SIMULAÇÃO NUMÉRICA DO FLUXO DE POTÊNCIA EM PLACAS DE MINDLIN

Paulo Sérgio Lima Alves José Roberto de França Arruda

Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica, Departamento de Mecânica Computacional, C.P. 6122, CEP 13083-970, Campinas, SP, Brasil. E-mail: psl@fem.unicamp.br; arruda@fem.unicamp.br

Resumo

O fluxo de potência foi estimado numericamente usando a resposta dinâmica de uma placa de Mindlin modelada com elementos de nove nós. O elemento utilizado apresenta os três modos de corpo rígido e é livre do fenômeno de travamento. A formulação do fluxo de potência utilizada é mesma utilizada usualmente na estimativa experimental, a qual é baseada na teoria clássica de placas. Os fluxos de potência ativa e reativa foram simulados numericamente considerando um exemplo com uma placa de alumínio discretizada com dez elementos em cada direção ortogonal e submetida a uma excitação e fixa em um ponto. Os parâmetros de massa, rigidez e amortecimento usados para simular a fixação do excitador eletrodinâmico na placa e o ponto de fixação resiliente, os quais representam a fonte e o sorvedouro de energia, respectivamente, foram considerados no modelo de elementos finitos. O mapa do fluxo de potência ativa permitiu a indentificação da excitação e do ponto de fixação resilienteda placa. O divergente da potência reativa foi também estimado. O mapa do fluxo de potência reativa permitiu a identificação do modo operacional de vibração.

Palavras-chave: Fluxo de Potência, Intensidade Estrutural, Potência Ativa, Potência Reativa, Placa de Mindlin.

1. INTRODUÇÃO

O fluxo de potência, ou intensidade estrutural, é uma ferramenta alternativa para a análise de vibrações em estruturas. É uma quantidade vetorial complexa definida como o produto da força pela respectiva velocidade. O fluxo de energia correspondente a parte real, denominada ativa, tem origem na região onde a estrutura é excitada e aponta na direção onde a energia é absorvida, fornecendo, assim, informações sobre a localização de

fontes e sorvedouros de energia e sobre os caminhos predominantes do fluxo de energia dentro da estrutura. A sua magnitude é obtida através da média temporal do produto da força instantânea por unidade de área pela componente em fase da velocidade. A sua direção é dada pelo vetor unitário normal à superfície de medição. A parte imaginária, denominada de potência reativa, porém, está associada à reflexão da energia injetada. Através dela, podem ser obtidas informações sobre a presença de campo próximo e modo de vibração (Gavric, Carniel e Pavic, 1990).

Os métodos utilizados para a estimativa do fluxo de potência podem ser classificados em quatro tipos principais, dependendo da freqüência de análise e da sua aplicação teórico-experimental (Hambric, 1990): métodos experimentais, método dos elementos finitos, análise estatística de energia e elementos finitos usando analogia com a equação de condução de calor.

Neste trabalho, o fluxo de potência é estimado utilizando a resposta dinâmica obtida através de um modelo de elementos finitos de placas de Mindlin com 9 nós e livre do fenômeno de travamento. A formulação utilizada para o cálculo do fluxo de potência é a mesma usualmente aplicada na estimativa experimental (Pascal, Loyau e Mann, 1990), a qual é função apenas do grau de liberdade de flexão e é baseada na teoria clássica de placas.

2. FORMULAÇÃO MATEMÁTICA DO FLUXO DE POTÊNCIA EM PLA-CAS

Sabe-se que para a obtenção experimental do fluxo de potência em placas mede-se apenas a deflexão. Os graus de liberdade de rotação utilizados no modelo de Mindlin não são medidos. Desta forma, a equação utilizada para a estimativa do fluxo de potência é baseada na teoria clássica de placas em que, de modo análogo ao modelo de viga de Bernoulli-Euler, a inércia de rotação e a deformação por cisalhamento são consideradas nulas. A equação de movimento (Doyle, 1996) é obtida a partir da equação de equilíbrio de um elemento infinitesimal de placa e utilizando as leis constitutivas da elasticidade para obtenção dos tensores de tensão e deformação (Chen e Saleebs, 1994):

$$D\nabla^{2}[\nabla^{2}\mathbf{w}(x,y,t)] + \rho h \frac{\partial^{2}\mathbf{w}(x,y,t)}{\partial t^{2}} = F(t)\delta(x-x_{o},y-y_{o})$$
(1)

onde ρ é a densidade , $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ o Laplaciano, $F(t) \delta(x - x_o, y - y_o)$ a força externa aplicada no ponto (x_o, y_o) , w o deslocamento fora do plano, $D = \frac{Eh^3}{12(1-\nu^2)}$ a rigidez de flexão, E o módulo de elasticidade, h a espessura da placa e ν o coeficiente de Poisson.

Supondo uma resposta harmônica, a solução da eq.(1) é dada por:

$$\mathbf{w}(x, y, t) = \left(A_1 e^{-ik_x x} + B_1 e^{ik_x x}\right) \left(A_2 e^{-ik_y y} + B_2 e^{ik_y y}\right) e^{i\omega t} \tag{2}$$

onde w é o deslocamento fora do plano, A_1 e B_1 correspondem às amplitudes dos termos propagativos na direção x, A_2 e B_2 na direção y e k_x e k_y os respectivos número de onda para os quais vale a seguinte relação: $k_x^2 + k_y^2 = k^2$.

Substituindo a solução dada em (2) na eq.(1), obtém-se o número de onda k:

$$k^4 = \frac{\omega^2 \rho h}{D} \tag{3}$$

A expressão do fluxo de potência é obtida somando-se o momento M e a força de cisalhamento Q, ou seja:

$$P_x(x,y) = Q_x \dot{\mathbf{w}} + M_{xy}\dot{\theta}_x + M_x\dot{\theta}_y$$

$$P_y(x,y) = Q_y \dot{\mathbf{w}} + M_{yx}\dot{\theta}_y + M_y\dot{\theta}_x$$
(4)

Substituindo as expressões de M e Q utilizadas na obtenção da eq.(1) (Doyle, 1996), e passando a eq.(4) para o domínio da freqüência, obtém-se a seguinte equação para o cálculo do fluxo de potência em placas (Pascal, Loyau e Carniel, 1993):

$$P_{x}(x,y,\omega) = \frac{-iD}{2\omega} \left\{ \frac{\partial}{\partial x} \left(\nabla^{2} \dot{W} \right) \dot{W}^{*} - \left(\frac{\partial^{2} \dot{W}}{\partial x^{2}} + \nu \frac{\partial^{2} \dot{W}}{\partial y^{2}} \right) \frac{\partial \dot{W}^{*}}{\partial x} - \left((1-\nu) \frac{\partial^{2} \dot{W}}{\partial x \partial y} \frac{\partial \dot{W}^{*}}{\partial y} \right) \right\}$$

$$P_{y}(x,y,\omega) = \frac{-iD}{2\omega} \left\{ \frac{\partial}{\partial y} \left(\nabla^{2} \dot{W} \right) \dot{W}^{*} - \left(\frac{\partial^{2} \dot{W}}{\partial y^{2}} + \nu \frac{\partial^{2} \dot{W}}{\partial x^{2}} \right) \frac{\partial \dot{W}^{*}}{\partial y} - \left((1-\nu) \frac{\partial^{2} \dot{W}}{\partial x \partial y} \frac{\partial \dot{W}^{*}}{\partial x} \right) \right\}$$

$$(5)$$

onde W é a amplitude complexa de w, $\omega = 2\pi f$, $i = \sqrt{-1}$.

A potência ativa é definida pela seguinte expressão:

$$\vec{I}(x,y,\omega) = \frac{1}{2}\Re\{F(\omega)V(\omega)^*\}$$
(6)

Aplicando a eq.(6) em (5) e sabendo que $\Re\{iZ\} = -\Im\{Z\}$:

$$\vec{I}(x,y,\omega) = \frac{D}{2\omega} \Im \left\{ \nabla \left(\nabla^2 \dot{W} \right) \dot{W}^* - \nabla^2 \dot{W} \nabla \dot{W}^* - \frac{(1-\nu)}{2} \nabla \times \nabla \times \left(\dot{W} \nabla \dot{W}^* \right) \right\}$$
(7)

onde $\nabla = \frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j}$ é o gradiente. Considerando a hipótese de ondas propagativas e independentes e utilizando a relação $\nabla^2 \dot{W} = -k^2 W$, a eq.(7) se reduz a:

$$\vec{I}(x,y,\omega) = \sqrt{D\rho h} \Im\left\{ \dot{W} \nabla \dot{W}^* \right\}$$
(8)

A potência reativa é definida pela expressão:

$$P_R = \frac{1}{2} \Im\{F(\omega)V(\omega)^*\}$$
(9)

A expressão da potência reativa é obtida aplicando a eq.(9) em (5) e sabendo que $\Im\{iZ\} = \Re\{Z\}:$

$$P_{R_{x}}(x,y,\omega) = \frac{-D}{2\omega} \Re \left\{ \frac{\partial}{\partial x} \left(\nabla^{2} \dot{W} \right) \dot{W}^{*} - \left(\frac{\partial^{2} \dot{W}}{\partial x^{2}} + \nu \frac{\partial^{2} \dot{W}}{\partial y^{2}} \right) \frac{\partial \dot{W}^{*}}{\partial x} - \left((1-\nu) \frac{\partial^{2} \dot{W}}{\partial x \partial y} \frac{\partial \dot{W}^{*}}{\partial y} \right) \right\}$$

$$P_{R_{y}}(x,y,\omega) = \frac{-D}{2\omega} \Re \left\{ \frac{\partial}{\partial y} \left(\nabla^{2} \dot{W} \right) \dot{W}^{*} - \left(\frac{\partial^{2} \dot{W}}{\partial y^{2}} + \nu \frac{\partial^{2} \dot{W}}{\partial x^{2}} \right) \frac{\partial \dot{W}^{*}}{\partial y} - \left((1-\nu) \frac{\partial^{2} \dot{W}}{\partial x \partial y} \frac{\partial \dot{W}^{*}}{\partial x} \right) \right\}$$

$$(10)$$

É importante observar que a potência reativa total não pode ser obtida a partir da eq.(8) substituindo a parte imaginária pela parte real, pois tal substituição resulta na expressão da componente da potência ativa devida as forças Q_x e Q_y , conforme pode ser visto considerando o primeiro termo da eq.(10) e substituindo $\nabla^2 \dot{W} = -k^2 W$:

$$\vec{P}_{R}^{Q_{x},Q_{y}} = \sqrt{D\rho h} \Re \left\{ \nabla \dot{W} \dot{W}^{*} \right\} = \sqrt{D\rho h} \Re \left\{ \dot{W} \nabla \dot{W}^{*} \right\}$$
(11)

3. MODELO DE ELEMENTOS FINITOS

A modelagem de placas utilizando a teoria de Kirchhoff (Clássica) resulta em frequências naturais mais altas por ser um modelo menos preciso, o qual despreza a deformação por cisalhamento. Desta forma, foi utilizado o modelo de placas de Mindlin (1951), no qual a deformação de cisalhamento e a inércia de rotação são consideradas não nulas e a linha reta normal à superfície neutra permanece reta após a deformação, porém não mais perpendicular à mesma. As equações de movimento para este modelo são dadas por Doyle (1996):

$$q + Gh\frac{\partial}{\partial x} \left[\frac{\partial \mathbf{w}}{\partial x} - \psi_x \right] + Gh\frac{\partial}{\partial y} \left[\frac{\partial \mathbf{w}}{\partial y} - \psi_y \right] = \rho h \ddot{\mathbf{w}}$$

$$\frac{1}{2}D \left[(1 - \nu) \nabla^2 \psi_x + (1 + \nu) \frac{\partial}{\partial x} \left(\frac{\partial \psi_x}{\partial x} + \frac{\partial \psi_y}{\partial y} \right) \right] + Gh \left[\frac{\partial \mathbf{w}}{\partial x} - \psi_x \right] = \rho I_p \ddot{\psi}_x \qquad (12)$$

$$\frac{1}{2}D \left[(1 - \nu) \nabla^2 \psi_y + (1 + \nu) \frac{\partial}{\partial y} \left(\frac{\partial \psi_x}{\partial x} + \frac{\partial \psi_y}{\partial y} \right) \right] + Gh \left[\frac{\partial \mathbf{w}}{\partial y} - \psi_y \right] = \rho I_p \ddot{\psi}_y$$

onde w é o deslocamento normal, ψ_x e ψ_y são as rotações das linhas normais à superfície neutra, h a espessura da placa, ρ a densidade do material, $G = E/2(1 + \nu)$ e $I_p = h^3/12$. Interpolando ψ_x , ψ_y e w através das variáveis nodais w_i , θ_{xi} e θ_{yi} :

$$\begin{bmatrix} \mathbf{w} \\ \psi_y \\ \psi_x \end{bmatrix} = \sum_{i=1}^n \begin{bmatrix} N_i & 0 & 0 \\ 0 & N_i & 0 \\ 0 & 0 & -N_i \end{bmatrix} \begin{bmatrix} \mathbf{w}_i \\ \theta_{xi} \\ \theta_{yi} \end{bmatrix}$$
(13)

onde N são as funções de forma e n o número de nós por elemento.

A deformação de cisalhamento γ e a curvatura κ são dadas por:

$$\gamma = \begin{bmatrix} \gamma_{xz} \\ \gamma_{yz} \end{bmatrix} = \begin{bmatrix} \frac{\partial w}{\partial x} + \psi_x \\ \frac{\partial w}{\partial y} + \psi_y \end{bmatrix} = \sum_{i=1}^n B_{ci} \begin{bmatrix} w_i \\ \theta_{xi} \\ \theta_{yi} \end{bmatrix}$$
(14)

$$\kappa = \begin{bmatrix} \frac{\partial \psi_x}{\partial x} \\ \frac{\partial \psi_y}{\partial y} \\ \frac{\partial \psi_x}{\partial y} + \frac{\partial \psi_y}{\partial x} \end{bmatrix} = \sum_{i=1}^n B_{fi} \begin{bmatrix} \mathbf{w}_i \\ \theta_{xi} \\ \theta_{yi} \end{bmatrix}$$
(15)

onde

$$B_{fi} = \begin{bmatrix} 0 & 0 & -N_{i,x} \\ 0 & N_{i,y} & 0 \\ 0 & N_{i,x} & -N_{i,y} \end{bmatrix}$$

$$\tag{16}$$

$$B_{ci} = \begin{bmatrix} N_{i,x} & 0 & N_i \\ N_{i,y} & -N_i & 0 \end{bmatrix}$$
 (17)

A energia de deformação é obtida a partir de um elemento infinitesimal de área da = dx dy:

$$\Pi = \frac{1}{2} \iint (\kappa^T D_f \kappa) da + \frac{1}{2} \iint (\gamma^T D_c \gamma) da$$
(18)

$$\Pi = \frac{1}{2} \iint (d^T B_f^T D_f B_f d) da + \frac{1}{2} \iint (d^T B_c^T D_c B_c d) da$$
(19)

onde

$$d = \begin{bmatrix} \mathbf{w}_1 & \theta_{x1} & \theta_{y1} & \dots & \mathbf{w}_n & \theta_{xn} & \theta_{yn} \end{bmatrix}^T$$
 (20)

$$D_f = D \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix}$$
 (21)

$$D_c = \frac{Eh}{2(1-\nu)} \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \tag{22}$$

As matrizes de rigidez de flexão e cisalhamento são obtidas através do príncipio dos trabalhos virtuais $\delta\Pi=0$, logo:

$$K_f = \iint B_f^T D_f B_f da \tag{23}$$

$$K_c = \iint B_c^T D_c B_c da \tag{24}$$

Sabe-se, que na aplicação da teoria de Mindlin em placas finas utilizando a formulação isoparamétrica, a integração completa da matriz de rigidez leva ao aparecimento de tensões de cisalhamento espúrias e ao fenômeno de travamento da malha. Uma solução para este problema é a modificação do polinômio de interpolação da deformação de cisalhamento de modo que a integração completa não leve ao enrijecimento da estrutura. Neste trabalho, foi utilizado o polinômio obtido por Donea e Lamain (1987), o qual permite a integração completa para obtenção da matriz de rigidez. Desta forma, os três modos de corpo rígido, fundamentais na obtenção da resposta do estrutura, são obtidos.

4. RESULTADOS

Para a simulação numérica do fluxo de potência é considerada uma placa de alumínio de $0, 4 \times 0, 5 \times 0,001m$. A modelagem é feita utilizando o elemento de placa de Mindlin com nove nós por elemento. São utilizados 10 elementos nas direções vertical e horizontal para a discretização da estrutura. A excitação é aplicada através de uma força unitária (representada pelo ponto 'A' na fig.1), possibilitando a entrada de energia no sistema. Os parâmetros do sorvedouro de energia (massa, rigidez e amortecimento) correspondentes ao ponto de fixação resiliente da placa (representado pelo ponto 'B' na fig.1) foram utilizados no modelo. A adição de massa no ponto de aplicação da excitação para simular o efeito da utilização de um excitador eletrodinâmico foi também considerada. A influência dos modos de ordem elevada foi incluída na obtenção da resposta da estrutura devido a sua importância na estimativa do fluxo de potência (Szwerc, Hambric e Erickson, 1988).

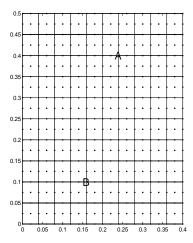


Figure 1: Discretização utilizada na placa mostrando ponto onde a placa é presa com suporte resiliente ('A') e o ponto de aplicação da excitação ('B').

A fig.2(a) mostra o mapa vetorial do fluxo de potência ativa. O divergente deste mapa (fig.2(b)) representa a variação do fluxo em cada ponto. A parte clara representa uma variação positiva indicando a presença da fonte e a parte escura uma variação negativa representado o sorvedouro de energia.

O mapa do fluxo de potência devido a Q_x e Q_y indica a posição das linhas nodais, permitindo a identificação do modo operacional de vibração (Alves e Arruda, 2000). Desta forma, para a estimativa do fluxo de potência reativa foi utilizada a eq.(11). O mapa obtido e o modo operacional correspondente são mostrados na fig.3.

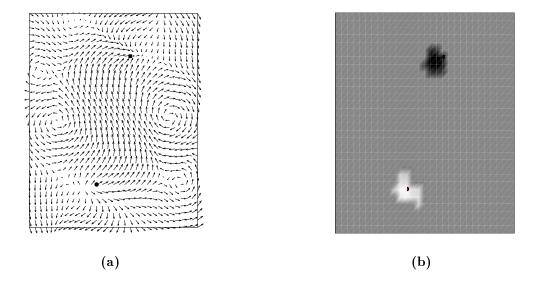


Figure 2: Potência ativa (a) e divergente (b) em 74Hz.

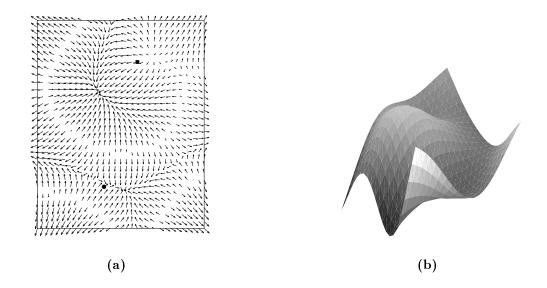


Figure 3: Potência reativa (a) e modo operacional da placa (b) em 74Hz.

5. CONCLUSÕES

Neste trabalho a teoria de placas de Mindlin foi utilizada na obtenção da resposta dinâmica da estrutura por ser mais precisa. O modelo foi obtido considerando elementos de nove nós sem travamento. Para a simulação numérica do fluxo de potência foi utilizada uma expressão já validada experimentalmente a qual é baseada na teoria clássica de placas. Observou-se que o mapa de fluxo de potência ativa obtidos permitiu a identificação da fonte e sorvedouro de energia. A parte reativa, por outro lado, permitiu a idenficação do modo operacional de vibração através das linhas nodais. Este tipo de análise encontra aplicação na localização de fontes e sorvedouros de energia em estruturas para controle de vibração e ruído.

Agradecimentos

Os autores são gratos à Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) pelo apoio dado a este pojeto.

REFERÊNCIAS

- Alves, P. S. L. e Arruda, J. R. F. (2000), Power flow estimation using pulse espi, in 'Proc. of the 4th Int. Conf. on Vibration Measurements by Laser Techniques: Advances and Applications', Ancona, Italy. A ser publicado.
- Chen, W.-F. e Saleebs, A. F. (1994), Constitutive equations for engineering materials, John Wiley & Sons.
- Donea, J. e Lamain, L. G. (1987), 'A modified representation of transverse shear in c^0 quadrilateral plate elements', Computer Methods in Applied Mechanics and Engineering 63, 183–207.
- Doyle, J. F. (1996), Wave Propagation in Structures: a spectral analysis approach, 2nd ed, John Wiley & Sons.
- Gavric, L., Carniel, X. e Pavic, G. (1990), Structure-born intensity fields in plates, beams and plate-beam assemblies, in 'Proc. of the 3rd Int. Congress on Intensity Techniques', Senlis, France, pp. 223–230.
- Hambric, S. A. (1990), 'Power flow and mechanical intensity calculations in structural finite element analysis', J. of Vibration and Acoustics 112, 542–549.
- Mindlin, R. D. (1951), 'Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates', ASME Journal of Applied Mechanics 18, 31–38.
- Pascal, J. C., Loyau, T. e Carniel, X. (1993), 'Complete determination of structural intensity in plates using laser vibrometers.', *Journal of Sound and Vibration* **161**(3), 527–531.
- Pascal, J. C., Loyau, T. e Mann, J. A. (1990), Structural intensity from spatial fourier transformation and bahim acoustical holography method., in 'Proc. of the 3rd Int. Congress on Intensity Techniques', Senlis, France, pp. 197–204.
- Szwerc, R. P., Hambric, S. A. e Erickson, M. J. (1988), A comparison of experimental and finite element structural intensities on an aluminum ribbed panel, *in* 'Noise-Con', pp. 359–364.