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Abstract

This work addresses the fundamentals of nonlinear geometric field theory of continuum
mechanics.  Two decomposition theories: the classical polar decomposition  (F=RU=VR) and
the  sum decomposition  (F=S[strain]+R[rotation]) for the deformation gradient (F) are
introduced.  Those two theorems both give definitions for finite strain and local rotation.
However the strain defined by the classical polar decomposition in the initial configuration of
an embedding co-moving coordinate reference system is non-unique due to the non-
commutative property of matrix products but the one defined by the sum decomposition in the
deformed configuration is unique.  The conception of rotation in polar decomposition is
referred to the rigid body rotation of a mass particle while the one in sum decomposition is
related to the curl of the particle.  The non-unique strain and rigid body rotation conception is
contributed to that the classical polar decomposition theorem is set in mathematics but not in
physics of deformation. Some works of successfully applying the sum decomposition theorem
have been mentioned at the end of this paper.  This work suggests that the sum decomposition
theorem will show its especial value in bio-mechanics field where large deformation and
finite rotation are generally involved.
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1. INTRODUCTION

In non-linear continuum mechanics, to separate deformation from rotation out of a given
displacement field  is an important study subject, as rotation would result large and unreal
strain. It is well known that when a body deforms, each one of the small segments passing
through a point in the body will be stretched and rotate.  For a large displacement field, which
is generally involved in finite rotation, the formula for small strain is not applicable, therefore,
definition for large strain must be given reasonably.  Until now, there remain only three
definitions of finite strain which are rigorous in mathematical character, they are the  finite
strains (a) defined by metric tensor, the so called Green’s strain, (b) defined by polar
decomposition theorem (Truesdell & Noll, 1965) and (c) defined by the sum decomposition
theorem (Chen, 1979).

As for Green’s strain, the finite strain and finite rotation are defined separately, it is not
compatible in mathematical sense.  Moreover, Green’s strain is not suitable for engineering
measure due to the length variation of  a small segment emerges in quadratic form (ds/ds0)
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Truesdell and Noll (1965) presented a method to decompose strain and rotation from a
given deformation gradient field, the so called classical polar decomposition.   The
presentation of the decomposition is based only on mathematics consideration i.e. the
deformed configuration of a mass particle can be achieve by a pure stretch transformation
proceeding to a rigid rotation transformation or vice versa.  This decomposition unavoidably
leads two distinct strains respectively to strain pre-rotation or rotation pre-strain.  Generally,
people applies the polar decomposition without questioning its physical reality.  Almost all of
deformation analysis software has applied the polar decomposition to solve large deformation
problems.

Chen (1979) proposed a new decomposition theorem, named sum decomposition
theorem, in which strain  and local rotation occur at same time without order and the strain is
determined uniquely.  Moreover, local rotation is simply and analytically given, which is
relative to the curl of the particle. Since then, some examples successfully applying the sum
decomposition theorem have been reported sequentially.

At the beginning of  this paper, the polar decomposition and the sum decomposition are
introduced respectively.  To show the difference between those two decompositions, four
simple examples of finite deformation in plane are given.  By comparison, the merits of the
sum decomposition is shown.  In the later part of the paper, the performance comparison
between the software based on the sum decomposition and the ADINA based on the polar
decomposition is given (Li & Chen, 1994).  The results show that the software based on the
S-R decomposition is much more efficient than the ADINA, even though no significant
difference in the displacement magnitudes respectively obtained by the software and by the
ADINA was found.

2. POLAR DECOMPOSITION AND SUM DECOMPOSITION

To describe any degree of large deformation and rotation of a deformable body, double

coordinate systems are usually required.  One is a fixed system Xi (inertial system) and the

other is a co-moving system xi (or natural system) which is embedded in the body.  Let 
R

ig be

the local basis vectors of co-moving system before deformation; it changes to gi  after

deformation (Fig. 1).  The transformation g g
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where Fi
j is a function of deformation gradient and u j

i
 denotes the covariant derivation of

displacement component u j , which is defined in the initial co-moving system gi

R

, with

respect to co-moving coordinate xi .

2.1 Polar decomposition

In polar decomposition, u j
i
 becomes conventional derivation of displacement

component u j  i.e. j
iu , and  xi =Xi (the coordinates of the fixed system).  The polar

decomposition says that the deformation gradient can always be decomposed into a product of



Figure 1  Transformation of the basis vectors of co-moving coordinates system
before and after deformation

two matrices, a symmetric stretch matrix U or V and an orthogonal matrix R corresponding to
a rigid principal axes rotation i.e.

F=RU=VR   (2)

Equation (2) is interpreted in that the total deformation is obtained by first applying the
stretch and then rotation (respect to the first equality) or vice versa (to the second equality).
We see that this decomposition unavoidably leads two distinct stretch strains, in other words,
the decomposition is non-unique.  However, real deformation is that stretch and rotation occur
at same time, no order is involved.  Therefore Eq. (2) is only resulted from mathematical
consideration instead from physics.  Apart from the non-unique strain, the computation for the
strain and rotation is quite complicate because no analytic formulae are found.

2.2 Sum decomposition (S-R)

The sum decomposition theorem (Chen, 1979) proved that: for a physically possible
transformation induced by a deformable body point set, Fi

j can be decomposed into a
summed representation of a symmetrical transformation and an orthogonal transformation  i.e.
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where Si
j and Ri

j are the components of strain tensor and rotation tensor respectively, which
are determined as
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In the above δi
j
 is Kronecker identity tensor and L j

i  is a two order anti-symmetric tensor dual

to the direction vector l of the rotation axis of local rotation, which is defined as

l u=
1

2sin
rot

ϑ
  (7)

Equation (7) relates the local rotation angle ϑ  to the curl of a mass particle, which is
evaluated by
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The positive sign in Eq. (8) is used for counterclockwise rotation.  For practical computation,

the tensor components must be changed into physical components.  Let �u j
i
denote the

physical component of u j
i
, then we have (Chen, 1988)
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(ii), (jj) indicate no sum over the double index, and the local rotation angle should be
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Let the co-moving system before deformation be coincident with the fixed system, then
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and covariant derivation is identical to conventional derivation, i.e.
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It is especially noted that ϑ  is different from the rigid body rotation described by the
polar decomposition theorem.  When a body deforms, in general, the rotation of each line
segment passing through a point differs from another line segment. So ϑ  represents the mean
rotation effect of all line segments passing through the point, a non-simple arithmetic mean
effect.  It might be said that ϑ  scales the state of local rotation.  As the advantages of



mathematical uniqueness and physical reality, the S-R decomposition theorem has been used
widely (Qin & Chen, 1988; Chen, 1989; Shang & Chen, 1989; Chen, 1989; Wang & Chen,
1991; Li & Chen 1994; Chen & Liu, 1995).

For a plane problem the physical components of strain tensor can be written as

� ( )S
u

sx
1
1 1= + −

∂
∂

ϑcos (14)

� ( )S
v

sy
2
2 1= + −

∂
∂

ϑcos (15)

� � ( )S S
v

s

u

sx y
2
1

1
2 1

2
= = +

∂
∂

∂
∂

(16)

and local rotation angle is defined by
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where sx  and sy  are the arc lengths respectively along co-moving coordinate lines x x1 =
and x y2 = .

3.    EXAMPLES OF PLANE FINITE DEFORMATION

Table 1 exhibits four examples of plane finite deformation to help ones to understand, by
comparison, the finite strains and local rotations defined respectively by the polar
decomposition theorem  and the strain-rotation decomposition theorem. It should be noted
that the finite strain defined by the strain-rotation decomposition is measured in the deformed
configuration but the one by the polar decomposition is measured in the undeformed
configuration, which has been seen clearly in the examples of uniaxial tensile and
homogeneous dilation.  In the later the transformation carries a square A: 3×3 to

A’: 4 2 4 2×  (Fig. 2), the dimension change: 
24

3240 −=−
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defined by the strain-rotation decomposition or 
l l

l

−
=

−0

0

4 2 3

3
defined by the polar

decomposition.  For the fourth example, we obtain two distinct strain tensors from the polar
decomposition.  Which one is correct?  If both of them is correct, then the strain energy per
unit volume is unique?

Based on the sum decomposition, Li & Chen developed the so called UC software, then,
used it to evaluate the displacement of a cantilever beam respectively subjected to a
concentrated force at the free end or to a uniformly distributed load.  They compared the
efficiency of the UC with the ADINA.  The displacements obtained from the UC and the
ADINA  are  quite close, but  the total  number of  time  increment steps required by the
ADINA is sixteen times the one by the UC.  The detailed comparison is shown in Table 2.
From the table, one can see that the UC software has less time expense in computation than
the ADINA.  It would be understood that the sum decomposition is more reasonable than the
polar decomposition.



Table 1  Comparison of S-R and RU-VR (polar decomposition) measurements.  ( , )x y  is

the transformed coordinates of a material point ( , )x y  in the fixed system { }x y,  ;

[ ]′εij U
, the strain determined by the right stretch tensor U and [ ]′εij V

, the one by

the left stretch tensor V, where U and V are defined by the polar decomposition
theorem.
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Fig. 2  (a) Large rotation and dilation of a square; (b) large rotation and distortion of a square.



Table 2  Comparison of efficiency of the UC software with the ADINA (Li & Chen, 1994);
all the calculation were performed in double precision on a VAX 11/780 computer.

Cantilever beam subjected to a concentrated
force at the free end

Cantilever beam under a uniformly distributed
load

Program Load
steps

No. Of
iterations

CPU time
(s)

Program Load
steps

No. Of
iterations

CPU time
(s)

UC
ADINA

10
160

57
1172

99
900

UC
ADINA

10
150

61
1040

99
673

4. DISCUSSION

As being set on mathematics consideration instead of physics, the polar decomposition
only gives non-unique strains.  The rigid rotation conceptually described by the polar
decomposition does not exit in the process of deformation.  The local rotation and stretch of a
deformable particle occur always at same time without the order of stretch pre-rotation or
rotation pre-stretch. Although the polar decomposition has used widely, its reasonableness in
physics should be studied.  Perhaps this question would be clarified when strain energy
evaluation is required.  Owing to its reasonableness in physics and simplicity in computation,
the sum decomposition will obtain more application especially in bio-mechanics field where
large deformation and rotation are generally involved.
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