 8.5 (Shah and Joshi, 1987; Pantaleão et al, 2001).  
However, these heat transfer enhancement is punished by a pressure drop elevation. 
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Figure 6 Nusselt number results for concentric 
curve circular ducts with four 
rectangular fins. 

Figure 7. Friction factor results for the 
concentric curve circular ducts with 
four rectangular fins. 

 
The results showed that both Nusselt number and friction factor don’t differ significantly for the 

fins angles here considered (angle equal the 0, 30°, 45° and 60°) in the Dean number range 
analyzed. Such results allow conclude that heat transfer rate and the pressure drop aren’t sensible to 



 

the fins rotation. In spite of the secondary flow intensity reduction (in comparison with the unfinned 
internal tube), the fin intensifies the heat transfer rate mainly due to the increase in the heat transfer 
area. 
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