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Abstract

A mixture theory approach has been employed to study the heat convection in a flow
through a saturated rigid porous medium, generating a system of coupled partial equa-
tions. The employed method is built in order to remain stable and accurate even for
very high advective regimen. Taking advantage of appropriated upwind strategies, the
numerical method employed has generated stable and accurate approximations for fluid
constituent velocity and pressure fields as well as for both solid and fluid constituents’
temperatures even for very high Péclet flows. Some two-dimensional simulations of
a nonisothermal flow of a Newtonian incompressible fluid through a porous channel
bounded by two impermeable flat plates have been performed.
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mations, mixed formulations, GLS method.

1. INTRODUCTION

Transport phenomena in porous media present countless relevant applications
among which: geomechanics, petroleum and mining industries, sintering technologies,
biomechanics, not to mention problems that impact the energy self-sufficiency and the
environmental state. In this article, the momentum and energy transport in a sat-
urated flow through a rigid porous medium has been studied by employing a local
model based on a Continuum Theory of Miztures (Atkin and Craine, 1976; Bedford and
Drumbheller,1983). The mixture is a superposition of continuous constituents (each of
them occupying its whole volume) standing for the fluid and the porous medium; the
fluid constituent is assumed Newtonian and incompressible, while the solid constituent,
representing the porous medium, is supposed rigid, homogeneous, isotropic and at rest



(Martins-Costa et al., 1992; Costa-Mattos etal., 1995). The mixture theory leads to an
apparent thermomechanical independence, requiring momentum and energy generation
terms to account for the thermomechanical coupling among the constituents in the bal-
ance equations. Since the solid constituent is rigid and at rest it suffices to solve mass
and momentum conservation equations for the fluid constituent of the mixture, while
the energy equation must be solved for both constituents. These equations, combined
with constitutive assumptions satisfying the material objectivity and the Second Law
of Thermodynamics, describe the heat convection in a porous medium.

Numerical simulations of incompressible flows suffer from two major difficulties:
finite elements need to compatibilize velocity and pressure subspaces satisfying the
Babuska-Brezzi mathematical condition and the instability inherent to central dis-
cretization schemes - either by Galerkin formulation or by central difference stencil
- to approximate high advective dominated flows. Most of Galerkin method limitations
may be overcome by the so called stabilized methods (Hughes and Franca, 1987 and ref-
erences therein), which consists of adding mesh-dependent terms to the usual Galerkin
formulation, which are functions of the residuals of the Euler-Lagrange equations evalu-
ated elementwise. Since these residuals are satisfied by the exact solutions, consistency
is preserved in these methods. The perturbation terms are designed to enhance stability
of the original Galerkin formulation without upsetting consistency.

In this paper a stabilized finite element method - built in to inherit the good stability
features shown by the stabilized methods already proposed for the Stokes problem (see,
for instance, Franca et al., 1992; Sampaio, 1991) - has been introduced to simulate
forced convection in porous media. Taking advantage of an improved design of the
stability parameters (Franca et al., 1992), the method remains stable even for very high
advective flows (Franca and Frey, 1992); thereby there is no need to satisfy the above
mentioned Babuska-Brezzi condition.

2. MIXTURE THEORY MODELING

Since the solid constituent is rigid and at rest it suffices to solve mass and momentum
conservation equations for the fluid constituent of the mixture. Therefore, the local form
of the mass and momentum conservation may be stated as (Atkin and Craine, 1976)
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in which uy represents the fluid constituent velocity and py its mass density, so that
ps = pp; where ¢ is the fluid fraction, coincident with the porosity, for saturated flows
and p is the actual fluid mass density, measured in a continuum mechanics viewpoint.
The momentum source, which accounts for the mechanical coupling between both con-
stituents is represented by the interaction force m; applied on the fluid constituent by
the solid one, o is the partial stress tensor acting on the fluid constituent and f; the
body force acting on it.

The mixture theory viewpoint requires constitutive assumptions for the partial
stress tensor and the intraction force applied on the fluid constituent (Williams, 1978;
Martins-Costa et al., 1992)

of = —epl + 2)p?pe(uy) (3)
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where p is the actual fluid viscosity and K is actual the specific permeability of the
porous medium, both regarded from a continuum mechanics viewpoint, \ is a scalar
parameter depending on the porous matrix microstructure, p is the pressure acting on
the mixture and e(uy) is the symmetrical part of the fluid constituent velocity gradient.

The local form of the energy equation for each constituent is given by (Atkin and
Craine, 1976)
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in which e, represent each constituent internal energy, r, its energy generation per
unit mass and q, the partial heat flux per unit time and unit area associated to the
a-th constituent. The energy generation function, v, which is an internal contribution,
represents the energy supply - per unit time and unit volume - to a given constituent,

arising from its thermal interaction with the remaining constituents of the mixture
(Martins-Costa et al., 1993).

Constitutive assumptions for the partial heat fluxes and energy generation function
for the solid (qs and ) and the fluid (q; and v ) constituents may be stated as
(Martins-Costa et al., 1992)

qs = —Aks(1 — )V, (6)
qr — —Ak:ngVHf (7)
—ths =1hy = R(0s— 0f) (8)

where 0, and 6; represent the solid and the fluid constituents’ temperatures, A an
always positive parameter which may depend on both the internal structure and the
kinematics of the mixture, kg and kg are the actual thermal conductivity of the solid
and the fluid and R is a positive-valued parameter depending on both constituents’
thermal properties and on the mixture internal structure.

3. FINITE ELEMENT MODELING

Substituting the constitutive eqgs. (3), (4), (6)-(8) into the conservation egs.(2)
and (5), assuming low velocities and steady-state Stokes flow, we obtain the follow-

ing boundary-value probiem for incor_npressible ﬂows_through saturated porous me-
dia: Given functions fy:{) — R37rf: ) — R and r,;: Q) — R, find the unknown fields
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with the thermal porous diffusivities x; and x, and coeflicient 3 being defined, respec-
tively, by

7/U<3_fg0 - R Aks(1 — )
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and prescribed energy supplies 7y and r, redefined as
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3.1 Stabilized formulations

The finite element approximation of eqs.(9) is based on the following finite dimension
subspaces,

Wy = {6 € Hg(Q) | ¢k € Pr(K), K €Cp} (12)

Vi, = {veHy ()Y | vk € Pr(K)Y, K € ¢y} (13)
Pp={peC®()NLYQ) |px € PI(K), K €Cp} (14)
Wi={oeH"(Q)|¢x €Pu(K), KECy ¢=0;, onlgt i=fs (15)
VI ={veH" (D" |vigeP(K)N, K€C, v=nu,on g} (16)

where P, P; and P, denote, respectively, polynomial spaces of degrees k, I and m.

The following stabilized method may be introduced to represent the system (9),
employing the definitions (10)-(11): Find (up,pr,0¢n, 0sn) € Vi x Py x W7 x W/ such
that
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with the stability parameters 7y, 74 and § defined by (Franca et al., 1992; Franca and
Frey, 1992)
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with |uf(x)|, representing the p-norm on R", the constants C,f and C; defined as in
Franca et al. (1992) and the é§-parameter defined as in Franca and Frey (1992).

Remarks

1. When the stability parameters 7, 74 and § are made equal to zero in eqs.(17)-(19),
classical Galerkin formulation for the problem defined in eqs.(9) is obtained.

2. The usual Reynolds and Péclet grid numbers (Gresho and Chan, 1990) were modi-
fied by including the parameter my in eqs.(23), to account for the degree of inter-
polation employed. As a consequence advective-dominated flow regions are charac-
terized by Reg, Pex > 1 and diffusive-dominated ones by Reg, Peg < 1, regardless
the element considered.



4. NUMERICAL RESULTS

In this section numerical simulations of non-isothermal modified Stokes flow - de-
fined by eqs. (9) and employing the stabilized formulation introduced in eqs. (17)-(19)
are presented. Biquadratic Serendipity (Q2S) interpolations have been employed to
approximate the fluid constituent velocity, the pressure and the fluid and the solid
constituents’ temperatures.
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Figure 1. Fluid constituent velocity profiles:
(a) for Da = 4 x 107%; (b) for Da = 4 x 1074,

A very simple geometry is now being considered: the Newtonian fluid flows through
a horizontal porous channel limited by impermeable and isothermal flat plates. A flat
porous channel of aspect ratio L/H = 2 (with L denoting its length and H its width),
thermal porous diffusivities xy — 10%, 1073 and 1077 for the fluid constituent and
ks = 10! for the solid one and the §-coefficient assuming the value 8 = 1072 has been
simulated.

The following boundary condition have been employed in the simulation
uy—0and §; — 1 for0<ax< L, y==+H/2
ur =uys(y) and 6; =0 forz =0, —H/2<y< H/2 (24)
of-n—=0and#; =1orVf;,-n—=20 fore =L, —H/2<y< H/2
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Figure 2. Galerkin method with Dirichlet conditions at the outlet

An almost flat velocity profile was obtained from the numerical approximation of the
hydrodynamical problem, considering the classical no-slip condition on the impermeable



flat plates, the classical fully developed flow boundary condition at the inlet and free
traction at the outlet, as shown in Figure 1. This profile presented a very good agreement
with the analytical result presented in Martins-Costa et al. (1992) besides approaching
the classical Darcy’s law velocity expression (Bejan, 1987) as the channel width H — oo.

Taking the centerline velocity as the characteristic flow velocity and fixing the chan-
nel width as H = 0.5, we have the folowing porous Péclet numbers: for kp = 1,
—1 —I7
Pe = up(0)H/kp = 5 x 107Y for kp = 1073, Pe” = 5 x 102; for kp = 1077,
—IIT7
Pe = =5 x 10°.

Figures 2 and 3 illustrate the finite element approximation employing the stabilized
method defined by eqs.(17)-(24) considering a fixed channel geometry, namely L/H = 2
and employing a uniform quadrilateral mesh. Elevation plots for kp = 1072 are shown
employing the Galerkin and the stabilized method described in this paper with Dirichlet
outflow boundary condition. Since the flow is parallel to the mesh one might conjecture
that the Galerkin formulation might work, which was not confirmed here, while the
stabilized one points out an excellent pattern with only small oscilations near the channel
exit. The poor performance of Galerkin is due to the outflow condition employed that
creates an outflow boundary layer which contaminates the Galerkin solution.
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Figure 3. Stabilized method with Dirichlet conditions at the outlet

This methodology has also been tested for Neumann boundary conditions for a
diffusive dominated flow (porous thermal diffusivity xp = 1), a high advective domi-
nated flow (kp = 1073) and a very high advective dominated one, (kp = 1077). In all
situations the finite element method has computed stable 6 and 6,-surfaces, indicat-
ing that the numerical method employed was capable to generate stable and accurate
temperature approximations even for high Péclet flows, 10% < Pex < 107.
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