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Abstract. This work presents a description of a simple and easy-to-implement verification
and preliminary validation method of numerical simulation tools. This method is applied
to a 3-D aerodynamic solver developed at IAE for aerospace applications, such as sattelite
launchers and sounding rockets. This code is a 3-D, 2nd-order, finite difference algorithm
written for a general, body conforming, curvilinear coordinate system and it solves the Euler
equations. This reliable testing method consists in adopting known functions as solution for
the primitive variables in a computational domain and introducing the right hand side opera-
tor for this known solution as a source term for the numerical equations. The code converges
to a numerical solution which is then compared to the theoretical one. Average numerical
errors obtained are of the order of 10−4. Grid refinement studies are also performed for
this computational domain. This effort includes the analysis of the algorithm sensitiveness
with a refined grid direction as well as the influence of the grid spacing in the convergence
of the method. Numerical results obtained for the Brazilian Satelitte Launcher (VLS) are
compared to available experimental data. This comparison shows that an average error of 5
to 10% is found between experimental and numerical results, which can be acceptable within
engineering margins of error.

Keywords. CFD, Three-dimensional simulation, Aerospace application, Algorithm verifi-
cation.

1. INTRODUCTION

During the design process of an aerospace vehicle, one is required to determine the aero-
dynamics of these vehicles at angle of attack because this will provide loads required for the
structural design of the vehicle as well as the flight dynamics stability characteristics nec-
essary for the control system design. Azevedo, Zdravistch and Silva (1991) have performed
axisymmetric viscous simulations for flows over the VLS with very good representation of the
flow physics. Moreover, three-dimensional inviscid computations over the VLS at low angles
of attack with good agreement with experimental data were also performed by Azevedo et
al. (1996).
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This earlier work, however, considered fairly simple 3-D geometries and, typically, mesh
refinement was less than adequate due to computational resource limitations. This discus-
sion emphasizes that the problem of simulating transonic and supersonic flows over complex
vehicles is not a new requirement at IAE. However, recently, the development of the compu-
tational tools available in the CFD group, together with additional computational resources
available in the country, have made possible the analysis of realistic configurations. More-
over, the computational grids can be made fine enough that real aerodynamic phenomena
could be accurately represented and a physical analysis of these phenomena performed.

In this context, Basso, Antunes and Azevedo (2000) have presented results for the com-
plete, 1st-stage flight, VLS configuration, which means that the multiblock capability of the
solver has been exercised. The comparisons included in this work considered solely flight
conditions at zero angle of attack. Results at other flight regimes, including flows at angle
of attack, for single block configurations were presented by Bigarelli and Azevedo (1999)
and Bigarelli, Mello and Azevedo (1999). This numerical code is a 3-D finite-difference code
written for general, body-conforming, curvilinear coordinate systems and solves the Euler
equations.

Since the development of this computational tool is aimed at actual design utilisation, it
is very important that it is completely validated for the applications of interest. It is also
necessary to address the dependency of the numerical code with respect to the computational
grids, assessing the accuracy of the numerical solution with grid refinement and the sensitivity
of the convergence rate with stretched directions of the mesh. A fast and accurate method
of performing this preliminary verification is presented in this work. A source term carrying
information of a preliminarily known solution of the equation system is explicitly added
to the numerical formulation in order to drive the numerical solution to the known one.
The difference between the converged computational solution and the original one can be
a measure of the accuracy of the method as well as a confirmation of the correctness of
the implementation. The forthcoming sections present the theoretical and the numerical
formulation of the solver. The verification procedure is, then, described and the solver
characteristics are assessed. A comparison between numericals result and experimental data
for a typical aerospace configuration is finally performed.

2. THEORETICAL FORMULATION

The numerical code used solves the 3-D, compressible, Euler equations. These equations
can be written in strong conservation-law form for general, body-conforming, curvilinear
coordinates (Pulliam and Steger, 1980) as

∂Q

∂τ
+

∂E

∂ξ
+

∂F

∂η
+

∂G

∂ζ
= J−1S , (1)

where the vector of conserved quantities, Q, is defined as

Q = J−1
[

ρ ρu ρv ρw e
]T

, (2)

and the inviscid flux vectors, E, F and G, can be written as

E = J−1





ρU
ρuU + pξx

ρvU + pξy

ρwU + pξz

(e + p)U − pξt





, (3)



F = J−1





ρV
ρuV + pηx

ρvV + pηy

ρwV + pηz

(e + p)V − pηt





, (4)

G = J−1





ρW
ρuW + pζx

ρvW + pζy

ρwW + pζz

(e + p)W − pζt





. (5)

The vector S is the source term, which will be used to verify the accuracy of the implemen-
tation and the numerical code. It is given by the forthcoming general components

S =
[

s1 s2 s3 s4 s5

]T
. (6)

In the usual CFD nomenclature, adopted in the present work, ρ is the density, u, v and w
are the Cartesian velocity components, p is the pressure and e is the total energy per unity
of volume. The pressure is obtained from the equation of state for perfect gases, written as

p = (γ − 1)
[
e− 1

2
ρ

(
u2 + v2 + w2

)]
, (7)

where γ is the ratio of specifics heats. The contravariant velocity components, U , V and W ,
were defined as

U = ξt + ξxu + ξyv + ξzw ,

V = ηt + ηxu + ηyv + ηzw , (8)

W = ζt + ζxu + ζyv + ζzw .

Expressions for the Jacobian of the transformation, J , and for the various metric terms can
be found in Pulliam and Steger (1980).

3. NUMERICAL IMPLEMENTATION

The governing equations are discretised in a finite difference context. The spatial discreti-
sation adopted uses a 2nd-order, central difference algorithm plus explicitly added artificial
dissipation terms in order to control nonlinear instabilities. The equations, fully discretised
in space, can be written as

(
∂Q

∂τ

)

i,j,k

= −RHSi,j,k . (9)

The right-hand side operator of Eq. (9) is defined as

RHSi,j,k =
1

2 ∆ξ

(
Ei+1,j,k − Ei−1,j,k

)
+

1

2 ∆η
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F i,j+1,k − F i,j−1,k

)

+
1

2 ∆ζ

(
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)

− 1

∆ξ

(
J−1
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∆ζ

(
J−1

i,j,k+1/2 di,j,k+1/2 − J−1
i,j,k−1/2 di,j,k−1/2

)

− J−1
i,j,kSi,j,k , (10)



where ∆ξ = ∆η = ∆ζ = 1 for the general curvilinear coordinate case. An anisotropic
scalar artificial dissipation method, as described in Turkel and Vatsa (1994), was used. This
scheme is nonlinear and allows a selection between artificial dissipation terms of second and
fourth differences, which is very important in capturing shock waves in the flows of interest
of aerospace engineering.

Time march uses an explicit, second order, five-stage Runge-Kutta scheme, as seen in
Jameson, Schmidt and Turkel (1981) and Jameson and Mavriplis (1986), which can be
written as

Q
(0)
i,j,k = Q

n
i,j,k ,

Q
(`)
i,j,k = Q

(0)
i,j,k − α` ∆ti,j,k RHS

(`−1)
i,j,k , ` = 1, 2, . . . , 5, (11)

Q
n+1
i,j,k = Q

(5)
i,j,k .

Numerical values for the α` parameters can be found in Jameson and Mavriplis (1986). In
the previous expressions, ∆t stands for the time step, and n and n + 1 refer to the property
values at the start and at the end of each time step. Equation (11) also indicates that a local
time step option is being used in order to accelerate convergence to steady state calculations.

4. VERIFICATION PROCEDURE

For the steady-state solution of the Euler equations, the time-derivative of the vector
of conserved properties is obviously zero. Thus, Eq. 1 can be rewritten at the steady-state
condition as

∂E

∂ξ
+

∂F

∂η
+

∂G

∂ζ
= J−1S . (12)

If there exists a solution of the conserved variables, or one is provided by the user, the
convective fluxes E, F and G can be easily calculated by hand. Hence, the source term S
can also be determined from the steady-state condition presented in Eq. 12. Adding this
source term to the right-hand side operator of the numerical code, as presented in Eq. 10,
a correctly implemented computational method should drive the computational solution to
the originally provided one. The difference between the computational solution, driven by
this source term explicitly added to the method, and the provided solution can be used as a
measure of the correctness of the implementation.

For this work, known functions were chosen for the primitive variables of the formulation,
given by the static pressure p, velocity components in three-dimensions u, v and w, and the
density ρ. The solution for these variables was defined as





ρ
u
v
w
p





=





tanh(x + y + z)
tanh(x + y + z)
tanh(x + y + z)
tanh(x + y + z)
tanh3(x + y + z)





, (13)

where x, y and z are the nondimensionalized Cartesian components of the physical domain.
It is interesting to state that the solution was provided for the primitive variables, instead of
the conserved variables, which would be the straightforward option at a first sight, for the
forthcoming reasons:

• It is necessary to avoid unphysical balance of the provided solution, such as negative
pressure.



• The primitive variables are the ones which really carry a physical meaning for engi-
neering applications.

• It would be a more demanding test case for the method to receive a forcing term for
the primitive variables but solve for the conserved ones.

If one substitutes the primitive variables given in Eq. 13 at Eq. 12 and performs some simple
algebra, the source term components can be written as

Si,j,k =





6 tanh(x+y+z)
cosh2(x+y+z)

12 tanh2(x+y+z)
cosh2(x+y+z)

12 tanh2(x+y+z)
cosh2(x+y+z)

12 tanh2(x+y+z)
cosh2(x+y+z)(

30γ−18
γ−1

)
tanh3(x+y+z)
cosh2(x+y+z)





i,j,k

(14)

The numerical method is, then, evaluated by a comparison of the simulation results with the
provided solution, given in Eq. 13. This comparison was made using the maximum value
and the L2 norm of the difference between both solutions in the field.

5. BOUNDARY CONDITIONS AND COMPUTATIONAL GRIDS

The physical domain chosen for the verification procedure was a quadrilateral block with
unitary sides. Various grid configurations were used for the simulations, including different
number of grid points at the three directions as well as stretching in one direction. With
these different computational meshes, the authors would like to address the behaviour of the
numerical code with different grid characteristics. The interest was mostly directed towards
the effect of the highly stretched distribution on the convergence of the method, since it is
known in the literature that explicit methods are very sensitive to that, and towards any
degradation of the numerical solution with increasing grid spacing.

For an aerospace configuration, which is the application of interest of the group, the types
of boundary conditions that should be considered include solid walls, far field boundaries,
symmetry, upstream centerline and downstream (exit) conditions. For the rocket wall, the
velocity vector is set tangent to the wall, and a zero-order extrapolation of the pressure
and the density is performed. The upstream centerline is a singularity of the coordinate
transformation and, in the present case, the approach consists in extrapolating the property
values from the adjacent longitudinal plane and in averaging the extrapolated values in the
azimuthal direction in order to define the updated properties. At the exit plane, the boundary
conditions are implemented through the use of the 1-D characteristic relations for the 3-D
Euler equations. Freestream properties are assumed at the far field boundaries. Furthermore,
in order to reduce computational costs, computational grids used are generated for half a
body in the azimuthal direction. Hence, symmetry is applied in the pitching plane using two
auxiliary extra planes added, respectively, before the leeside and after the windside pitching
plane. For the verification procedure, these boundary conditions unfortunately could not be
tested. In order to keep coherence with the source terms added, boundary conditions of the
Dirichlet type should be used, which means that the values of the conserved properties must
be provided at the boundaries for the verification tests.

5. RESULTS

In this section, the results obtained with the already discussed verification method are
presented. Two important characteristics of the solver, which mostly depend on the mesh
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Figure 1: Mean and maximum percentual errors for the numerical density field.

topology, are stressed here. These are the convergence speed of the code and the accuracy of
the spatial derivatives. In this work, a 2nd-order approximation of spatial derivatives were
used. Hence, the numerical error of the method can be written as

error ∝ ∆x2 , (15)

where ∆x is the smallest grid spacing. If one applies a logarithmic function at both sides of
Eq. 15, this equation can be rewritten as

log10(error) ∝ 2 log10(∆x) . (16)

The logarithmic of the theoretical error of the method has a slope of two when plotted
against the logarithmic of the smallest grid spacing. However, the actual spatial accuracy of
the method may be different from that presented in Eq. 16. It is written for a general case
as

log10(error) ∝ α log10(∆x) , (17)

where α is the slope of the actual spatial accuracy that can be attained with the method
implemented. The comparison between the slope coefficients of Eqs. 16 and 17 will be used
to assess the actual spatial accuracy of the solver.

Figure 1 presents the maximum and the mean percentual error of a directly solved variable
against the grid spacing. For these results, three meshes with constant grid spacing and
25 × 25 × 25, 50 × 50 × 50 and 75 × 75 × 75 points, respectively, were used. The variable
chosen is the nondimensionalized density. It can be clearly seen in this figure that the mean
error curve follows almost exactly the theoretical one, with α = 1.96. This fact means that
the numerical code really solves the conserved properties with second order of accuracy. It
can also be observed that the mean error level is very low, about 0.01%, which represents a
remarkably correctness of the numerical method. If one consider now the maximum error,
one verifies that it presents an almost first-order spatial accuracy behaviour, with α = 1.19.
This maximum error is precisely located at the boundaries of the field, where the fourth
derivatives of the artificial dissipation model are neglected in order to decrease the size of
the calculation stencil. Only second derivatives, which are associated with terms of first-
order spatial accuracy for the artificial dissipation model currently used, are considered. This
clearly affects the local spatial accuracy, but not the overall accuracy of the method. Hence,
it corroborates the idea of trading off local spatial accuracy for a simpler implementation
and lower computational costs.
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Figure 2: Mean and maximum percentual errors for the numerical pressure field.
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Figure 3: Residue histories for three meshes with constant grid spacing.

Similar results for the maximum and the mean percentual errors for an indirectly solved
variable are presented in Fig. 2. The same meshes considered in the results of Fig. 1 were
used and the variable analysed is the nondimensionalized pressure. Spatial accuracy for
the mean error is lower than expected, with α = 1.73. However, the average value is very
low, attaining the same order of that found in the density results. Spatial accuracy for the
maximum error is a bit higher in this case, with α = 1.38.

It is known in the literature that the convergence of explicit methods have a large sensi-
tivity with highly stretched grids, due to the increase in the measure of the stiffness of the
problem. It is also known that refined grids are more difficult to solve, resulting in very low
convergence rates. Figure 3 presents some results that corroborate this statement. Residue
histories for the same meshes considered in Figs. 1 and 2, that is, with constant grid spacing,
are shown in this figure. One can clearly see that, the more refined the grid, the slower
the convergence rate. This behaviour can get worse if one now considers meshes with one
highly-stretched direction. Fig. 4 presents the residue histories for meshes with the same
number of points of the grids of Fig. 3 but with direction η stretched with an exponential
growth of 11%. It is observed in this figure that the convergence rate gets very poor for more
refined grids. As stated before, this behaviour was expected. However, in the applications of
interest, meshes are usually very refined and stretched in the normal direction to the wall in
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Figure 4: Residue histories for three meshes with one grid direction stretched with an expo-
nential growth of 11%.

order to capture boundary layer phenomena. Thus, aiming at accelerating the convergence,
the group is currently working at implementing a multigrid scheme and seriously considering
the application of an implicit time march procedure, which better handles grids with such
topology.

Finally, a comparison between computational results and available experimental data for
the Brazilian Satellite Launcher (VLS) can be seen in Fig. 5. Flight conditions considered
are M∞ = 3.00 and α = 4 deg. Numerical simulations used a thin-layer approximation to
the compressible Navier-Stokes equations, with Re = 30 million, based on the vehicle after-
body diameter. This figure presents pressure coefficient, Cp, distributions along the vehicle
wall. These results indicate that the experimental data and the computational solution do
not present large differences. In particular, the correct trends in the Cp distribution are
captured by the numerical simulation. Mach number contours for the same flight condition
can be found in Fig. 6. Several other similar comparisons, at different flight conditions, are
available for flow simulations over the VLS. However, the comparison shown in the figures
presented above is representative of the level of agreement which can be obtained between
the experimental data and the computational simulation results throughout the speed range
of interest.

6. CONCLUDING REMARKS

This work presents a capability implemented at IAE to solve three-dimensional flows
over complex aerospace configurations at angle of attack to determine important aerody-
namic loads required at the design stage. A computational code which solves the 3-D Euler
equations for general, body-conforming, curvilinear coordinates was developed. The vali-
dation and the assessment of the characteristics of the numerical code are essential steps
towards a reliable and robust application of the solver for the objectives of interest. Thus, a
simple and reliable method for verifying the correctness of the numerical code was used.

Some validation analyses involved comparison of computational results and theoretical
data, in terms of mean and maximum error between numerical and theoretical solutions.
It was observed that mean errors are of the order of 0.01% for very coarse grids and even
lower for more refined ones. It could also be seen that the convergence rate is affected by
grid stretching and refinement. Finally, numerical results obtained for a typical aerospace
configuration were compared to experimental data. Good agreement was observed, which
is representative of the level of agreement which can be obtained between the experimental
data and the computational simulation results.



0,00 0,05 0,10 0,15 0,20 0,25 0,30
-1,0

-0,5

0,0

0,5

1,0

1,5
Experimental and viscous numerical 
pressure coefficient distributions for 
the VLS at freestream Mach number 3.00 
and at angle of attack of α = 4 deg.

 Numerical Leeside
 Numerical Windside
 Experimental Leeside
 Experimental Windside

C P

x/L

Figure 5: Numerical Cp distributions compared to experimental data for the VLS central
body at α = 4 deg. and M∞ = 3.00. Reynolds number is 30 million.

M
3.08419
2.87857
2.67296
2.46735
2.26174
2.05612
1.85051
1.6449
1.43929
1.23367
1.02806
0.82245
0.616837
0.411225
0.205612

Figure 6: Mach number contours for the VLS central body at α = 4 deg. and M∞ = 3.00.
Reynolds number is 30 million.



One should observe that several other vehicles are currently being developed, or improved,
within the range of responsibilities of IAE. Due to budgetary constraint in the country, it is
not always possible to take these other vehicles to the wind tunnel, especially because this
typically means performing tests overseas. The approach which is currently being pursued
is to use the experimental data available for the VLS to validate the present computational
tools under development. Hence, this flow simulation capability can be applied to the other
vehicles of interest, since the overall configurations are not that different from the VLS
central body.
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