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Abstract. This work investigates the Reynolds number influence upon the flow inside a two 
dimensional shallow cavity. The flow regime varies from laminar to turbulent. The numerical 
method used is based upon the SIMPLER algorithm. Turbulence closure is accomplished with the 
aid of the standard k-å  model. It was observed that increasing the Reynolds number affects the flow 
topology in distinct ways depending upon the flow regime, laminar or turbulent. 
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1. INTRODUCTION  
 

The flow over cavities is of great interest as it is related to various engineering applications: 
cooling of electronic devices, combustion chambers and heat loss that occur on the upper surface of 
a solar energy collector are a few examples. Most of the work found in the literature deals with 
cavities of small aspect ratio. Aung (1983) found, experimentally, that for laminar forced 
convection, the local heat transfer distribution on the cavity floor has a maximum value located 
between the midpoint of the cavity floor and the downstream wall. Bath and Aung (1984) 
numerically simulated the two-dimensional, laminar flow over cavities and showed that the heat 
transfer inside the cavity is a function of its aspect ratio. Sinha et al. (1982) made an experimental 
study of the flow over cavities of various aspect ratios. In their work these authors classified the 
cavity as open or closed based upon the number of re-circulating bubbles formed and the position 
that they occupy inside the cavity. Pereira and Sousa (1995) studied both numerically and 
experimentally the unsteady flow inside cavities. Thus, little effort has been putted into high aspect 
ratio cavities, which are the main focus of the present work. Such cavities have an interesting 
application for studying the flow over flat plate solar energy collectors with wind barrier (Zdanski 
et al., 2000). The present effort is, therefore, related to numerical analysis of two-dimensional flow 
over shallow cavities. The Reynolds number influence upon the flow topology was considered for 
both, laminar and turbulent cases. 
 
2. MATHEMATICAL MODEL AND NUMERICAL METHOD  
 

The mathematical model considered here is the two-dimensional, incompressible, Navier-Stokes 
equations written for a Cartesian coordinate frame. To account for the turbulent transport of 
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momentum, without penalizing excessively the CPU time and the computer memory, the Reynolds-
Averaged Navier-Stokes equations were used. 

The Boussinesq hypothesis was invoked to relate the Reynolds stress tensor to the mean flow 
velocity gradient. In the context of the standard k-ε  turbulence model, the eddy viscosity is given by 
the expression 
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where µC  is an empirical constant and ‘k’ is the turbulent kinetic energy which is given by 
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Similarly, the rate of change of the turbulent energy dissipation, ‘ε’, is modeled by  
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being G the term that represents the generation rate of turbulent kinetic energy, that is, 
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The five empirical constants that appear at eqs. (1), (2) and (3) are those suggested by Launder and 
Spalding (1972) 
 

1.0=kσ ; 1.3=εσ ; 0.09=µC ; 1.44=1C ; 1.92=2C .        (5) 
 

The partial differential equations were written in a discrete form using the finite volume 
technique and the resultant system of algebraic equations are solved by the SIMPLER algorithm 
(Patankar, 1980) on a staggered grid.  
 
2.1 Boundary conditions 
 

Figure (1) shows, schematically, the problem geometry, its nomenclature as well as some 
indication of the boundary conditions enforcement. The cavity depth is denoted by s, while its 
length is indicated by b. At the entrance plane, all the variables are fixed except the pressure that is 
extrapolated from inside. The oncoming velocity profile is uniform, as seen on Fig. (1). Other flow 
variables, such as the turbulence intensity level, and the turbulent dissipation are also kept fixed at 
the computational domain inlet plane. At the exit section, as well as at the upper boundary, a 
parabolic boundary condition is used. This is equivalent on saying that the property derivatives are 
all zero at these boundaries. A parabolic boundary condition is interesting in the sense that it is non-
reflexive. Finally, at the solid walls the no-slip boundary condition is enforced, that is, u and v equal 
to zero. At the solid walls, special treatment is required in terms of the turbulence model used. The 
gap between the first computational grid point and the wall is bridge using wall laws. In this sense 
the first computational grid point, in the direction normal to the walls, must be placed outside the 
laminar sub-layer of the turbulent boundary layer.  



 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 1: Problem geometry, nomenclature and boundary conditions. 
 
2.2 Computational grid 
 

A typical computational mesh is shown in Fig. (2). The computational domain is sub-divided in 
two by an orthogonal, non-uniform mesh. The grid was refined close to the walls and to the cavity 
entrance and exit planes where the greatest property gradients are expected. Grid stretching was 
always smaller than 10 % to avoid numerical errors. The points above the cavity form the upper 
mesh while points inside the cavity pertain to the lower mesh. Special treatment is given to the two 
volumes located at the cavity corners (Zdanski, 2001). The inlet boundary is located at three cavity 
depths (3s) upstream of the separation point. The outlet boundary is placed at a distance of 4s from 
the downstream wall. Due to the parabolic character of the upper boundary, numerical experiments 
showed that, a minimum of 5s was necessary in order to avoid spurious interference on the 
numerical solution.  
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Figure 2: Typical computational grid. 
 
3. RESULTS 

 
The primary objective of the present work is to analyze the influence of the Reynolds number, 

based upon the cavity depth, Res, on the flow topology inside 2-D cavities of high aspect ratio. The 
study covers both laminar and turbulent flow regimes. The numerical code used for such analysis 
was developed by CFD group at the Aerodynamics Department of the Instituto Tecnológico de 
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Aeronáutica and it has been carefully validated in previous work (Zdanski et al, 2000 and Zdanski, 
2001).  

 
3.1 Laminar flow.  

 
The cavity used for the laminar flow simulations had an aspect ratio. b/s, equal to twelve. The 

Reynolds number, based on a cavity depth of 0.625 cm, varied from 147 to 662. In this range it was 
found that two re-circulating bubbles were always formed inside the cavity. Nevertheless, their 
position along the cavity as well as their shape varied with Res.  
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Figure 3: Streamlines for the case of Reynolds number equal to 147. 
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Figure 4: Streamlines for the case of Reynolds number equal to 294. 
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Figure 5: Streamlines for the case of Reynolds number equal to 442. 
 

( 2 D )  1 3 M a r2 00 1 C hgrid - c0 1. 25 - 0. 0 69 - se gu nd a t en t at iv a

6 7 8 9 10 11 12

x/s

0

2

4

6

y/
s

( 2 D )  1 3 M a r2 00 1 C hgrid - c0 1. 25 - 0. 0 69 - se gu nd a t en t at iv a

 
 

Figure 6: Streamlines for the case of Reynolds number equal to 662. 
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Figure 7: Distance from the centers of the two bubbles as a function of Reynolds number, Res. 



The lower Reynolds number considered is equal to 147 and corresponds to a free stream 
velocity of 0.4 m/s. As see in Fig. (3), the oncoming flow penetrates the cavity touching its bottom 
around x/s=8.5. The two bubbles are well defined and the flow is reversed along parts of the cavity 
floor. The bubble closer to the upstream wall has its center at 4.2/ ≈sx , while the one near the 
downstream wall is centered at 6.11/ ≈sx . As the Reynolds number was increased the centers of the 
two bubbles moved closer to each other, as figs. (3) to (6) show clearly. For the highest Reynolds 
number investigated, Res= 662, the center of the bigger re-circulating bubble was found to be at 

9.8/ ≈sx . On the other hand, the smaller one barely moved its center appearing at 1.11/ ≈sx . It is 
also interesting to notice, examining figs. (3) to (6), that the aspect of the bigger bubble increases 
with the Reynolds number. As for the smaller bubble, closer to the downstream wall, it is apparent 
that its size increases with Res. Both, the approximation of the centers as well as the change in the 
bubble shape, may be associated with the inertia of the oncoming flow, that is, its ability to 
penetrate into the cavity. Figure (7) presents the plot of the distance between the centers of the two 
bubbles, for laminar flow, against Res. It is clear that the bubbles are closer as the oncoming flow 
velocity and, consequently, the Reynolds number is increased.  

 
3.2 Turbulent Flow 

 
Most flows of interest are turbulent. To the author’s knowledge very little work has been done 

on high aspect ratio shallow cavities. Therefore, besides the flow streamlines other results involving 
important flow variables such as turbulent kinetic energy and pressure are reported hereafter. The 
particular cavity investigated had an aspect ratio equal to eight. The turbulence level of the 
oncoming flow was equal to 4% of the kinetic energy of the undisturbed mean flow for all Reynolds 
numbers considered in this effort. Three values for inlet free stream velocity were used: 5, 8, and 12 
m/s. These values correspond to Res= 11765, 18823, and 28235, respectively.  
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Figure 8: Streamlines for the case of Reynolds number equal to 11765. 
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Figure 9: Streamlines for the case of Reynolds number equal to 18823. 
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Figure 10: Streamlines for the case of Reynolds number equal to 28235. 
 
 

For most of the numerical experiments undertaken, the number of volumes of the two meshes, 
one for the domain above the cavity and the other for the cavity itself, typically added up to 9000. 
The first point off the wall was located around 30≈=+

ν
yuy , that is, compatible with a high 

Reynolds number turbulence model. Figures (8) to (10) show the streamlines for the three Res 
studied. Comparing these figures it is apparent that, for turbulent flows, the Reynolds number does 
not influence the position of the bubbles’ center considerably, unlike laminar flows. It is interesting 
to point out that only for the higher value of the Reynolds number investigated, Res= 28235, a 
reattachment point inside the cavity appears. This fact is related to the greater vorticity level 
associated with the highest Res, at the separation point. More specifically, the higher the vorticity 
the more “energetic” the first re-circulation bubble becomes and, therefore, more capable of 
deflecting the oncoming flow towards the cavity floor.  
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Figure 11: Pressure contours for the case of Reynolds number equal to 18823. 
 

Figure (11) shows the pressure distribution along the whole computational domain for Res= 
18823. As it can be observed, the pressure variation is around 40 Pascal. Nevertheless, it is clear 
that there is a well-defined higher-pressure region that corresponds to the flow stagnation at the 
downstream wall. Further, the lowest pressures in the flow filed are associated with the center of the 
greater re-circulation bubble ( 2/ ≈sx ) and also with the re-circulation zone due to flow separation 
at .8/ =sx  
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Figure 12: Kinetic energy contours for the case of Reynolds number equal to 18823. 
 

Figure (12) displays the turbulent kinetic energy, k, also for Res= 18823. At the separation point 
a shear layer is originated, contributing to a high values of the turbulent kinetic energy. Inside the 
cavity the region the diffusive nature of the fluid is responsible for the large region of high values of 
k. Once again, the downstream wall is associated with the peak of a property, the turbulent kinetic 
energy in this case, because of the high gradients appearing in the region.  

 
4. CONCLUSION 

 
The numerical simulation of flows, both laminar and turbulent, over 2-D shallow cavities with 

high aspect ratio was successfully performed. The results showed that the flow topology inside such 
cavities is influenced by the variation of the Reynolds number. However, laminar and turbulent 
flows seem to be affected in different ways. For the former both the shape of the re-circulating 



bubbles as well as the distance between their centers were found to be a function of Res. For the 
latter, however, the most important difference upon the flow caused by the increase of the Reynolds 
number was the appearance of a reattachment point at the cavity floor. Particularly for turbulent 
flows, it was found that the corner of the downstream wall presented peaks for both the pressure and 
the turbulent kinetic energy.  
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